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Abstract

The classic dynamic autoregulatory index (ARI), proposed by Aaslid and Tiecks, is one of the most widely used methods to
assess the efficiency of dynamic cerebral autoregulation. Although this index is often used in clinical research and is also
included in some commercial equipment, it exhibits considerable intra-subject variability, and has the tendency to produce
false positive results in clinical applications. An alternative index of dynamic cerebral autoregulation is proposed, which
overcomes most of the limitations of the classic method and also has the advantage of being model-free. This new index
uses two parameters that are obtained directly from the response signal of the cerebral blood flow velocity to a transient
decrease in arterial blood pressure provoked by the sudden release of bilateral thigh cuffs, and a third parameter measuring
the difference in slope of this response and the change in arterial blood pressure achieved. With the values of these
parameters, a corresponding classic autoregulatory index value could be calculated by using a linear regression model built
from theoretical curves generated with the Aaslid-Tiecks model. In 16 healthy subjects who underwent repeated thigh-cuff
manoeuvres, the model-free approach exhibited significantly lower intra-subject variability, as measured by the unbiased
coefficient of variation, than the classic autoregulatory index (p = 0.032) and the Rate of Return (p,0.001), another measure
of cerebral autoregulation used for this type of systemic pressure stimulus, from 39.23%641.91% and 55.31%631.27%,
respectively, to 15.98%67.75%.
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Introduction

Cerebral autoregulation (CA) is the mechanism responsible for

maintaining blood flow relatively constant in the brain, despite

changes in the arterial blood pressure (ABP) in the range 60–

150 mmHg [1]. Traditionally, CA was assessed by the steady-state

relationship between mean ABP and mean cerebral blood flow.

The introduction of transcranial Doppler ultrasound made

possible to measure non-invasively beat-to-beat fluctuations of

blood velocity in the vessels of the brain, which allowed the

identification of transient autoregulatory responses, as blood flow

velocity is a good approximation of blood flow under normal

conditions [2–4]. These two approaches have been distinguished

as the ‘‘static’’ and ‘‘dynamic’’ characterisations of CA respectively

[5].

Several methods have been proposed to characterise the

efficiency of the dynamic cerebral blood flow autoregulatory

response [6]. One of the most widely used methods was proposed

by Tiecks et al. [5], designed from the previous work of Aaslid

et al. [7]. This method evaluates the changes observed in cerebral

blood flow velocity (CBFV) in response to changes in ABP

provoked by the sudden release of inflated bilateral thigh cuffs.

The main characteristic of the Aaslid-Tiecks method is the use

of a single second-order model to describe the relationship of these

two complex signals, the ABP signal as input and the CBFV signal

as output. This family of models is expressed by a differential

equation that is governed by three parameters, whose properties

have been extensively studied in many different fields such as

economics, chemistry, electrical and mechanical engineering, and

automatic control. Using the model equation, Aaslid and Tiecks

defined particular combinations for its parameters to grade

autoregulatory responses in ten distinctive levels. By feeding the

model with the actual ABP signal generated by a thigh-cuff

manoeuvre, for each combination of parameters, ten possible

CBFV template response curves can be generated. The efficiency

of the autoregulatory response can then be quantified with an

autoregulatory index (ARI) by fitting the actual CBFV response to

one of these templates, obtaining an integer value of ARI ranging

from 0 (absence of autoregulation) to 9 (best autoregulation).The

Aaslid-Tiecks method was incorporated in at least one piece of

commercial ultrasound equipment, which enabled its rapid

diffusion and consolidation as the traditional method to assess

dynamic CA. Indeed, just in the last year, several improvements of

the method have been proposed for its use in clinical applications

[8–11]. Moreover, alternative indices have normally been

compared to the Aaslid-Tiecks ARI (e.g. the Rate of Regulation

(RoR) [5,12], the Mean Flow Index (Mx) [13] and the Multimodal

Pressure-Flow method (MMPF) [12,14]), as have been the use of

the index with different ABP stimuli (e.g. spontaneous variations

[15–16], the Valsalva manoeuvre [12,16–17] and the sit-to-stand

manoeuvre [18]).
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However, the broad application of the Aaslid-Tiecks method, in

both research and clinical work, is not matched by its precision

and reproducibility as should be expected from clinical assessment

tools. The measurement seems to be robust when mean ARI

values can be obtained from the repeated application of several

thigh-cuff manoeuvres in the same subject. Nonetheless, it has

been reported that its variability increases significantly when the

number of repetitions is limited and that it generates many false
positives [19–20]. Worst still, the method indicated the complete

absence of autoregulation or very low ARI values (#2.0) in a

considerable number of manoeuvres in healthy subjects. Further-

more, these difficulties seem not to be limited to the assessment of

healthy subjects. ARI values obtained for patients with severe

head-injury were analysed in [21], in which a great variation of the

index could also be noted and there was an important number of

these pathological cases with high ARI values, suggesting that the

method might also be frequently generating false negatives.

With these problems in mind, a study of the parameters of the

Aaslid-Tiecks model was conducted in [22], which argued that the

numeric precision and generalisation power of the model can be

both increased by expanding the possible values of each of its three

parameters and the space for their combinations. This work

showed that by extending just one of the parameters, it was

possible to obtain better measurements, significantly reducing the

intra-subject variability and producing no zero-ARI values for

healthy subjects. A subsequent cerebrovascular reactivity study

found that more reliable measurement tools could be obtained by

introducing this unconstrained parameter into an autoregressive

moving average model for continuously assessing autoregulation

responses during transient hypocapnia and hypercapnia [23].

In the present work, we propose a new algorithm for measuring

the efficiency of dynamic CA, which is independent of any

particular model that relates ABP as the input signal and CBFV as

the output signal. This new model-free autoregulation index

(mfARI) is obtained by gauging three relatively independent

parameters that represent the general behaviour of the CBFV

response signal and how this behaviour compares with the one

observed for the ABP signal. We study the variability and

reliability of the proposed index in comparison to two CA

assessment tools first designed for thigh-cuff manoeuvres, namely

the standard Aaslid-Tiecks ARI [5] and the RoR [7].

Materials and Methods

Subjects
Data from sixteen volunteer subjects of mean age 31.868.5

years (range 23–51) were recruited. Subjects were excluded if they

had a history of cardiovascular disease, migraine, epilepsy,

hypertension, cerebral aneurysm, intracerebral bleeding, or other

pre-existing neurological disorders. The study was approved by the

Leicestershire Research Ethics Committee, and all subjects gave

written informed consent. These data correspond to the same set

used in [19].

Measurements
CBFV was recorded from one middle cerebral artery using a

Scimed QVL-120 transcranial Doppler system with a 2-MHz

transducer. ABP was measured with a non-invasive blood pressure

monitor Finapres 2300 Ohmeda. Recordings were made with

subjects in the supine position with the head elevated to 30u.
Transient blood pressure drops were provoked using thigh-cuff

manoeuvres. Each manoeuvre consisted of inflating two large

bilateral thigh cuffs 20 mmHg above peak systolic ABP, as

measured by the Finapres device, in all cases to ensure the

occlusion of the circulation to the lower extremities, which was

maintained for two minutes. After this time, the Velcro fastenings

on the thigh cuffs were simultaneously and rapidly released. Each

subject underwent six thigh-cuff manoeuvres, allowing an interval

of 8 minutes between manoeuvres to permit ABP and CBFV to

return to their baseline values.

The ABP and CBFV signals were sampled at a rate of 200

samples per second per channel. Both signals were filtered with an

eight-order Butterworth low-pass filter with a cut-off of 20 Hz.

The beginning of cardiac cycles were marked from the diastolic

values in the ABP wave; mean ABP and mean CBFV signals were

calculated for each cardiac cycle and then interpolated and re-

sampled with a constant sample rate of 5 Hz. This protocol is

further described in [19].

Three measures of autoregulation efficiency were obtained for

each thigh-cuff manoeuvre, namely the classic Aaslid-Tiecks ARI,

the RoR and the proposed mfARI.

Classic Aaslid-Tiecks Method
It is important to notice that the procedure to estimate an ARI

value followed by Mahony et al. [19] had some differences from

the original method proposed by Aaslid and Tiecks.

Both approaches generated ten predicted CBFV template

responses for the observed ABP stimulus by introducing the

specific combination of the Aaslid-Tiecks model’s parameters for

the ten levels of ARI values defined from zero to nine. Both

approaches compared the acquired CBFV response signal with

these template responses and the closest match was selected. The

difference though is that whilst Tiecks et al. [5] fitted the best

template using a least-squares method, Mahony et al. based their

estimates on a correlation coefficient procedure to avoid the need

to select a particular value of critical closing pressure. This was

followed by a parabolic interpolation to obtain non-integer values

of ARI.

In the statistical analysis described below, we performed

comparisons of mfARI with ARI using the values reported by

Mahony et al., but for the analysis of residuals we also reported a

comparison adopting the original proposal of Tiecks et al., using

the same value of 12 mmHg for critical closing pressure which

they suggested, in combination with the least squares, in order to

have estimates that could be compared to the least-squares

procedure adopted to estimate mfARI.

Rate of Regulation
RoR was calculated as described in [7]. Initially, the baseline

values are estimated as the mean value exhibited by each signal in

the 4 s immediately before the time of thigh cuffs release. Then the

signals are normalised by diving them by their baseline value. The

time course of the Cerebrovascular Resistance (CVR) can then be

determined by dividing the normalised ABP by the normalised

CBFV signals, and the rate in which CVR changes during the

interval from 1 to 3.6 s after the thigh cuffs release can be

estimated. By dividing this rate by the magnitude of the ABP drop,

calculated as the normalised mean ABP during the same interval,

the Rate of Regulation is finally obtained.

Proposed New Method
The proposed measurement system uses three parameters that

can be conceptually separated in two types. Two parameters

describe the autoregulatory response observed in the CBFV signal

induced by a thigh-cuff manoeuvre. The third parameter relates

the CBFV response to the drop in ABP provoked by the

manoeuvre.
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These parameters can then be transformed into a single

continuous value, in the same range as the classic ARI, using a

transformation process referred to as standardisation.

Parameters describing the CBFV response signal. Two

parameters were devised to represent the CBFV signal observed in

reaction to a sudden ABP perturbation. These parameters were

inspired by a long-standing idea in the fields of system

Figure 1. mfARI parameters in typical ABP and CBFV signals observed for a thigh-cuff manoeuvre. In the characterisation of the CBFV
response (A), the signal is first normalised so that the baseline level equals unity and the minimum value equals zero; t0 is the time of thigh cuffs
release and tmin is the time of minimum signal; t* is the time at which the transient and stable responses produced the lowest errors; Dt is the
duration of the transient response and Dts is the duration of the stable state response considered in the optimisation procedure to search for t*; the
solid straight line is the representation of the transient response; the segmented straight line is the representation of the constant steady state
response (kS). In the characterisation of the ABP stimulus (B), the signal (dotted line) is also normalised before the analysis; t0 is as above and tABP

min is
the time of minimum ABP signal; DtABP is the duration of the segment of ABP signal considered in determining the slope of the straight line that
represent the ABP recovery. The angle between the lines that represent the CBFV transient response and the ABP recovery signal corresponds to the
w parameter.
doi:10.1371/journal.pone.0108281.g001
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identification and automatic control: the Ziegler-Nichols Reaction

Curve Method [24], which indicates that arbitrary-order systems

can be roughly represented using only the two parameters of a

first-order system, namely the system time constant (t) and steady

state gain (kS).

Moreover, a further simplification is proposed and the response

of the system is characterised by two straight lines, rather than

using the exponential equation that describe a first-order system.

Thus a fixed-length horizontal line is used to describe the steady

state attained by the system and a (normally) positive line is utilised

to portray the transient response observed, from the minimum

point in the CBFV signal after the release of the thigh cuffs up to

the point the steady state begins. These relatively independent

approximations allowed closer fittings of the response than

attempting to adjust the specific curvature of a single first-order

response. Moreover, following Occam’s razor [25], two straight

lines are the simplest possible description of the CBFV response.

Fig. 1A shows a normalised CBFV response signal of one

representative thigh-cuff manoeuvre of one subject. In this

example, a transient response can clearly be seen for a short

period of time (Dt) immediately after the autoregulation system

starts acting to recover a normal CBFV level. The initial time tmin

is defined as the time the signal exhibited its minimum value

within a fixed-length time window after the release of the thigh

cuffs (t0), which in this study was set to 6 s (tCBFV
max in Table S1). It

should be noticed that CBFV responses were normalised by the

amplitude of the drop produced by the release of the thigh cuffs, so

that a change of one unit occurs between the baseline of the signal

(i.e. the mean signal value up to t0) and its minimum value at time

tmin. The signal of Fig. 1A also exhibits a clear steady state

response, i.e. the output of the system in the long run, which in this

proposal is considered to be a constant value.

A key part of the proposed method is to adequately determine t,

i.e. the time point in which the CBFV transient response ends.
Firstly, it defines the first parameter: the time interval Dt, as from

tmin to t, both time points included. The straight line, usually with

a positive slope, that best fit the portion of CBFV signal in this time

interval can then be estimated to characterise the observed

transient response. In addition, as the t parameter defines the end

of the transient response, it also marks the beginning of the steady

state response. Consequently, it also defines kS as CBFV(t). With

this parameter, a constant straight line can be outlined to

characterise the observed steady state response relative to the

baseline.

An optimisation problem to search for the best value of t was

devised, which minimises the mean squared error (MSE) between

the values of the CBFV response and the two lines that represent

the behaviour of the signal during the transient and steady state

responses respectively. Mathematically, the problem is formulated

as:

t �~arg min a:MSE(t)Tz(1{a):MSE(t)Sf g ð1Þ

with MSE(t)T~
1

Dt

X

i[Dt

e2
T (i) ð2Þ

MSE(t)S~
1

DtS

X

i[DtS

e2
S(i) ð3Þ

a~
Dt

DtzDtS

ð4Þ

in which each eT(t) and eS(t) is the difference between the sample

value in the observed CBFV response and the sample value in the

straight line that approximates it (at sampling time t) during the

transient and steady state respectively. Thus, t* is the resulting

optimum time-point for which the MSE of the first Dt+DtS
seconds of the CBFV signal, in regard to the lines that characterise

the transient and steady state responses, is minimum. To solve the

equation, it is sufficient to evaluate the formula for every possible

value of t in a discrete range [t min, t max], whose size depends on

the sample rate used for the CBFV signal and the range of values

obtained from templates generated with the classic model of Aaslid

and Tiecks, as it is explained below.

Comparing the ABP and CBFV response signals. The

autoregulatory efficiency is related to the ability of rapidly

recovering a steady cerebral blood flow after a perturbation in

the systemic blood pressure. Consequently, it is important to

consider the disassociation of these two signals.

For this, the ideas of Novak et al. were considered, who have

estimated the angle between the CBFV and ABP signals using

non-stationary methods [13–14]. However, since only short time

signals are evaluated in this work, they do not present stationarity

problems, thus the angle that differentiate them can be directly

measured from the normalised signals. For this, the straight line

that best fits the segment of normalised ABP signal from the time it

exhibits its minimum value and remains low (DtABP in table S1) is

estimated to describe its behaviour. This minimal ABP signal value

is sought in a time interval from t0 and t0+2 s (tABP
max in Table S1) for

the current study.

Thus, the third parameter of the new measurement system,

named w, corresponds to the angle observed between the straight

line that characterises the CBFV transient response and the

straight line that represents the return of the ABP signal, measured

in degrees (Fig. 1B). More specifically, w is the difference of the

two angles observed between each straight line and the time axis,

both limited to values between 0u and 90u. These angles are

obtained as the arctangent of the slope of each straight line.

It must be noted that the ABP signal is also normalised as

described above for the CBFV signal. Therefore, the slopes of the

straight lines are measured in the same magnitude relative to the

amplitude of the drop produced by the release of the thigh cuffs in

the corresponding signal they represent.

Standardisation to ARI values. The new measurement

system is not limited to an efficiency index in any particular scale.

Nevertheless, it was decided to use the well-know scale defined by

the classic Aaslid-Tiecks ARI, which range from zero to nine.

For this, the numeric resolution of the index was first increased

by interpolating the ten original combinations of parameters with

a cubic spline, in order to obtain 91 combinations, extending the

precision of the ARI values to one decimal place.

91 theoretical responses were then generated using this

extended set of combinations by applying a normalised negative

ABP step stimulus. Using the method described above, the Dt, kS

and w parameters were gauged from each theoretical response to

characterise its behaviour. The lower and upper bounds used in

calculating these parameters can be found in Table S1.

Supposing a linear relationship, it was possible to estimate the

coefficients of a multivariate linear regression that estimated new

continuous ARI values based on these parameters. The 91

theoretical responses also provided lower and upper bounds for

each parameter to be applied on both real ABP stimuli and real
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CBFV responses. By providing the regression coefficients as part of

our main results, other researchers will be able to calculate mfARI

for their own data.

Statistical analysis
The significance of the coefficients of the linear regression

described above was evaluated with Student’s t-tests, while a F-test

was used to assess the reliability of the regression. The coefficient

of determination R2 was also calculated to assess the regression’s

goodness of fit.

mfARI values were obtained by applying the proposed method

to the ABP and CBFV signals observed for each thigh-cuff

manoeuvre. Classic ARI values for each manoeuvre were obtained

from [19]. The probability distributions of the values obtained for

each thigh-cuff manoeuvre with both indices were visually

evaluated by using 20-bin histograms in the interval [0, 9]. Mean

indices for each subject were computed and compared, and a

Bland-Altman plot [26] was utilised to assess their agreement.

An analysis of residuals was conducted to evaluate the goodness

of fit between the observed CBFV signals and the CBFV responses

generated by the two ARI approaches. Specifically we compared

the MSE between the straight lines generated by each pair of (Dt,

kS) parameters and the actual CBFV signals, which we then

compared to the MSE between the best template selected by the

classic method and each observed CBFV signal for the same

period of time.

RoR values were determined for each thigh-cuff manoeuvres as

described above. The intra-subject variabilities of the three CA

assessment tools, namely the classic ARI, the proposed mfARI and

the RoR, were compared in terms of their standard deviation

normalised as a percentage of the mean, that is, their unbiased

coefficient of variation (CoV) [27].

The reproducibility of the three methods was also studied by

comparing their absolute reliability with the Standard Error of

Measurement (SEM). This reliability measure was calculated from

one-way ANOVA for repeated measures tables as explained in

[28] and corrected for missing values as suggested in [29].

The Anderson-Darling test was used to assess the normality of

distributions [30]. Subject mean ARI values were compared with

paired Student’s t-tests and one-way ANOVA with repeated

measures was used to assess differences in CoV. Tuckey’s Honest

Statistical Difference was used as post-hoc analysis. Data were log-

transformed when assumptions of normality or homoscedasticity

were unsupported. In all tests, a value p,0.05 was considered

significant.

Results

The values of the mfARI parameters, namely Dt, kS and w,

obtained from the 91 theoretical step responses are plotted in

Fig. 2. Table 1 contains the resulting standardisation regression

model, which was found significant (F(3,87) = 13020.00, p,0.001)

with a goodness of fit R2 = 0.998. Student’s t-tests for each

parameter indicated that all of them significantly contributed to

the model.

Six thigh-cuff manoeuvres were performed in each of the 16

subjects (96 in total), out of which seven (four subjects) presented

unacceptable levels of noise in the recorded signals, and were

discarded. Thus, a total of 89 manoeuvres were considered for the

analysis. Fig. 3 shows the application of the proposed method to

one case in which there is an important difference between the

ARI value estimated with (A) the classic and (B) the model-free

methods. Table 2 shows the mfARI values estimated for each

manoeuvre.

The residual analysis indicated that the proposed method

yielded an average MSE of 4.5065.71 cm/s, which resulted much

lower than the 40.35641.52 cm/s obtained by the best templates

selected by the classic approach as in [19]. When template

responses were fitted minimising error, the original Aaslid-Tieck

approach yielded an average MSE of 32.28632.94 cm/s.

mfARI values for manoeuvres showed no evidence of deviation

from normality (A = 0.588, p = 0.122), as did classic ARI values

(A = 0.687, p = 0.071). Fig. 4 presents the cumulative distributions

of both indices, in which it can be seen that the classic method

assigned very low ARI values (#2.0) to several thigh-cuff

manoeuvres, whereas the lowest mfARI value assigned was 2.7

(for the sixth manoeuvre of subject 6, which obtained a classic ARI

value of 0.0).

Table 2 also shows the Mean 6 SD mfARI values by each

subject. Fig. 5 depicts the agreement of these values and the

subject mean ARI reported in [19]. Both sets of values did not

contradict the assumption of being normally distributed (mfARI:

A = 0.262, p = 0.656; classic ARI: A = 0.432, p = 0.267). Subject

mean mfARI values were higher than classic ARI values in

general, especially for the subjects that obtained very low ARI

values. The population mean mfARI (5.660.90) resulted signif-

Figure 2. Standardisation of the mfARI parameters. By characterising 91 hypothetical responses, generated with the classic Aaslid-Tiecks
model, for ARI values equally-spaced between 0.0 and 9.0, the range of possible values of the proposed parameters could be obtained: kS in A, Dt in B
and w in C. All parameters exhibit a non-linear association with the ARI values. Although the behaviour of kS and Dt values are similar to those
observed for the original K and T parameters in the classic Aaslid-Tiecks model [22], the former are directly measured on the CBFV response signal,
and not dependent on any particular model.
doi:10.1371/journal.pone.0108281.g002

Table 1. Regression analysis for the standardisation procedure.

Mean ± SD Max. Min. Coefficient t-test p-value

Intercept 1.631 5.231 ,0.001

kS 0.6960.35 1,07 0 3.751 30.625 ,0.001

Dt 6.1963.03 [s] 10.00 [s] 1.20 [s] 20.137 24.753 ,0.001

w 11.43u610.56u 37.87u 0u 0.099 17.878 ,0.001

Columns 1–3 present descriptive statistics for the values of the proposed parameters obtained from 91 theoretical step responses generated with the classic Aaslid-
Tiecks model. Columns 4–6 report the coefficients resulting from the multivariate linear model built for the standardisation and their significance obtained from
individual Student’s t-tests for each parameter.
doi:10.1371/journal.pone.0108281.t001
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icantly higher (t(15) = 2.47, p,0.026) than the one reported for the

classic method (4.761.50).

Fig. 6 shows the distributions of mean CoV across subjects,

which did not present signs of deviation from normality for mfARI

(A = 0.433, p = 0.265) and RoR (A = 0.350, p = 0.426), in contrast

Figure 3. Calculation of the mfARI and classic ARI for one manoeuvre of one subject. Time-course of the ABP stimulus (dotted line) and
the CBFV response (solid line) recorded in one of the thigh-cuff manoeuvres applied to one subject. In (A), the fitting of the closest template response
(dashed line) with the classic method yielded an ARI value of 2.5. The plot on (B) presents the characterisation of the signals with the proposed
system, which yielded an mfARI value of 8.5.
doi:10.1371/journal.pone.0108281.g003
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to the case of the classic ARI (A = 1.253, p = 0.002). The mfARI

exhibited a population mean CoV of 15.98%67.75%, which was

significant lower than the mean CoV shown by both the classic

ARI (39.23%641.91%, p = 0.032) and the RoR (55.31%6

31.27%, p,0.001). P-values were estimated with log-transformed

data.

The absolute reliability of mfARI (SEM = 1.028 or 18.53%)

resulted better than for both the classic ARI (SEM = 1.657 or

35.36%) and the RoR (SEM = 0.187 or 78.11%).

Discussion

The proposed method is mainly based on two concepts: firstly,

CA can be assessed by characterising the CBFV response to an

external ABP stimulus and the relationship stimulus-response; and

secondly, that this characterisation must be as simple as possible.

In the current proposal, signals were characterised by fitting

straight lines, which can be represented with three parameters.

These parameters might then be used as the independent variables

in a regression model that would allow the standardisation of the

measure to a specific range of values. In this study, a linear

regression with the values of the classic ARI was considered.

The linear regression obtained warrants the conceptual equiv-

alence of the mfARI and the classic ARI. Any difference between

the values estimated for the same thigh-cuff manoeuvre will be due

to the quality of the fitting process allowed by their parameters.

Also, mfARI values are not limited to integer numbers as in the

original approach [5], nor are the result of the interpolation

between integer values as in [19].

Although the standardisation procedure bounded the range of

the mfARI, these limitations are different from the ones applying

to the classic ARI. The latter is morphologically constrained by a

small set of possible values for the generating parameters of its

differential equation, which restricts its ability to fit the wide

spectrum of real autoregulatory responses. In contrast, mfARI

could retain all possible combinations of its parameters and,

despite the fact that the bounds for their values were estimated

from theoretical responses, it was able to produce better fittings for

real responses.

Mean mfARI values resulted higher (0.90 units in average) for

the healthy subjects studied. Whilst the classic method seldom

produced subject mean ARI values over 6.5, subject mean mfARI

within this range were more frequently seen, making a better use

of the full range of values defined from zero to nine. In our view,

this is an important improvement over the classic ARI that has

been criticised for generating low ARI values for healthy subjects.

The difficulties of the classic method to produce higher ARI values

might be due to the particularities of the underlying second-order

system, which requires the occurrence of decaying oscillations

(under-dumping) in the CBFV signal to generate them, which are

not easily found in real responses. In contrast, the proposed

method captured appropriate combinations of mfARI parameters

that fitted more closely good autoregulatory responses. For

example, in the first manoeuvre of subject 16, there was a good

autoregulatory response (Fig. 3). This was captured by the new

index (mfARI = 8.5) but missed by the classic one (ARI = 2.5).

Moreover, the classic method produced very low values (ARI#2.0)

for several thigh-cuff manoeuvres (over 10%). In contrast, the

proposed method assigned mfARI values in the range 2.7–7.9

(5.061.60) to these cases.

The mfARI also showed a reduction in intra-subject variability

with a population mean CoV reduction of 59.27% in relation to

the classic ARI and of 71.11% in relation to the RoR. This is also

an advancement of the proposed method over the classic ARI and

RoR, as limited variations of the index is expected for a group of

healthy subjects. This reduction in variability explains the superior

absolute reliability exhibited by mfARI, with reductions in SEM of

47.60% when compared to the classic ARI and 76.28% when

compared to the RoR.

In summary, mfARI has shown simultaneously a reduction in

both intra- and inter-subject variability when applied to CA

responses on healthy subjects, improving both the precision and

reproducibility of the measure with respect to the classic ARI and

the RoR. Moreover, the method offers advantages in clinical

application: both ABP and CBFV signals can be recorded with

non-invasive equipment that is usually available in health settings,

and the autoregulatory response underlying in these signals can be

characterised with three computationally-inexpensive parameters.

These features could initially contribute to reducing the number of

thigh-cuff manoeuvres necessary to assess the autoregulatory

response of patients. The proposed method could also easily be

adapted to work with other techniques to produce sudden changes

Figure 4. Comparison of the cumulative distributions of both
indices. Percentage cumulative probability distribution of mfARI values
(filled circles, solid line) compared to the corresponding distribution for
classic ARI values (open squares, dotted line).
doi:10.1371/journal.pone.0108281.g004

Figure 5. Bland-Altman plot of mean values for each subject.
The difference between the new mfARI and classic ARI indices shows
the bias (solid dark line) and the 95% confidence interval (dotted line)
indicates the limits of agreement.
doi:10.1371/journal.pone.0108281.g005
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in ABP, such as sit-to-stand [18,31] or Valsalva [17] manoeuvres.

Furthermore, as with the classic ARI, mfARI could be used in

combination with subject-specific CA models to remove the need

of ABP stimuli, extending the application of the index to patients

for which changes in intracranial pressure could be potentially

harmful. Linear models, such as transfer functions [32] and

autoregressive models [33–34], could be built from recordings of

spontaneous variation of ABP and used to assess CA through the

model’s step response. Additionally, a more general approach

could be obtained by measuring responses from non-linear

models, similar to the one presented in [35].

The limitations of assessing dynamic CA with thigh-cuff

manoeuvres and transcranial Doppler ultrasound have been

extensively discussed [5,7,16,19,36], and are mainly related to

three aspects. Firstly, despite the manoeuvre being widely

undertaken on patients, the inflation of thigh cuffs up to 20 mmHg

above systolic ABP causes moderate pain. However, this was not

reported as a problem in the work of Mahony et al., from which

the subjects’ data for this study were taken. Secondly, the

insonation of any cerebral artery is achieved through the so called

acoustic window in the skull, which is not present in every subject.

This was also not reported as an issue for the data used here.

Finally, transcranial Doppler ultrasound does not measure

cerebral blood flow directly, which can only be considered

comparable to the measured CBFV if the cross-sectional areas

of the insonated cerebral arteries remained constant during the

assessment.

It could also be argued that the characterisation of the CBFV

response using the parameters of a linear first-order system could

be limiting the proposed approach, as it is simpler than the original

second-order system put forth by Aaslid and Tiecks. However, the

first-order model in the proposal plays a very different role than

the second-order model in the classic approach. There is no

suggestion that CA can be modelled as a first-order system. Rather

the proposition is that, as in the Ziegler-Nichols method, the

parameters of a first-order system can be used to characterise the

responses observed for an unknown arbitrary-order system.

In this study, mfARI has been compared with measurement

tools that were initially designed for thigh-cuff manoeuvres,

namely the classic ARI and the RoR. To compare the proposed

index against other methods to assess the efficiency of dynamic

CA, such as the Mx index [13] and the MMPF method [12–14], it

would be necessary to define new experimental settings aimed at

recording ABP and CBFV signals from individuals subjected to

different conditions than the ones considered in this study (e.g.

under spontaneous blood pressure variations or performing

Valsalva manoeuvres). Therefore, future work must be conducted

to address these comparisons.

The recently proposed MRARI to assess CA from magnetic

resonance images [37] is based on the same principles as the classic

ARI, fitting exponential templates, though it uses a simplified

model that consider only the CBFV responses, as the subject’s

ABP signal cannot be measured in the scanner. As two out of the

three parameters of mfARI are derived from these signals, the

method could be readily adapted to be used with magnetic

resonance images to obtain local assessments of dynamic CA.

Neither the RoR nor the Mx index nor the MMPF methods share

this potential.

This initial study has inspected exclusively data from healthy

subjects. Further research is also needed to assess the effectiveness

of mfARI to distinguish healthy individuals from patients with

impaired autoregulation. This could be achieved by evaluating the

proposed index with data from healthy subjects in conditions that

temporarily change their autoregulatory ability, such as breathing

Figure 6. Intra-subject variability. Subject mean CoV values obtained with the classic ARI (open squares, dotted line), the mfARI (filled circles,
solid line) and the RoR (open triangles, dashed line).
doi:10.1371/journal.pone.0108281.g006
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a mixture of air and CO2 [38] or re-breathing [39], as well as with

data from patients affected by one of the pathologies that are

known to impair the autoregulation mechanism.

Supporting Information

Table S1 Criteria when measuring the mfARI param-
eters. The estimation of the three proposed parameters, namely

Dt, kS and w, required the definition of certain criteria. Most of

them were defined following the common practices in studies of

dynamic cerebral autoregulation with thigh-cuff manoeuvres (for

example [5,7]). Others were determined by the extreme values

observed in the 91 theoretical step responses generated with the

classic Aaslid-Tiecks model.
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