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Lo Rigorous campaign was carried out from July 2013 to June 2014 at the remote and

Department of Chemistry,

National Institute industrial site (Adityapur and Seraikela Kharsawan) in the eastern India aiming to
of Technology, Jamshedpur, identify and quantify the changes of aerosol chemical composition in the presence of
Jharkhand 831014, India industrial and biomass burning influence. The 24-h PM, filter samples were analyzed

by mass, carbonaceous species, organic ions. The results suggested that the average
PM;, concentrations were 165 £ 43.93, 141 + 30.86 pg/m? in industrial and remote site
respectively. Secondary organic ions (SOC) were the dominant pollutants of PM; . Total
carbon was a significant component explaining above 15 % of PM,,. The annual aver-
age mass concentration of EC, OC, WSOC 26.39 £ 4.56,5.11 £ 1.82, 18.56 & 5.30 and
16.27 4 5.75,7.70 4 2.1,9.65 £ 1.92 ug/m? OC/EC, WSOC/OC 529 4 1.08,0.71 £ 0.17
and 2.34 £ 0.75,0.67 £ 0.16) of industrial and remote site were respectively; and OC/
EC particularly in industrial site it reached the highest 5.29 &+ 1.08 which demonstrated
that SOC should be a significant composition of PM,,. The mass fraction of the high-
lighted species varies seasonally, resulting the air mass trajectories and corresponding
cause severe strength. Based on exact mass concentration ratios of EC/OC, WSOC/OC,
we predicted that industries and biofuel/biomass burning are a major source of atmos-
pheric aerosols in the eastern part of India. This study provides the scientific baseline
data of carbonaceous aerosols for eastern Jharkhand, India.
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Background

Carbonaceous aerosols (CA) in environments have received special attention
recently in the modern India, because of their effects on the local environment, water
resources, agriculture production, ambient air quality, decline, visibility and pub-
lic health (Jacobson 2001). The CA includes two components, organic carbon (OC)
and elemental carbon (EC) also known to be as black carbon (BC), which constitutes
a major fraction of PM (Putaud et al. 2004). All these CA is one of the most impor-
tant and is ubiquitous materials found in the atmosphere, formed by all types of com-
bustion processes (industrial, biomass burning, etc.). EC is essentially considered as
a primary pollutant which is directly emitted by the incomplete combustion of fossil
fuel and biomass burning (Seinfeld and Pandis 1998). It has also been noted that the
biomass burning emission are one of the prime sources of EC, which is often used as
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a marker for the pollution (Ambade 2015); furthermore, its temporal pattern could be
connected to traffic concentration (Ruellan and Cachier 2001). The EC is an essential
constituent in atmospheric aerosols and is typically considered as the only particulate-
phase light-absorbing species (also known as brown carbon) in the earth’s radiation
budget (Jacobson 2001). Similarly OC has both primary and secondary origin. Pri-
mary OC is mostly formed during incomplete combustion processes such as unleaded
gasoline burning in an atmosphere or field agricultural and biomass burning (Cachier
et al. 1991; Duan et al. 2004). It is also directly discharged from plant spores, pollens
and dirt organic matter. Secondary organic carbon (SOC) can originate from differ-
ent processes such as gas to particle translation of low vapor pressure volatile organic
compounds (VOCs), condensation, physical and chemical adsorption beside these
aqueous phase processes are also important to generate SOA and water soluble organ-
ics (Wonaschiitz et al. 2011; Duong et al. 2011). The presence of SOA is recommended
by an increase of the OC/EC and WSOC/OC ratio. SOA can be easily estimated using
EC as a tracer of OC primary emission (Salma et al. 2004).

Both CA i.e. (OC and EC) in particulate matter (PM) play very crucial roles in visibility
degradation and climate effects (IPCC 2001). The EC, which is often related with light-
absorbing and optically-derived, black carbon (BC), which is known to cause heating in
the air on a local scale, thus changing the atmospheric constancy and vertical mixing,
and distressing large-scale circulation of air and also the hydrological cycle (Menon et al.
2002). Water soluble organic compounds (WSOCs) represent a considerable segment of
atmospheric organic matter, accounting for 10-90 % of OC content in ambient aerosols
depending on locations (P6schl 2005). In ambient aerosols, it consists of a large variety
of chemical species: a hydrosugars, alcohols, sugars, aliphatic and aromatic acids, amino
acids and aliphatic amines, etc., as well as large and medium size, convoluted molecules
such as Humic like Substances (HULIS) (Graber and Rudich 2006). WSOC plays an
important role in global climate change by changing the hygroscopicity of atmospheric
aerosols (Wonaschiitz et al. 2013). Besides biomass burning emissions, the WSOC has
contributions from SOA in the atmosphere, occurring through photochemical reactions
of VOC. The association of these WSOC has been good, predictable in an influencing
the number density of cloud condensation nuclei (CCN) (Crosbie et al. 2015) and shift-
ing the radiation balance of the atmosphere (Kaiser et al. 2011). WSOC can also cause a
deleterious consequence on human health by enhancing the solubility of toxic pollutants
(Kondo et al. 2007). Moreover, some of WSOC:s are allergens, leading to respiratory and
other related diseases (Franze et al. 2005).

The aim and objective of the present study is to provide most novel and a better
understanding of the characteristics of the aerosol particles for carbonaceous spe-
cies in industrial (Adityapur) and remote (Seraikela Kharsawan) atmosphere. For this
purpose OC, EC and WSOC associated to PM,, fraction were investigated rigorously
for 1 year. In addition above, this study also magnify contributions of OC and EC at
both sites of industries process and its emission, coal combustion, vehicular exhaust
and biomass burring etc. Besides all these, we are also presenting for the first time the
upshots of the air mass trajectories and AOD involved during this 1 year sampling of
the two sites.
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Experimental details

Site description

Adityapur (22°78'19"N, 86°15'19”E) is one of the largest industrial areas in eastern India
and a Special Economic Zone (SEZ) is in the works through the Adityapur Industrial
Development Authority (AIDA). The Adityapur Industrial Estate which is in the area
of 33,970 acres, 53 sq. mile has been Asia’s largest industrial hub. About 1000 medium
and small scale industries are located here and about 250 are under the process of con-
struction. There are about 20 large scale industries such as TGS, Usha Martin, Adhunik
Group, and RSB group of industries are situated in the Adityapur.

Seraikela-Kharsawan (22°29'26”N, 85°30’14”E) which has the remote/rural back-
ground, is at a distance of 57 km from the Adityapur. The main terrain of Seraikela-
Kharsawan is Chhotanagpur plateau. It is situated in a Dalma mountain region, which is
covered with a dense belt of forests (Census 2011). According to the govt of India census
record of 2011 Seraikela Kharsawan district has a population of 1,063,458. The sampling
site has been shown in Fig. 1.

Meteorology

According to the meteorological station of Adityapur and Saraikela Kharsawan (both
sampling sites), the ambient temperature and relative humidity were varied from 8.0
to 41.0 °C (avg. 24.5 °C) and 22 to 95 % (avg. 61 %) in winter respectively, whereas in
summer their ranges were 19.0-45.0 °C (avg. 30 °C) and 31-81 % (avg. 60 %), respec-
tively. The details of meteorological data during the sampling period were presented in
(Table 1). It should be also noted that during rainfall days no sampling was taken. Due
to a robust land/sea thermal gradient, a clear diurnal oscillation was perceived in wind
speed and direction (Pavuluri et al. 2010) but as it has been seen that the wind contrast
decreases with gaining height and finally disappears above 1 km (Ambade 2014). The
wind directions with wind speed are summarized in Fig. 2.
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Fig. 1 Map of study area with sampling site
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Table 1 The ranges, average and for meteorological parameters at sampling sites during 1
July 2013-30 June 2014

Month Temperature (°C) Pressure (hpa) Precipitation (mm) Humidity (%)
Average (max-min) Average (max- Average (max-min) Average
min) (max-min)
Winter 245 1014 40 61
(41.0-8.0) (1023-1002 (17.0-0.0) (22-95)
Summer/pre mon-  30.0 1000 520 60
Nelelg (45.0-19.0) (1026-991) (108.0-0.0) (31-81)
Monsoon 29.0 1000 73 87
(26.0-23.0) (1009-991) (108.0-0.0) (75-96)
Post monsoon/ 16.0 1016 0.27 71
autumn (33.0-27.0) (1019-997) (33.0-0.0) (26-95)

Winter Summer/ Pre monsoon

Monsoon Autumn/ Post monsoon

Fig. 2 Seasonal wind rose plot of sampling site

PM,, sampling and mass measurement

PM,, (<10 pm aerodynamic diameter) aerosol samples (N = 52) was collected from each
sampling site of Seraikela-Kharsawan and Adityapur during 1 July, 2013-30 June, 2014.
The sampling details and standard operational parameter of sampling equipment used at
two sites are presented in Table 2.

Page 4 of 17
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Table 2 An overview of the both sampling campaign includes the sampling equipment
used, number of filter with size etc

Sampling site (with code) Seraikela-Kharsawan Adityapur

Site category Semi urban Industrial

Date start 01-07-2013 03-07-2013

Date stop 30-06-2014 02-06-2014

Number of days 52 52

Number of valid samples 50 50

% of valid samples 96 % 94 %

Number of OC/EC data 10 10

Number of WSOC data 40 40

No of field blank 12 12

No of lab blank 12 11

Aerosol sampler RDS-460 Envirotech make, CSIR-NEERI RDS-460 Envirotech make, CSIR-NEERI
improved Technology, India improved Technology, India

Filter size (d) (mm) 47 47

Flow rate (L min™") 3 3

Aerosol samples were collected on 47 mm high purity PALLFLEX®"™ tissue quartz
filters (pre-combusted at 900 °C for 3 h to remove organic artifacts or impurities)
using a respirable dust sampler (Envirotech RDS 460, CSIR NEERI improved Tech-
nology, India). The flow rate of the sampler was periodically calibrated and was about
~3 L min~". After collection, filters were stored in refrigerator at ~4 °C prior to chemi-
cal analysis to prevent the loss of volatile components. Furthermore the 5 % of field
blanks were collected to subtract the positive artifacts that resulted from adsorption of
gas-phase organic compounds onto the filter during and/or after sampling. Negative
artifacts due to the volatilization of particle-phase organics from particle samples were
not quantified in this study. The particulate mass concentrations (PM,,) were obtained
gravimetrically from initial and final weight of the filters. Thereafter the Loaded and
unloaded filters were conditioned for constant relative humidity (RH) of 45 + 5 % and
temperature 22 £+ 2 % for 48 h calibration before weighing in an analytical balance
(Metler Mx5 microbalance; Metler Toledo Co. Inc. Greifensee, Switzerland) with
+1 mg sensitivity.

Furthermore the sample filters were subsequently analyzed for carbonaceous species
(EC, OC and WSOC).

Analysis of EC, OC

In the present study, we measured EC and OC on sunset EC-OC analyzer using NIOSH
(National Institute for Occupational Safety and Health) protocol (Rengarajan et al.
2011). In addition to this, procedural filter blanks were analyzed (N = 12) and mass con-
centrations were suitably corrected for blanks. An external standard named as Potas-
sium hydrogen phthalate (KHP) is used as to validate the precision of the measurement
of OC during the analysis process and an overall analytical uncertainty of not more than
4 % were given to the given analysis.
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Analysis of WSOC

The total organic carbon (TOC) analyzer (Shimadzu, model TOC-5000A) were used
for the measurement of the concentration of water-soluble organic carbon (WSOC)
(Ram et al. 2010a). For the determination of WSOC include sonication of 1-2 strokes
(3.14 cm? each) of sample with 30/40 mL Milli-Q water for estimated 30 min, followed
by extracting the filtrate using a glass-syringe while passing through a glass-fiber filter
(25 mm diameter) into a pre-cleaned amber coloured glass vials, and subsequent analy-
sis on a TOC analyzer.

Air-mass back trajectories

In order to identify sources and to examine how pollutant transport paths affect con-
centrations of air pollutants at the sampling site, a 4-day backward trajectory analysis
is performed for each air-mass case. The analysis was calculated with the assist of the
HYSPLIT (Hybrid Single-Particle Lagrangian-Integrated Trajectory) model (Draxler and
Rolph 2003). In our present study the backward trajectory analysis was made for alti-
tudes of 100, 500, and 1000 m respectively to get the better results.

Results and discussion

Air-mass back trajectories (AMBTs) and aerosol optical depth (AOD)

Trajectory analyses are generally simulated in air quality studies to observe the source
regions of air parcel blows into a particular region. To track the actual movement of air
parcels, it is highly useful. It is also significant to consider thermodynamic factors that
could stimulus the deteriorate in air quality. The Climate change will affect air quality
through numerous pathways including manufacture of aeroallergens such as pollen and
mold spores and increases in regional ambient concentrations of ozone, fine particles,
and dust. According to Pope and Kalkstein (1996) the air mass characteristics have been
successfully used over the past few decades to examine pollution concentrations, mostly
with respect to diurnal air quality variability and often in the perspective of air pollutant
influences on human mortality. Back trajectories were generally computed using Hybrid
Single Particle Lagrangian Integrated Trajectory model (HYSPLIT-version 4; GDAS data
set) from NOAA air resources laboratory (Draxler 2002). In our present study we calcu-
lated the AMBT cluster at the height of 500-4000 m (Fig. 3). The results showed that the
east to west transport highly affects the chemical concentration of aerosols at Adityapur
and Seraikela Kharsawan. The trajectories computed for the sampling days (15 August
2013 and 15 November 2013) clearly show the continental impact on BoB. In the present
environment, sampling site is perfect to study the impact of upwind sources of the both
sites in chemical composition of aerosols over the BoB. However, between 15 January
2014 and 15 May 2014, air parcel originated and transferred to western regions of the
sampling site.

We have also analyzed a year (2013-2014) dataset of AOD,, from the MODIS sensor
on board the NASA GES DISC-Terra satellite in order to evaluate the seasonal variability
of specific aerosol types over the eastern India. The AOD data, representative of colum-
nar aerosol loading, over Adityapur and Seraikela Kharsawan during sampling days.
Analyses and conceptions of the data are formed by the Giovanni online data system,
which were developed and maintained by the NASA. The uncertainty in the calculation
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Fig. 3 Four days'air mass back trajectories computed during sampling season

of AOD for cloud free environment is less than +0.01 for wavelength greater than
550 nm and for shorter wavelengths it is less than £0.02, for retrieval of cloud water
vapor it is 10 %, and is less than 5 % of the sky radiance measurements. The high
load occurred mainly in the winter season, directly related to the intensity of anthropo-
genic emissions from industry and the burning of biomass, stagnant air masses, poor
dilution of aerosols and also related strongly to the air mass movements shown by back-
ward trajectory. Figure 4 illustrated the high MODIS AOD values at 550 nm over the
study region. Computed high AOD values over the sampling site (Adityapur and Serai-
kela Kharsawan) strengthen the argument. The columnar AOD properties, therefore

Page 7 of 17
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Fig. 4 Seraikela-Kharsawan and Adityapur located in the Chhotanagpur plateau with highlighting MODIS
aerosol optical depth at 550 nm over the Chhotanagpur pleatu

represent the resultant mixture of different aerosol types and show the seasonal changes
in their nature associated with the synoptic meteorology consequently impact the radia-
tive forcing. The eastern India constitutes an excellent atmospheric laboratory for exam-
ining the optical and microphysical aerosol characteristics, since environment is affected
by locally produced anthropogenic aerosols and naturally produced particulate which is
being transported to the long distances before reaching the site. Beside this, the season-
ally changing air masses and the meteorological parameters also strongly affect the aero-
sol load and properties.

Concentration of PM,,

The annual average mass concentration of PM,, over Adityapur and Seraikela Khar-
sawan were 165 + 43.93 and 141 4 30.86 varying from 76 to 275 and 64 to 244 pg/m?®
respectively. There is a significant seasonal variation observed at both sites are presented
in Figs. 5 and 6. The annual average mass value of both studies is reported higher, com-
pared with the National Ambient Air Quality Standards (NAQS 2009) given by Central
Pollution Control Board India (CPCB 2009), and also meet higher than World Health
Organization standards (WHO 2005). From Figs. 5 and 6 it can be clearly seen that the
Adityapur had the highest concentrations of PM,, in the winter (214.50 4 65 ug/m?) and
lowest in the summer (117 + 40 pg/m?), and for Seraikela Kharsawan the highest con-
centrations of PM,, were also found in winter season (165.50 + 51 ug/m?) and lowest in
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Fig.5 Seasonal distribution of the Adityapur campaign with their seasonal mean PM;, conc. of EC, OC,
WSOC (ug m~3) for the period 1 July 2013-30 June 2014
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Fig. 6 Seasonal distribution of the Seraikela Kharsawan campaign with their seasonal mean PM;, conc. of EC,
OC, WSOC (ug m~3) for the period 1 July 2013-30 June 2014

the summer season (110 £ 21 pg/m®). During the summer season the concentration of
PM,, were lower it may be due to, the highest wind speed in local language we call as
“aandhi” and due to this the pollutants disperse quickly into the atmosphere while high
temperature of the atmosphere also favour. As while in the summer due to frequent dust
aandhi and high temperature it is expected to be more intense photochemistry to gener-
ate secondary organics but due to dispersion of air in the summer the SOA formation is
less than winter. There is on the other hand, in winter season, due to lower ambient tem-
peratures, lower mixing depths, temperature inversion condition, low, calm condition
and higher consumption of fuel augments the pollution (Ambade 2012). It can be noted
that overall higher concentrations of PM at this site may be mainly due to industrial,
vehicular activities, biomass and fossil fuels burning. (Hsieh et al. 2012). In addition to

this during winter season, very frequent and persistent temperature inversion and foggy
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Table 3 Mass concentrations (in pg m~3) of OC, EC, and WSOC along with OC/EC
and WSOC/OC Ratios at Adityapur

Winter Summer/pre mon- Monsoon Autumn/post
soon monsoon

Min Max Min Max Min Max Min Max
Mass of PM, o 154 275 76 158 87 196 110 264
oC 194 424 45 323 6.4 350 17.6 415
EC 6.67 89 22 5.7 34 4.5 26 6.89
WSOC 16.6 344 26 21.3 35 320 7.5 19.6
OC/EC 2.91 4.76 4.77 5.76 3.65 7.78 6.67 6.02
WSOC/OC 0.86 0.81 091 0.66 0.60 0.91 043 047

Table 4 Mass concentrations (in pg m~3) of OC, EC, and WSOC along with OC/EC
and WSOC/OC ratios, at Seraikela Kharsawan

Winter Summer/pre mon- Monsoon Autumn/post
soon monsoon

Min Max Min Max Min Max Min Max
Mass of PM, o 120 211 77 143 64 174 95 244
ocC 13.6 322 55 21.6 46 15.7 4.6 325
EC 35 116 25 9.3 13 8.1 24 86
WSOC 9.1 15.6 45 14.8 39 122 26 14.5
OC/EC 2.23 3.89 1.17 1.33 141 2.56 1.92 378
WSOC/OC 0.67 048 0.82 0.69 0.95 0.78 0.57 045

conditions at ground level cause a substantial quantity of aerosols to gather in the lower
levels of the atmosphere. Aerosol concentrations during winter season were also largely
due to massive industrial and biomass burning over eastern part of India especially in
Jharkhand (Ambade 2012).

Mass concentrations of carbonaceous species (OC, EC, and WSOC)

EC and OC in aerosol illustrate special notice in current scenario because of its unique
role in the greenhouse gas and warm the atmosphere; it extremely effects on human
health and climate. Both EC and OC originate as a result of incomplete combustion of
motor vehicle fuel, industries, biomass and fuels used for housing cooking. (Ambade
2012).

In Figs. 5 and 6 it can be seen that OC and EC exhibited similar pattern variation in
both Adityapur and Seraikela Kharsawan respectively. Seasonal concentrations of OC
ranged from 4.50 to 42.40 ugm ™ in Adityapur and from 1.60 to 32.50 pug/m? in Seraikela
Kharsawan, while those of EC varied from 2.20 to 8.90 pg/m® in Adityapur and from
1.30 to 11.60 pg/m? in Seraikela Kharsawan (Tables 3, 4) with annual average mass con-
centration of OC and EC over Adityapur and Seraikela Kharsawan were 26.39 £ 4.56,
5.11 + 1.82 and 16.27 + 5.75 and 7.70 =+ 2.10 pg/m? respectively.

The range summaries of water-soluble organic in the tropical Indian aerosol (PM,)
samples from Adityapur and Seraikela Kharsawan were given in Tables 3 and 4. Their
temporal variations are also shown in Figs. 5 and 6.
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In general, mean mass concentrations of WSOC, OC, and EC are higher during winter
and significantly lower in summer and monsoon season (Figs. 5, 6). During winter, OC
and EC concentrations are nearly 2—3 times lower than those during summer and mon-
soon season. This organized, reduce in concentrations of carbonaceous species is attrib-
uted to the altering source strength of emissions from industrial and biomass burning
visa- via fossil-fuel burning and boundary layer dynamics (Ram et al. 2010b).

OC and EC mass experienced more or less significant seasonal variation in both Adi-
tyapur and Seraikela Kharsawan respectively. EC is emitted from biomass and/or fossil
fuel, incomplete combustion processes as fine particles (Salma et al. 2004). The abundant
carbonaceous aerosols in Saraikela Kharsawan are largely caused by the regional win-
ter time coal-burning emission due to house heating. This is also mainly due to the far
distance from EC sources (e.g. traffic and industrial emissions). Higher concentrations
of EC imply that contributions from anthropogenic sources are higher in winter than
in summer season. When the concentrations of OC are comparing between summer,
monsoon and winter, it may be concluded that the organic aerosols have an additional
sources for ex. Biogenic emissions in summer because the production of secondary aer-
osol is equally significant in both the seasons due to high existing solar radiations, and
temperature over the region, which are adequate to endorse a photochemical process
and due to elevated humidity in the monsoon season the OC and WSOC concentration
has been recorded higher (Youn et al. 2013).

Coal is used in both household cooking and industrial coal burning boilers in major
Indian cities including Adityapur and Seraikela Kharsawan. Both of these sources emit-
ted large amount of carbonaceous particles reported by Zhang et al. (2000). Adityapur is
a major industrial Centre of East India. It houses companies like Tata Steel, Tata Motors,
Tata Power, Lafarge Cement, Telcon, TCE, TCS, Timken BOC Gases, TRE, Tinplate,
Praxair and many more industries used coal while in Saraikela Kharsawan consumed
major its coal in winter due to residential heating (about 16 % of coal was used for this
purpose alone). In addition, it was popular to burn paddy and wheat residue in situ espe-
cially in the Seraikela Kharsawan area which is mainly surrounded by paddy field and
agricultural land. For this kind of biomass burning it was reported that over 60 % was
emitted as carbonaceous particulate (Watson and Chow 2001).

Studies about both industrial and remote locations have reported that WSOC
accounts for approximately 20-67 % of the total particulate carbon in the atmosphere
(Sempere and Kawamura 1994). The WSOC fraction in OC also shows a clear spatial
variation. The Saraikela Kharsawan site has the lowest WSOC fraction, whereas the
industrial site Adityapur has the highest WSOC fraction in any a given season. This may
be explained by the relative contribution of primary and secondary organic aerosols. At
the Adityapur, the aerosol loadings are heavily influenced by the industrial, local vehic-
ular emission sources and other primary emission sources (e.g. cooking fumes). The
Saraikela Kharsawan site has no major local emission sources, but burning of agricul-
tural wastes and cooking fumes is the major.

OC/EC and WSOC/OC ratios and sources of carbonaceous species
The mass ratios of OC to EC (OC/EC and WSOC to OC (WSOC/OC) are shown
in Figs. 7 and 8. The OC/EC can be used to interpret the emission and transmission
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Fig. 8 Seasonal distribution of the Seraikela Kharsawan campaign with their seasonal mean conc. ratio of
OC/EC, WSOC/OC for the period 1 July 2013-30 June 2014

characteristics of carbonaceous aerosol. Annually OC/EC ranged from 2.91 to 7.78 with
an annual average of 5.29 + 1.08 in Adityapur, and from 1.17 to 3.89 with an annual
average of 2.34 & 0.75 in Saraikela Kharsawan. No seasonal trends are found for the OC/
EC ratios in both sites. As mentioned below OC/EC ratios are quite different for various
sources, of which the emissions are more or less seasonally different throughout the year.
The characteristically different OC/EC ratios can be attributed to the predominance of
biomass burning sources like poor combustion efficiency during wood-fuel, agricultural
waste burning and Coal burning). The OC/EC and WSOC/OC ratios, along with OC
and EC abundances, over Adityapur and Saraikela Kharsawan have been summarized
in Table 5. Biomass burning emissions (from poor combustion efficiency during wood-
fuel, farm waste burning and fossil fuel burning) have been referred as a major source of
carbonaceous aerosols in India (Gustafsson et al. 2009), while coal-based emissions are
highly observed in a regional part of eastern India (Reddy and Venkataraman 2002).

The relative amount of EC and OC in ambient aerosol is very essential in deciding their
overall radiative effect, because EC is a strong absorber of light but OC is by scattering in
nature and can also increase cloud albedo by substituted as (cloud condensation nuclei)
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Table 5 The comparison of the OC/EC and WSOC/OC of Adityapur and Seraikela Khar-
sawan with previous studies
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Location Sampling time OC/EC WSOC/0C References

Adityapur July 13-June 14 529+1.08 0.71+£0.17 Present study

Seraikela Kharsawan July 13-June 14 2344075 067 +£0.16 Present study
Ahmadabad (urban) Dec 07 6.2+ 08 041+ 0.06 Rengarajan et al. (2011)
Arabian Sea April-May 06 ~2.7 n.a Kumar et al. (2008a)
Arabian Sea Dec 07 474+16 ~09 Kumar et al. (2012)

Biofuel - ~6.7 n.a Andreae and Merlet (2001)
BoB (IGP-2006) Mar—April 06 43424 n.a Kumar et al. (2008b)

BoB (IGP-2009) Jan 09 29+08 n.a Srinivas and Sarin (2014)
BoB (SEA-2009) Jan 09 20+£13 n.a Srinivas and Sarin (2014)
Hisar (IGP) Dec 04 85+22 064 +0.14 Rengarajan et al. (2007)
INDOEX-total Jan-Mar 99 ~13 n.a Mayol-Bracero et al. (2002)
Kanpur (IGP) Jan-Feb 07 87439 037 +£0.09 Ram et al. (2010b)
Kharagpur Nov 09-Mar 10 70+£22 0.52£0.16 Srinivas and Sarin (2014)
Manora Peak Dec 04 604+19 0.784+0.13 Rengarajan et al. (2007)
Manora Peak Winter Jan 06 63+22 ~0.57 Ram et al. (2008)

Mt. Abu Dec-Mar 05 45+09 n.a Ram et al. (2010a)

NCO-P Nov 07-Feb 08 9.6 ~0.66 Decesari et al. (2010)

Patial (IGP) April-May 30+£04 0.60 £ 0.03 Rajput et al. 2014)

Patiala (IGP) Oct-Nov 1142 052 4+0.02 Rajput et al. (2014)
SCAR-B, Brazil, BB 2003 ~83 n.a Ferek et al. (1998)
Sonnblic Austria July-sept 6.0 n.a Legrand and puxbaum (2007)
Tanzania, Africa, BB July-Aug 11 ~6.0 ~0.67 Mkoma et al. (2013)
Tanzania, Africa, BB May—-June 11 ~78 ~0.72 Mkoma et al. (2013)

n.a not available

CCN (Gelencsér 2004). This is best evaluated by the OC/EC ratio; less the value, the
higher the absorption efficiency of the carbonaceous aerosol (Novakov et al. 2000).

The WSOC/OC ratios ranged from 0.43 to 0.91 with an average of 0.71 £ 0.17 in Adi-
tyapur and from 0.45 to 0.95 with an average of 0.67 + 0.16 in Saraikela Kharsawan.
WSOC/OC ratios for vehicular emissions are usually low compared to those from
industrial and biomass burning emissions. The low solubility of organic constituents
from combustion of liquid fuels (diesel, petrol etc.) in water is the chief reason for lower
WSOC/OC ratios. Cheung et al. (2009) reported that WSOC/OC ratios vary from 0.06
to 0.19 in the diesel particles emitted from light-duty vehicles. Previous studies that
Saarikoski et al. (2008) have reported a value of 0.27 for vehicle emissions over an urban
environment in Helsinki (Europe). As expected, higher OC/EC and WSOC/OC ratios
were found in summer than in winter (Tables 3, 4). The higher WSOC/OC slope in the
summer than in winter suggests that secondary organic aerosol formation processes
produce significant amounts of WSOC during the summer. Information on the WSOC
partitioning between its primary and secondary fraction can be derived by means of the
EC tracer method.

The average and annual concentration of OC/EC and WSOC/OC in Seraikela Khar-
sawan are 5.29 £ 1.08, 0.71 &+ 0.17 and 2.34 +£ 0.75, 0.67 £ 0.16 respectively. The above
report values of OC/EC and WSOC are higher.
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Comparison of OC/EC and WSOC/OC in Adityapur and Seraikela Kharsawan with previous
studies

Table 5 summarises the comparison of the concentration ratio of EC and OC (OC/EC)
and mass concentration ratios of WSOC to OC (WSOC/EC) in Adityapur and Seraikela
Kharsawan with different locations in the world including the Arabian Sea and Bay of
Bengal (BoB). The annual average concentration of OC/EC (5.29 + 1.08) in Adityapur
and the average concentration of WSOC/EC (2.34 £ 0.75) in Saraikela Kharsawan is
higher than those reported in summer in the Arabian Sea, INDOEX-total and over the
BoB but lower than that reported in Ahmadabad (urban), Hisar (IGP), Kanpur (IGP),
Kharagpur, Manora Peak, Patiala (IGP), BoB, Sonnblic Austria and summer and winter
of Tanzania, Africa BB (Table 5).

The major sources of carbonaceous aerosols in Ahmadabad (urban), Manora Peak,
Hisar (IGP), Kanpur (IGP) and Manora Peak Winter, are expected to be biofuel com-
bustion (cow-dung cake, wood and agricultural waste) and biomass burning (Ram et al.
2008, 2010a). Similarly, the major contributions of carbonaceous aerosols in Kharagpur,
winter and summer in Tanzania, Africa, BB as well as over the BoB were attributed to be
biomass burning (Mkoma et al. 2013). A Similar pattern is also reported in Adityapur
and Seraikela Kharsawan.

Formation of secondary organic carbon
Castro et al. (1999) noted that the utilize of the minimum OC/EC ratio in the ambi-
ent aerosol to be as primary origin and, thus, calculated the secondary organic carbon,
OCsc. It is understood in such an approach that the minimum OC/EC ratio at the sam-
pling location were uttered by the local meteorological conditions like, high wind speed
or lack of direct solar radiation etc. that do not support the formation of secondary OC.
Castro et al. (1999) had well reported on (OC/EC) ratios in the range of 1.10 to 1.50
for the rural and urban European sites. Using the following ms equations (Castro et al.
1999), OCsc can be semi-quantitatively estimated for a definite region of concerned:

OCpr = EC x (OC/OCpr)
OCsc — OCms—OCpr

where, OCpr the primary OC and (OC/EC)pr the primary OC/EC ratio observed during
the sampling period, OCms is the measured OC in ambient aerosol and OCsc the sec-
ondary OC. On the basis of 1 year sampling at Adityapur and Seraikela Kharsawan, the
(OC/EC)pr ratio were 5.29 + 0.29 and 2.34 % 0.75 respectively. The annual average was
determined by taking the average of summer, winter, monsoon and high monsoon sea-
son OC/EC ratios, Using this ratio and assuming consistent sources, prevailing for pri-
mary OC and EC in the industrial and semi urban atmosphere, we have estimated OCsc
for the sampling site at Adityapur and Seraikela Kharsawan. The choice of (OC/EC)pr
ratio could be rather arbitrary with some degree of uncertainty [distant from amount
of uncertainty (10) of ~5.7 %] arising due to the seasonal disparities in the source vig-
our and meteorology as well as the chemical mechanism concerning the manufacture
of OCsc from oxidation products of precursors (Pandis et al. 1992; Castro et al. 1999).
Hence the OCsc estimates can be considered as a lower limit of secondary aerosol
formation. The estimated OCsc is found range from 8 to 35.9 % of the total OC. The
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temporal variation of OCsc follows the same trend as that of the WSOC which indi-
cates a significant fraction of OCsc is water soluble. An earlier studies have exposed that
WSOC can be used as a marker of OCsec in contaminated urban environment (Weber
et al. 2007). Rengarajan et al. (2011) have described that the OCsec formation is seriously
inclined by the aerosol acidity during winter. Tables 3 and 4 are clearly presented the
value observed of OC/EC and WSOC/OC which clearly focus that the sources associ-
ated with industrial and biomass burning, primary and/or secondary, is also significant.

Conclusions

We report first effort to data set on ambient aerosol, EC, OC, and WSOC, EC/OC and
WSOC/OC in the industrial and semi urban site of Adityapur and Seraikela Khar-
sawan, eastern India. During study period, the annual mean mass concentration of
PM,,, EC, OC, WSOC, EC/OC, WSOC/OC of Adityapur and Seraikela Kharsawan
was 165 + 43.93, 26.39 £ 4.56, 5.11 + 1.82, 18.56 £ 5.3, 5.29 + 1.08, 0.71 & 0.17 and
141 £ 30.86, 16.27 &+ 5.75, 7.70 £+ 2.1, 9.65 £ 1.92, 2.34 + 0.75, 0.67 + 0.16 respectively.
Relatively high mass concentrations at Adityapur site may be attributed to industrial,
biomass burning and vehicular emissions. A more meticulous attribution of carbona-
ceous aerosol over the eastern India to specific sources must await the result of more
studies.
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