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Parasitic infections are ubiquitous in wildlife, livestock and human popu-

lations, and healthy ecosystems are often parasite rich. Yet, their negative

impacts can be extreme. Understanding how both anticipated and cryptic

changes in a system might affect parasite transmission at an individual,

local and global level is critical for sustainable control in humans and live-

stock. Here we highlight and synthesize evidence regarding potential

effects of ‘system changes’ (both climatic and anthropogenic) on parasite

transmission from wild host–parasite systems. Such information could

inform more efficient and sustainable parasite control programmes in dom-

estic animals or humans. Many examples from diverse terrestrial and aquatic

natural systems show how abiotic and biotic factors affected by system

changes can interact additively, multiplicatively or antagonistically to influ-

ence parasite transmission, including through altered habitat structure,

biodiversity, host demographics and evolution. Despite this, few studies of

managed systems explicitly consider these higher-order interactions, or the

subsequent effects of parasite evolution, which can conceal or exaggerate

measured impacts of control actions. We call for a more integrated approach

to investigating transmission dynamics, which recognizes these complexities

and makes use of new technologies for data capture and monitoring, and to

support robust predictions of altered parasite dynamics in a rapidly

changing world.

This article is part of the themed issue ‘Opening the black box: re-examining

the ecology and evolution of parasite transmission’.
1. Introduction
The current epoch of ecological time is driven by human interference [1].

Multiple anthropogenic stressors—including climate change, pollution,

ocean acidification, habitat loss and fragmentation, urbanization, agricultural

expansion and intensification, together with other changes in the use of water

and land resources—are directly or indirectly impacting all species on earth

(e.g. [2–5]). These changes may lead to the crossing or corrosion of critical

thresholds, or ‘planetary boundaries’ ([6,7], see glossary), that induce physio-

logical stress or complete system dysfunction, with negative consequences for
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Figure 1. Stress – response impacts on parasite control programmes. (Online version in colour.)
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individuals, populations and species. Such processes will

have significant impacts on parasite natural history and

infectious disease risks.

The anticipation of global change is not currently

reflected in programmes of intervention against parasites of

humans—instead the emphasis is on identifying vulnerable

communities from retrospective data, and targeting those

communities for intervention. In an attempt to synthesize

and implement cost-effective interventions against the neg-

lected tropical diseases (NTDs), there has been a concerted

effort to distribute human medicines through mass drug

administration (MDA) programmes in areas of high trans-

mission [8], aided by donations from large pharmaceutical

companies. These MDA campaigns rely largely on the pre-

sumptive treatment of putatively exposed individuals in ‘at

risk’ populations [9]. The expectation, translated from the

outputs of mathematical models, is that repeated MDA will

reduce the size of the parasite population and simultaneously

reduce levels of morbidity attributable to infection [9].

Such intervention programmes are possible because of

developments in our understanding of the life cycles and

ecology of parasites affecting humans and livestock, primar-

ily gathered in the Victorian era [10]. Early optimism among

health practitioners in wealthy countries that control and

intervention strategies would eradicate infectious diseases

continued up until the middle of the twentieth century

(reviewed by [11]); yet despite early (and enduring) optimism,

relatively little success, at least in terms of eradication, has been

achieved. Among the NTDs, only Guinea worm is scheduled

for eradication (most probably because only low-tech solutions

are necessary to interrupt the transmission cycle; see §3).

Recent analysis of NTDs in Africa suggests, at first glance,

that the MDA strategies have succeeded in reducing the

number of infections. Where pharmaceutical interventions

have had a clear effect in reducing infectious disease preva-

lence, the challenge now is to ensure that such success is

sustainable in the context of environmental change. River

blindness, caused by the nematode Onchocerca volvulus carry-

ing the Wolbachia bacterium [12], was introduced into South

America by the Simulium black fly, which has been treated

with periodic ivermectin administration since 1991. Although

it is unlikely that river blindness will ever be eradicated
globally, prevalence has fallen from 50% to 4% of those at

risk in the endemic population [13]; however, the implications

of environmental changes for the long-term efficacy of this and

other treatment programmes are not well understood.

Elsewhere, problems remain in terms of attributing caus-

ality to, or quantifying the success of, MDA programmes [8].

First, the historical data are imprecise and patchy; diagnosis

of some infections has been characterized for decades by a

lack of sensitive and/or specific tools [14]. Second, global cli-

mate models reveal an ever-changing pattern of land surface

temperature, rainfall and vegetation cover across the surface

of the planet [15]. Thus, contemporaneous environmental

changes could potentially confound the effects of MDAs.

Third, host range shifts may spread parasites into areas

where monitoring and MDA are not being applied. Finally,

the programmes themselves may have generated selection

pressures, as has been observed in other systems such as

malaria [16], leading potentially to resistance, adaptation

and other evolutionary consequences.

In looking to the future sustainability and success of

MDA and other interventions, we posit that it is imperative

to consider what factors related to global change not only

impinge on current efforts, but how global changes, includ-

ing those brought about by control efforts themselves,

might influence the outcome of attempts at control, elimin-

ation or eradication of specific infections. Figure 1 shows

the hypothesis that a combination of stressors, brought

about by global anthropogenic change, will induce a set of

responses that have a significant impact on control prospects

of NTDs in particular and parasites of economic importance

in general.

Given the paucity of information available from ecologi-

cal studies of NTDs and other parasites of humans and

livestock, a direct assessment of the evidence underpinning

the hypothesis in figure 1 is challenging. We are nonetheless

reminded of the value to be drawn from proxy observations

from comparable systems [17]. In terms of parasitology, much

of the relevant proxy information has been drawn from wild-

life disease ecology, which has tended to pay more attention

to the issues of global change than comparable studies on

human and domestic animal parasites. In this paper we

demonstrate how ecological studies of parasites in wildlife
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may be used to enhance our understanding of stressors

arising from global change, which are likely to be important

in the context of parasitic infections (both macro- and

microparasites) of humans and domestic animals.

First we consider the influences of some major abiotic and

biotic stressors associated with global change and, second,

how these stressors might affect parasite life cycles, trans-

mission and ecology. In doing so, we highlight that the

abiotic–biotic distinction is blurred, particularly as many

stressors also act simultaneously and indirectly on parasites

through their hosts. Third, we explore how parasites may

respond to the evolutionary pressures of such stressors.

Finally, we consider how these complex impacts of global

change potentially militate against the sustainable control of

parasites affecting animals and humans, and make sugges-

tions for improved understanding and control in an

uncertain future world.
372:20160088
2. Anthropogenic abiotic and biotic stressors
affecting parasite transmission

The majority of modern day ecosystem stressors are driven by

industrialization combined with human population growth.

These in turn are responsible for increased resource use and

generation of waste products, many of which have negative

impacts on the environment in complex direct and indirect

ways, which may subsequently affect disease risks. For

example, the combustion of fossil fuels for energy production

and for powering transportation modes significantly contrib-

utes to air pollution and carbon dioxide emissions, which

promote climate change. Changing land uses, including farm-

ing for food, further contribute to climate change and both

are considered major drivers of biodiversity loss. Broad-scale

biodiversity loss, latitudinal and altitudinal host range expan-

sions and retractions, reduced wildlife population sizes and

more limited habitat connectivity are subsequently affecting

host interactions and changes in parasite transmission.

(a) Climate change
The multiple components of climate change, including temp-

erature, precipitation and atmospheric CO2, have been

extensively studied individually [18–20], but the interactions

between these environmental stressors and the consequent

effects on parasite transmission are complex. Thus, there is

considerable uncertainty about how future climate variation

and change will affect disease dynamics [21–23]. Multiple

stressors might affect multiple life-history traits, potentially

influencing both parasite and host fitness ([24]; see §2). In

combination these stressors may counteract each other, such

that the overall rate of parasite transmission remains

unchanged. Higher temperatures, for example, often increase

parasite growth, reproduction and infectivity [25,26], yet can

also increase parasite mortality, and as such there is no

change in the number of transmitted parasites [27,28]. Like-

wise, while temperature elevations accelerate the replication

of arthropod-borne viruses in their insect or tick vectors,

they simultaneously increase vector mortality and decrease

biting rate, making the net effect of temperature increase on

transmission difficult to predict without detailed knowledge

of each component in the system [29]. In other instances,

increased temperatures have more pronounced effects on
the host, which may exhibit acclimation, adaptation or be

forced to shunt resource investment into various life-history

components, resulting in thermal preference shifts. Poiki-

lothermic hosts are particularly vulnerable to temperature

shifts, but also show remarkable adaptations and such

responses by the host can be damaging for the parasite.

Some fish, for example, exhibit adaptive behavioural traits

to reduce transmission risk, by actively selecting thermal con-

ditions that are detrimental to parasites (behavioural fever;

[30]) or selecting flow conditions that minimize fitness costs

of infection and potentially reduce transmission [31,32].

Disentangling anthropogenic environmental change from

that of natural variation is problematic, particularly for indir-

ect effects and naturally rare events such as extreme weather

conditions or disease outbreaks [33,34]. The relationship

between environment and transmission is also complex.

Different environmental parameters may have additive,

multiplicative or antagonistic and nonlinear effects on trans-

mission, which themselves may be intercorrelated or vary

at different spatial or temporal scales, with such effects

difficult to measure [35,36]. Such relationships may be a con-

sequence of transmission mode. For example, flooding events

can be a key driver of some water-borne disease epidemics

[37], while drought conditions cause hosts to aggregate at

sites where water is available, amplifying transmission and

triggering outbreaks of vector-borne diseases such as African

horse sickness and Rift Valley fever [38,39]. Other environ-

ment–transmission relationships are likely to be a result of

a host–parasite range shift due to climate warming. This

can change the distribution of vector-borne diseases, includ-

ing malaria [40] and Rift Valley fever [41]. However,

climate change is not spatially homogeneous and could

render previously suitable areas unsuitable for transmission

and vice versa [42]. The effect of range shift can be yet

more complex if the degree or rate of change differs between

the host and parasite, causing host–parasite interactions to

decouple across some or all regions [43]. For example, tick-

borne encephalitis virus (TBEV) transmission is sustained

only when temperatures result in synchronous feeding of

larvae and nymphs [44]. Projected temperature rises might

desynchronize feeding and shrink the area within which

TBEV persists [45]. Even the immediate effects of change in

temperature and rainfall on parasites are therefore complex

and strongly modified by host factors.
(b) Pollution
Pollutants can cause sublethal physiological stress to hosts

and hence reduce their capacity to withstand parasite inva-

sion and/or proliferation, potentially increasing infection

levels indirectly (e.g. [46]). However, pollutants also impact

parasites themselves, and in aquatic ecosystems, both the

infective stages of parasites and their intermediate hosts can

be highly sensitive to their effects [47]. Heavy metals can inhi-

bit the release of trematode cercariae from molluscan hosts,

as well as impair their swimming behaviour and longevity

[48–50]. Pharmaceutical pollutants are widespread stressors

likely to affect host susceptibility to disease. The scale of

this threat is increasingly apparent in aquaculture: in Chilean

salmon farms alone, hundreds of tonnes of antibiotics

are used annually [51]. Eutrophication—another important

stressor of aquatic ecosystems, arising from excessive

nutrient input—is associated with elevated intermediate
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host densities, parasite fecundity and increased prevalence of

certain pathogen infections [52]. However, as yet, there is no

overall consensus on its consequences for general patterns of

infection [53,54].

Other forms of pollution are less well studied with regard

to disease transmission. While it is known that light pollution

can impact the structure and function of ecosystems via cas-

cading effects [55], and that natural light cycles govern both

relevant parasite life-history traits (e.g. egg hatching; [56])

and intermediate host behaviours (e.g. zooplankton diel

migration; [57]), studies on the effects of light pollution on

human parasite transmission remain limited [58]. Although

the introduction of electricity to socio-economically develop-

ing communities has overall human health benefits, night

lighting inevitably attracts certain insect vectors and increases

human night-time activity. Thus vulnerability to being bitten

by a vector is increased, which is implicated in higher inci-

dences of leishmaniasis and malaria in some regions [58].

In other insect-vectored diseases, artificial lighting may have

a less overt effect on transmission dynamics: triatome bugs,

the vectors of Chagas’ disease, typically avoid well-lit areas

and artificial lighting may be driving Chagas transmission

towards a sylvatic cycle [58]. Noise pollution, a known stress-

induced modulator of the immune response [59] that can sig-

nificantly affect behaviour and predator–prey interactions

[60], has not yet been considered in terms of infectious diseases,

even though it could have a major influence on farmed ani-

mals. The gaps in knowledge concerning the impacts of all

types of pollution on parasite transmission are considerable,

and without this information it is challenging to assess its

importance across host–parasite systems.

(c) Habitat loss and fragmentation
Habitat alteration due to climate change or anthropogenic

activity poses a major threat to ecosystems, often leading to sub-

stantial loss of biodiversity, ecosystem functioning and services,

and reduced resilience to external stressors [61–65]. This in

turn may alter host–parasite interactions, by either increasing

[66–69] or decreasing [70–72] infection levels, depending on

nuances of host and parasite life history (see §3). The effects

of habitat change can even have contrasting effects on closely

related parasite species infecting the same host; for example,

sunbirds in disturbed habitats exhibited increased prevalence

of Plasmodium lucens but decreased prevalence of P. megaglobu-
laris [71]. Habitat loss and fragmentation also increase the

frequency of ‘edges’—transition zones between habitats

[73,74]—which are typically exposed to more extreme climatic

conditions than interior sites [74]. Habitat edges often promote

increased species diversity (i.e. the richness and/or relative

abundances of species [75]), resulting in altered levels of inter-

specific competition and parasitism [76–79]. How the

differential effects of edge versus interior sites impacts parasit-

ism varies between host–parasite systems; infections may

significantly increase [77], decrease [78] or be unaffected [80].

Although re-establishing connectivity may facilitate initial dis-

ease spread [81], in the long term, a larger host gene pool is

likely to decrease vulnerability to disease [82], while also

increasing overall biodiversity.

(d) Host density and farming intensification
Over the past 50 years, there have been unprecedented

changes in farming practices and associated land use [83].
Although natural and managed forestry currently occupies

about 30% of total land area, the impact of deforestation

and land use intensification, especially on soil degradation,

is significant. Growth in crop production and livestock has

been driven by the demand for higher yields. Livestock pro-

duction is the largest user of agricultural land, accounting for

more than 30% of the earth’s ice-free terrestrial area [83,84],

but aquaculture is the fastest growing food sector [85].

Modern and large-scale farming practices typically rely on

concentrating and containing inbred hosts, which can

increase host exposure to and facilitate parasite transmission

[86,87]. High host density is particularly important for tick-

borne pathogens [88], as these vectors are relatively immobile

and host–parasite contact frequencies tend to be driven by

changes in host abundance and/or behaviour. Chronic

stress induced by high stocking densities in aquaculture can

have important implications for fish immuno-competence

[89], but relationships with infection levels are variable.

While high host densities can promote greater parasite popu-

lation densities, the number of conspecific parasites per host

may be reduced [90]. This ‘dilution effect’ (see §2f) is

illustrated by a reduction in directly transmitted sea lice at

the high host densities in salmonid cage aquaculture [91].

Positive effects of high host density on transmission can be

attenuated by mixing susceptible and resistant hosts in

rotational grazing systems [92], showing the importance of

multiple hosts in modifying infection pressure. However, in

aquaculture, where hundreds of thousands of hosts are con-

tained together, this is not yet possible [93], partly because of

the need to track farmed fish in the event of an accidental

release, and also because of concerns about disease trans-

mission between farmed and wild stocks (and vice versa).
(e) Urbanization
While density-dependent transmission of human parasites

may be expected to increase with high population densities

and ownership of companion animals, decreased human–

wildlife contact and better sanitation in cities of developed

countries generally point to lower levels of disease trans-

mission among such populations (e.g. [94]), although there

are exceptions. Dengue, for example, is more prevalent in

urban areas due to the provision of suitable human-created

microhabitats for the Aedes mosquito [95]. Urban environ-

ments with high human densities are potentially more

vulnerable to water-borne or faeco-orally transmitted para-

sites if investment in sanitation infrastructure is neglected

or disrupted due to socio-economic unrest. Poverty is an

important related factor; a study of the contiguous cities of

Laredo (USA) and Nuevo Laredo (Mexico) on the USA–

Mexican border found that dengue transmission was strongly

affected by income, and hence access to technologies such

as air conditioning [96]. In developing countries, human–

wildlife conflicts can be a major issue. Most emerging and

re-emerging human infectious diseases (EIDs) are zoonotic,

typically with origins in mammalian wildlife [97,98] or inter-

actions between wildlife and domestic animals [99,100]. This

might increase further as habitat loss forces the co-occurrence

of wildlife and humans, although this could be offset by the

greater effects of biodiversity loss (see below).

A major factor underpinning urbanization is demo-

graphic change. By 2050, it is estimated that almost half the

world’s population will live in the tropics, of which
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approximately 66% are likely to be living in urban contexts

[101,102]. Millions of individuals are also expected to migrate

during their lifetimes due to factors associated with the

urban–rural cycle, extreme weather events, economic neces-

sity, water and food security, and conflict [103]. Increased

patchiness of wealth associated with urbanization, combined

with disrupted social structures has already changed the

entire landscape of NTDs. These diseases are no longer exclu-

sively prevalent in less developed countries; instead they

infiltrate impoverished areas of all countries, including

those in the G20, giving rise to the global pattern of ‘Blue

Marble Health’ [104].

Associated with urbanization is increased road building.

Approximately 60% more roads are projected by 2050 com-

pared with 2010, mostly in developing countries [105],

potentially making road building one of the most significant

drivers of future environmental change [106]. Road building

has already increased the risk of some diseases associated

with human development (e.g. agricultural intensification),

with an increase in the number of human hantavirus cases

reported following completion of a highway through the

Brazilian Amazon [107]. Such large-scale road building will

almost certainly further facilitate bushmeat hunting in the

most biodiverse regions of the planet [108] and change the

scale at which people are able to move wild animals out of

newly exploited areas and into commodity chains, thereby

increasing public health zoonosis risks.

Overall, pathogens likely to thrive as a result of urbanization

tend to be either those for which transmission is strongly den-

sity-dependent, or those with vectors or reservoirs that are

themselves well adapted to urban environments. The net

effect on parasite burdens will be highly case-specific and dif-

ficult to predict, especially where urbanization is rapid and

strong interactions with rural populations persist [109].
( f ) Biodiversity loss
Current extinction rates are estimated to be 100–1000 times

greater than background levels [110], with biodiversity loss

being one of the hallmarks of the Anthropocene [111]. Loss

of host diversity can reduce disease risk directly or indirectly

through the associated loss of parasite diversity [112]. For

example, reduced risk of African sleeping sickness in

humans [113] has been related to the loss of wildlife host bio-

diversity (reviewed in [114]). Wildlife biodiversity is often

correlated with human infectious disease risks. Examples

include correlations between mammalian biodiversity and

global biogeographic patterns of human infectious diseases

[115], elevated likelihood of observing emerging infectious

diseases [97] and increases in human pathogen richness and

prevalence for some diseases [116]. However, in these cases

it can be difficult to separate cause from correlation as areas

with high levels of biodiversity are also characterized by

other, unrelated, risk factors for disease transmission such

as climate and poverty. Nevertheless, the fact that most

human infectious diseases have origins in animals, mostly

wildlife, supports suggestions that these correlations are

mechanistically reasonable and that one large-scale conse-

quence of biodiversity loss could be an overall reduction of

disease transmission.

Wildlife biodiversity loss can, however, also increase dis-

ease risk. In some ecosystems the number of transmission-

competent hosts is ‘diluted’ by abundant non-competent
hosts, so the chance of a vector feeding on a suitable host,

or of a motile infective parasite successfully contacting a

transmission-competent host, may be reduced. When mem-

bers of a host community are lost due to habitat loss, for

example, the risk of disease to a focal host (e.g. humans)

could rise. This appears to be the case for Lyme disease in

North America [117–119] and there is support for generality

across multiple systems [120]. In addition, generalist host

species that cope more effectively with human pressure

may exhibit greater reservoir competence, or the capacity to

transmit pathogens, such that biodiversity loss could select

for species that contribute to higher levels of parasitism

[121]. Nevertheless, many studies continue to demonstrate

that the dilution effect is likely to be of limited generality

[122–125], and the net contributory effect of biodiversity

(and its loss) to disease risks requires the balance of costs

and benefits to be more thoroughly and objectively addressed

[126,127]. The notion that wildlife biodiversity can provide an

important service in regulating the risk of infectious disease is

attractive and has received widespread exposure, although

because the interactions that result in transmission events

can be complex, the evidence for widespread effects con-

tinues to be mixed. In many cases, community composition

including relative abundance, rather than biodiversity loss,

is a greater predictor of disease risk dilution [122–125].

Biodiversity loss, and its implications for disease risks,

may also be experienced at the individual host scale, with

subsequent impacts on micro- and macroparasitic infection

and transmission. All multicelled organisms are colonized

internally and externally by communities of bacteria, eukar-

yotes, archaea and viruses [128]. These microbiota play a

critical role in host health, particularly the gut microbiota

and its involvement in immune system development and

function [129,130]. In vectors such as Anopheles mosquitoes

and triatome bugs, an enriched midgut microbiota stimulates

upregulation of immune genes that inhibit microparasite

development; however, reduced microbiota diversity arising

from direct antibiotic treatment or by ingestion of antibiotics

circulating in a blood meal is associated with increased

microparasite infection of the insect host [131–133]. More-

over, microbiota depletion increases survival and fecundity

of the vector itself, potentially exacerbating microparasite

transmission [133].

The effects of anthropogenic stressors and within-host

biodiversity loss on enteric helminths are highly species-

dependent. Certain antibiotics remove Syphacia pinworms

and other gut helminths in laboratory mice as a direct

effect on the parasites themselves or through altering

microbial composition, yet other antibiotics have the opposite

effect on Aspiculuris pinworms, with treated hosts harbouring

nearly twice as many worms as controls (reviewed in [134]).

Similarly, there are direct links between the loss of bacterial

diversity and truncation of helminth life cycles. Eggs of the

hookworm Trichuris muris require a structural component

of Gram-negative bacteria from the host’s gut to trigger a

signal transduction cascade to stimulate hatching [135]. The

nematode Heligmosomoides polygyrus bakeri exhibits bacterial

dependence for larval development; reared in axenic con-

ditions, the nematodes do not survive beyond second-stage

larvae [136]. This suggests that transmission of both

T. muris and H. polygyrus is unlikely to be successful if gut

microbiota diversity is inadequate, though confirmation is

required from in vivo studies. These examples illustrate the
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potential importance of internal and external biodiversity to

parasite transmission and maintenance, and support the

notion of biodiversity loss being more far-reaching than is

currently recognized.

(g) Altered interspecific interactions
Changes in host interactions, often linked to the stressors

listed above, can drive disease emergence in new hosts. We

have already highlighted this problem in association with

increased human–wildlife contact, but this in turn might be

altered by a range of non-human interactions. Parasites

have a fundamental role in food webs [137,138]; thus, anthro-

pogenic changes that reduce the density of higher trophic-

level species that feed on larval parasite stages [139] could

directly increase disease transmission to competent hosts. Para-

sites may also indirectly disrupt predator–prey interactions

[140] and abiotic factors may affect trophic transmission by

altering host foraging activity [26,141]. In addition to these

altered parasite–predator–prey interactions, parasites can

affect native–invasive host interactions (e.g. [142,143]); newly

invading hosts either bring with them novel pathogens to

which native hosts do not have resistance, or—having escaped

their own native parasites—they can dilute the pool of

susceptible native hosts [144].

Finally, parasite–parasite interactions affect transmission,

with many studies highlighting the complex interactions of

co-infecting parasites in wildlife (e.g. [145]) and livestock

(e.g. [146]). As well as parasites having their own microbiota,

they can serve as hosts for hyperparasites, the occurrence and

life history of which are likely to be influenced by environ-

mental changes [141,147]. Abiotic or biotic stressors may

even drive symbionts to adopt parasitism, for example,

where there is high competition on the host (e.g. [148]). Arti-

ficial manipulation of species interactions can be used in

biocontrol, as in the case of Wolbachia infection of mosquitoes,

which reduces their vectoring capacity [149].

(h) Interacting abiotic and biotic factors
The above list is not comprehensive, but rather highlights

some of the key abiotic and biotic factors that may act

together as ‘cocktails’ of stress, with implications for increas-

ing or decreasing disease risks. Identifying the direct and/or

indirect factors responsible for changes in disease risk is chal-

lenging because multiple stressors act simultaneously on

both parasites and their hosts. Depending on habitat and

season, the peak impact of different abiotic stressors can

occur in or out of phase with one another; thus, while some

organisms may be exposed to multiple stressors simul-

taneously, others will experience them sequentially. Yet, the

consequences of multiple, interacting environmental

threats for parasite transmission remain unclear: when they

co-occur temporally and spatially, their combined effects

may be additive, antagonistic or synergistic [150,151]. For

example, while elevated seawater temperatures increase mor-

tality rates of oyster larvae, this can be offset by simultaneous

water acidification, which reduces the growth of pathogenic

bacterial infections [152]. On coral reefs, the interaction

between ocean acidification and warming contributes to

coral bleaching and reduced disease resistance, leading to

increased pathogenicity of existing pathogens and the emer-

gence of new diseases [153]. These two examples are rare,

because compared with terrestrial and freshwater systems,
marine systems are often neglected with regard to assessing

the impact of environmental stressors [154].
3. How might parasite life-history traits
modulate responses to abiotic and biotic
stressors?

Given the complexity of the possible effects of global change

on parasite transmission, understanding the factors that drive

responses across parasite taxa is essential for more general

predictive ability. Here we consider the variety and complex-

ity of parasite life cycles, as the number and diversity of hosts

underpin not only how parasites might respond to environ-

mental change, but also their relative fitness and resilience

to environmental change at different life stages [155].

Parasite life cycles exhibit remarkable diversity in form

and complexity. Whereas some parasites can complete their

life cycle infecting a single host organism, others must

negotiate their way through several host species in a particu-

lar sequence in order to achieve reproductive success. Life

cycles with greater complexity rely on biodiverse and inte-

grated communities, and as such may be highly sensitive to

the loss of individual components, in the form of host,

vector or species interactions required for transmission

[112,156]. The level of life cycle flexibility and host specificity

is also likely to influence the sensitivity of parasites to

changing environments, and their ability to prosper in

perturbed ecosystems.

(a) Life cycle flexibility
The use of paratenic hosts, which are not necessary for para-

site development but can sustain parasites and make them

available to subsequent obligate hosts, may positively influ-

ence transmission if environments become unsuitable or if

non-native species outcompete and drive native obligate

intermediate hosts locally extinct [157]. An example is pro-

vided by two sister species of Bothriocephalus cestode, of

which only one (B. gregarius) uses a facultative paratenic

host. Whereas paratenic hosts enhance the probability

of B. gregarius successfully infecting definitive host fish,

resource competition within paratenic hosts lowers infection

intensities, and smaller progeny are produced relative to

B. barbatus [157]. Consequently, reduced energy expenditure

on growth enables B. gregarius to invest more in reproduction

and dispersal, increasing the likelihood of re-establishment in

a new population of intermediate hosts [157–159]. Alterna-

tively, if populations of the definitive host of B. gregarius
were to rapidly decline, the paratenic host might potentially

replace this host [157].

Parasites that have the capacity to truncate their life cycle

may be advantaged under fluctuating environments [160].

For instance, if an obligate host is temporarily unavailable

due to seasonally induced migration or anthropogenic

activity, developmental requirements for the absent host

would be disadvantageous [161,162]. Flexibility in host use

may, therefore, allow parasites to cope with seasonal vari-

ation in host availability; for example, Gymnophallus
choledochus normally employs a three-host cycle in summer,

but switches to a two-host cycle during winter [163]. In

other species, a host may be lost permanently due to strong

selection pressures, such as the lack of predators facilitating
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onward trophic transmission; this ‘missing host hypothesis’

could explain the two-host life cycle of schistosomes [161].

In a more extreme example, Mesostephanus haliasturis can

forgo sexual reproduction by completing development, via

asexual reproduction, in its snail host [164].

Other parasites employ progenesis (precocious sexual

maturation) to shorten their life cycle. For example, host

diet and increased temperature can induce progenesis in

Stegodexamine anguillae metacercariae via secreted host-

stress signals [160–162]. Thus progenesis may benefit

immature trematodes when transmission to definitive hosts

is compromised by the health of an intermediate host [162].

For other parasites, such as the hyperviviparous gyrodacty-

lids, progenesis is the norm, and the first-born offspring

always develops asexually from the parental worm while it

is still an embryo [165]. This adaptation, together with a

direct life cycle, facilitates invasion of new habitats: a host

only needs to be infected with a single Gyrodactylus worm

to initiate an epidemic [166].

Life cycle plasticity is particularly advantageous when

facing increasing environmental and host uncertainty. Mono-

genean parasites of the genus Polystoma, which typically

infect the urinary bladder of frogs, exhibit life cycle dimorph-

ism, with parasites maturing in either three weeks or three

years [167,168]; precocious maturation (neoteny) on the tad-

pole gills occurs when environmental conditions are

unsuitable for normal development [169]. Although release

of eggs from the slower-growing bladder morphs is induced

by the mature host’s gonadotropin secretions during the

breeding season, both the timing of parasite egg hatching

and tadpole development are sensitive to ambient tempera-

tures and chemical environments [170]. Disrupted host

chemical balance and light intensity, for instance caused by

pollution, may shift the equilibrium between parasite

morphs to favour either the neotenic or the slow-growing

phenotype [169,170]. Similarly, phenotypic plasticity in the

life cycle of the common dog parasite, Toxocara canis is depen-

dent upon the physiological status of the host: patent

infections develop only in young dogs, while larvae arrest

in older hosts and are only reactivated in bitches [171],

though host drug treatment might have a hidden influence.
(b) Specialist versus generalist life cycles
The evolutionary divergence of parasites has generated vary-

ing degrees of specialization in parasite traits within different

habitats and hosts, some of which are more likely than

others to enhance parasite success in unstable environments

[155,172,173]. Although it is logical to predict that generalist

parasites are more resilient to global change than specialists

[121,174], this is very context-dependent [158] and includes

the number of hosts in the life cycle and degree of specificity

to each. Furthermore, if global change results in new con-

ditions that are stable, parasites that are locally adapted

might develop more specialist tendencies [175].

Zoonotic parasites demonstrate varying degrees of host

specificity due to transmission via three, non-mutually exclu-

sive life cycles: sylvatic, domestic and anthroponotic

[4,155,176]. Host specialization arises due to parasites’ invest-

ments towards infectiousness and longevity in particular

hosts. For example, the nematodes Trichinella britovi and

T. spiralis, both found throughout Europe, possess sylvatic

and domestic (swine) host cycles. However, their
epidemiology differs due to their higher adaptability to

either swine (T. spiralis) or carnivore (T. britovi) hosts [4].

Nonetheless, re-establishment of T. spiralis in a red fox

(Vulpes vulpes) population, decades after its elimination

from domesticated swine in Northern Ireland, demonstrates

how host diversity increases parasite resilience to anthropo-

genic farming activity; i.e. by providing alternative sylvatic

reservoir hosts until preferred domestic hosts become

vulnerable to infection [172,177,178].

(c) Parasite longevity
Parasite lifespan, and the time spent inhabiting different

hosts, will influence the susceptibility of parasites to environ-

mental changes, and the type of responses that are most likely

to arise. Whereas short-lived parasites with rapid life cycles

may be more capable of evolving adaptive response to

chronic directional changes in environments, long-lived indi-

viduals may be better equipped to withstand acute, transient

perturbations. The lifespan of parasitic worms can be hugely

variable; among the nematodes it can range from three days

in free-living Rhabdias bufonis adults to 20 years for Loa loa
(reviewed by [179]); among cestodes, Taeniarhynchus saginatus
can live in humans for 35 years [180]; and schistosome life-

spans of 20–30 years are documented [181], though the

mean longevity in optimal hosts is in the range of five

years [182]. Helminth parasites with viviparous reproduc-

tion, such as Gyrodactylus spp., tend to have the shortest

lifespans (few days), with age not only determining repro-

ductive output but also reproductive mode [183]. For all

species, the timing of pre-patent and patent periods varies

and reproductive output typically declines with parasite

age and host status (reviewed by [179]). Aside from the long-

evity of mature worms, it is essential to consider the

persistence and resilience of environmental stages when con-

sidering how any particular parasite population will respond

to global change.

(d) Parasite reproductive strategies
Long-lived parasite species tend to be iteroparous (e.g. L. loa),

while other parasites exhibit semelparity (e.g. the human pin-

worm Enterobius vermicularis). Within a parasite species,

timing of reproduction is intricately linked to biological and

environmental factors, and for many species transmission is

seasonal; in extreme cases this can be incredibly brief. For

example, Polystoma integerrimum transmission only occurs

during the host breeding season [184], and in the related

species Pseudodiplorchis americanus, transmission can be

restricted to just 3 h per year, being entirely dependent on

monsoon rains creating suitable habitats [185]. If the rains

fail, the adult parasites can reabsorb nutrients from ovovivi-

parous larvae held in utero and transmission is delayed

[185], but the long-term implication of this strategy is

unknown. Similarly, disrupted weather patterns threaten

other seasonally transmitted parasites, such as brood para-

sitic birds, which risk phenological mismatch with their

hosts [186].

Reproductive strategies of endoparasites, in particular,

are determined by trade-offs in energy investments against

other life-history traits [173]. Schistosomes are the only digen-

eans whose adult stages are exclusively dioecious and

dimorphic [187,188]. Only male Schistosoma mansoni retain

hermaphroditic traits, implying they are energetically costly,
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and may have restricted female body-form specialization

required for efficient egg dispersal [158,189,190]. Evolution

of dioecy in schistosomes via host–parasite coevolution

demonstrates resilience to long-term environmental changes;

however, slowly evolving adaptations may be disadvanta-

geous in the face of short-term perturbations [187,190]. For

both hermaphrodite and dioecious parasites, hybridization

provides another tool in the parasite’s ability to adapt to

changing environments [191].
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(e) Life cycle determinants of global change effects
on parasites

Life history theory predicts that while parasites with direct

life cycles have fewer energetic restrictions imposed by inter-

mediate hosts and can invest more energy towards growth

and reproduction [158,159], their dependence on a single

host for reproduction might jeopardize survival. By contrast,

indirect life cycles offer increased likelihood of ‘rescue’ for

parasites, which may alter host specificity via the addition

or exclusion of hosts [157,161,192]. Alternatively, parasi-

tes that demonstrate increased specialization of specific

developmental stages, such as the dimorphic stages of

Polystoma integerrimum, can inhabit a wider range of host

environments and increase the probability of reproductive

success [161,169,170]. Finally, dependence upon specific vec-

tors or intermediate hosts for dispersal and reproduction

renders parasites extremely vulnerable to both spatial and

temporal climatic changes [2,193,194]. Recent studies suggest

that parasite life-history traits may be enhanced by climate

shifts and anthropogenic stressors associated with ongoing

global change [195], thus providing relatively benign para-

sites with the potential to become increasingly pathogenic.

However, while this is considered a serious threat to wildlife

communities already facing mounting population pressures,

conclusions are usually derived from assessments of single

stressors or single parasite life stages, while the net effects

to the parasite and host’s whole population are rarely

determined [196].

The parameters that characterize the life histories of indi-

vidual parasite taxa are likely to play a critical role in

determining their relative resilience in the face of changing

environments. Parasite life cycles range in complexity from

direct life cycles with a single host species to those with mul-

tiple intermediate and facultative paratenic hosts. The

diversity of life cycles and life histories, coupled with variable

flexibility and specificity of the parasite, means that there are

likely to be winners and losers among parasites in perturbed

environments. Whereas increased life cycle complexity might

leave indirectly transmitted parasites susceptible to environ-

mental change, if they acutely affect an obligate host

population, the existence of multiple intermediate and/or

reservoir hosts in a life cycle [162] and facultative paratenic

hosts may provide a parasite with greater scope for adap-

tation [158,197]. Parasite survivorship and fecundity are the

two key life history traits that impact parasite fitness, and

therefore, transmission. Such traits will be subject to environ-

mental stressors, such as drug exposure, that vary over time

[198,199]. In the longer term, where stressors inhibit parasite

transmission, they are likely to also impose selection pressure

on life-history traits.
4. Evolutionary change of parasites
Parasites are perhaps uniquely predisposed to rapid evolution

under global change. Not only are effective population sizes

large and generation times typically short, but transmission

imposes an exceptionally strong filter to exclude maladapta-

tion: infective stages either find a host or die. Genotypes

better suited to transmission under particular conditions

will presumably be strongly selected for, with unpredictable

variation in climate or host availability encouraging genetic

diversity and within-genotype flexibility in key life-history

traits. The potential for parasites to out-evolve their hosts

suggests that increasing, rather than decreasing, parasite

risks and burdens will be the norm under global change.

However, the complex interactions of current stressors, as dis-

cussed thus far, can also act upon parasites at the genetic

level, complicating predictions and leading to unexpected

future infection patterns. Observations of parasite evolution

in response to changing environments in nature are rare,

but results from a few example systems are offered here to

illustrate the potential diversity of parasite adaptive

responses to global change.

(a) Resilience and plasticity
The complex links between existing environmental variation

and disease transmission [200–202] suggest that identifying

the impact of anthropogenic activities on the evolutionary

responses of parasites over and above natural variation

might be challenging. Models predict that increasing seasonal

climate variability will drive the evolution of greater resili-

ence of pathogens to environmental fluctuations [35]. This

has been demonstrated with more extreme monsoon

rainfall patterns linked to a rise in a strain of cholera, which

is more resilient to water quality and quantity fluctuations

[35]. Similarly, plasticity in parasite traits is likely to evolve

in response to increased climatic variability, exemplified

by the evolution of a plastic transmission strategy in

Plasmodium relictum that has seen reproductive rates increase

during periods of vector availability, thereby maximizing

transmission [203].

Human management of host species and treatment strat-

egies (see §5) are also important drivers of pathogen

resilience. For example, selection pressure has resulted

in altered strain dominance of the potato cyst nematode

Globodera rostochiensis. Earlier planting of potatoes to allow

growth in months historically too cold for larval invasion is

now linked with a faster developing, more fecund strain of

the parasite [204]. But by far the most pervasive evolutionary

phenomenon due to intervention practices is that of increased

drug resistance increasingly seen in parasites of humans

[205,206] and livestock [207], including aquaculture species

[208,209].

(b) Infectivity and virulence
Habitat change can strongly influence host–parasite

interactions, shifting parasite diversity, abundance and trans-

mission dynamics (discussed in §2). Evolving parasite

infectivity and virulence may contribute to factors underlying

these observations. Habitat fragmentation leads to smaller,

patchier and more isolated populations [3]. In host–parasite

interactions, infection and transmission will become more

localized under such conditions. Theory and empirical data
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indicate that this can lead to the evolution of reduced parasite

infectivity because of self-shading. This effect arises because,

as individual susceptible hosts are rapidly infected locally by

virulent parasites, they are surrounded by other infected

hosts, which will reduce opportunities for further trans-

mission of horizontally transmitted parasites [210,211] and

parasites that use mixed transmission strategies [212]. In con-

trast with habitat fragmentation, intensification of farming

practices is predicted to drive evolution of increased viru-

lence; higher host availability reduces the adaptive cost of

increased virulence due to host mortality [93]. Key evidence

for this is the recent increase in pathology and mortality

due to Flavobacterium columnare in densely stocked Finnish

freshwater fish farms, linked to the emergence of more

virulent, infective strains of the pathogen [213].

(c) Bet-hedging
Unpredictable conditions, such as the timing of host avail-

ability, should favour parasites that can produce offspring

that vary in their life-history or transmission strategies

[214]. Spreading the risk, or ‘bet-hedging’, allows parasites

to increase the chances that at least some of their progeny

will survive and infect a competent host. It is reasonable to

expect that parasites will increasingly adopt such bet-hedging

strategies to ensure survival in rapidly changing environ-

ments. The nematode Nematodirus battus historically

exhibited a single generation per year with overwintered

eggs hatching in spring to coincide with arrival of newborn

lambs [215,216]. Evolution of multiple generations per year

[217] via the production of autumn-hatching eggs that do

not require vernalization has mitigated against asynchrony

between larval presence and the availability of susceptible

hosts in years with early warm springs [218]. However, anthro-

pogenic changes may also hinder the evolution of parasite

bet-hedging strategies. Variation in life cycle traits (e.g. rate of

development, egg laying and hatching) of the fish louse

Argulus foliaceus infecting farmed fish is lower than in wild

populations, probably as a result of reliable host availability

in fish farms compared with natural ecosystems [219].

(d) Host switching
Global change might constrain host–parasite co-evolution if

the benefits of new mutations that enhance fitness (selective

sweeps) are not realized in a rapidly changing environment

[220]. Alternatively, host switching is a potential parasite

adaptation to global change [221,222], should the availability

of preferred hosts be decreased via geographical range shifts,

phenological asynchrony, human management or control

strategies. In some cases, switching to alternative hosts may

not be optimal for parasite development, leading to reduced

parasite offspring or survivorship and thereby reduced prob-

ability of transmission. This may limit how much host

switching actually occurs in changing environments. How-

ever, Jones et al. [223] showed that while costs of prey

switching for a parasitoid were severe in the first instance,

these costs were ameliorated over successive generations.

Furthermore, the force of selection will play a key role in

the drive to host switch. In the case of the Guinea worm

(Dracunculus medinensis), an extremely simple but effective

control programme that filtered the copepod vectors from

contaminated drinking water effectively blocked trans-

mission [224] and reduced the number of human cases
from an estimated 3.5 million cases in 1986 to just 126 in

2014. However, in 2015, 459 infections were recorded for

the first time in dogs [13,225], suggesting a potential host-

switching event, possibly driven by the effective control

measures blocking transmission to humans [225].

The introduction of invasive host species generates

unique opportunities for non-native parasite communities

to come into contact with new hosts, and considerable poten-

tial for host switching. Classic examples of this include the

introduction of squirrel parapoxvirus into UK red squirrels

(Sciurus vulgaris; [142,226,227]) and crayfish plague (Aphano-
myces astaci) into European crayfish (Astacus astacus [228]).

Host switching from introduced to native hosts appears

equally common for parasites with direct and indirect life

cycles, and worryingly the majority of those reported are

more virulent in native hosts than in the co-introduced inva-

sive host [229]; however, considering that we still know very

little about parasite speciation, it is difficult to predict future

outcomes, and other mechanisms, such as niche specializ-

ation [230] and hybridization [231], could also affect both

speciation and host range.

(e) Multiple evolutionary targets for adaptation
The above examples demonstrate how the effects of human

activity and climate change are varied and far ranging with

respect to parasite evolution. Targets of evolution are already

altering the epidemiology of parasites; resilience, strain vari-

ation in phenology, bet-hedging in key life-history traits and

host switching all demonstrate that through past unpredict-

ability in transmission, parasites are well adapted to future

changes in climate and host availability. As the evidence for

the anthropogenic effects on parasite adaptive responses

builds, we must now consider the evolutionary capabilities

of pathogens as an integral component to predicting the

future landscape of host–parasite interactions under press-

ures of global change. This will be particularly important

when considering the consequences of parasite control pro-

grammes, arguably the greatest selective pressure faced by

parasites in their evolutionary history.
5. Control programmes and predictive
epidemiology in a changing world

Taken together, the observations and projections described

above give a strong signal to all epidemiologists: the future

is both uncertain and rapidly changing, representing a new

era of health challenges in the twenty-first century that is

unprecedented in human history. Multiple laboratory and

field observations, modelling exercises and meta-analyses

have identified key abiotic and biotic factors that govern the

free-living and vector-borne stages of parasites (see §2). Sea-

sonally variable environments are also important in

determining the aggregation of animal parasites (e.g. [232])

including malaria and hookworms in some regions

[233,234]. What remains unknown is how patterns of global

change across decadal scales have influenced parasite trans-

mission. While the substantial post-1997 downturn in

malarial infections has undoubtedly been accelerated by

large-scale control interventions, environmental changes

that have reduced the vector population or climate-sensitive

parasite life stages over extended periods may have also
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contributed. Droughts in Africa are increasingly common

[235], and we cannot exclude the possibility that prolonged

periods of low rainfall have contributed to the downturn in

transmission of malaria and other parasitic infections, given

the reliance of vectors and parasite transmission stages on

water availability. This last point illustrates how cryptic fac-

tors continue to be influential. Most campaigns do not

routinely collect individual patient data once the delivery

programme is established, and without this it is not easily

possible to differentiate the effects of MDA from those of

environmental change.
Phil.Trans.R.Soc.B
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(a) Evolutionary implications of control programmes
MDA programmes themselves are stressors on host–parasite

systems as a result of imposing selection pressures, altering

host microbiota and disrupting life cycles of vectors and

intermediate hosts that have coevolved with parasites. Thus

the success of these programmes should also be considered

in the light of changing abiotic and biotic factors. The

impetus for MDA campaigns stems from mathematical

models of parasite life cycles first developed in the second

half of the twentieth century (e.g. [236]), which have an

underlying assumption that neither parasites nor vectors

undergo significant evolution that would reduce the impact

of intervention. More recent attempts that consider either

diminished drug efficacy and/or greater transmission rate

lead to the common output that MDA programmes do not

eliminate parasite populations even after decades of interven-

tion. Evolution of the parasite and/or vector populations

along a specific life-history trajectory has not been a

common feature of these models.

Long-term control programmes may do more harm than

good, as any treatment imposes a selection pressure for resist-

ance on the parasite population. Some treatments may

promote the evolution of more virulent pathogen strains

[237] as illustrated by evolving rodent malaria parasites in

mice immunized with a candidate human malaria vaccine

[238]. This in turn might lead to enhanced transmission as

shown in chickens vaccinated against Marek’s disease virus

[239]. Poulin [198] suggests that shortening the duration of

parasite infection by drug treatment negates any advantage

to a parasite being long-lived, and survivorship of a parasite

may therefore trade-off against other traits that affect infectiv-

ity, such as age to maturity and fecundity (see §2), resulting

in enhanced transmission. Virulence–longevity trade-offs

might explain increased horizontal transmission of some dis-

eases on hospital wards [240], while nematodes of horses

appear to respond to drug treatment by shortening their

development period in the host [241]. According to Day &

Read [242], the optimal approach for combating the evolution

of drug resistance is to use the highest safe dose or the lowest,

effective dose. High-dose medications are effective only if all

pathogens can be killed (as in the case of HIV). If a small

number of microbes are likely to evade treatment (already

resistant to treatment, or if drug resistance arises de novo),

then high doses of medication may allow resistant microbes

to survive and spread by the very act of killing off drug-sen-

sitive microbes [242]. On the other hand, low drug doses are

more likely to enable new mutations conferring drug resist-

ance to spread and fix in the parasite population. Whether

high or low doses are optimal for combating drug resistance

will depend on system-specific factors, but this study
highlights that parasite evolution is rarely considered proac-

tively in setting treatment goals and decisions.

One consequence of the ‘perfect storm’ of stressors may

be the generation of so-called ‘hotspots’ of transmission

[243]. This hypothetical effect does not preclude a reduction

in transmission intensity, but does imply that individuals

who are normally resident in areas of intervention are

persistently exposed and harbouring infection. Other

interpretations of the hotspot observations are possible—

including the lack of engagement or disenfranchisement with

control programmes [244].
(b) Adaptive management and predictive epidemiology
Changes in parasite ecology, epidemiology (§§2 and 3) and

evolution (§4) have profound implications for the monitoring

and control of health in managed systems, which must them-

selves adapt if altered challenges are to be attenuated. To

keep pace, we need to develop a predictive understanding

of how patterns of parasite transmission among animals

and humans could change in response to the multiple, inter-

acting stressors being placed on the global ecosystem [245].

From this understanding we need to create improved decision

support systems that allow for sustainable control and manage-

ment of hosts, vectors and parasites. However, the wide range

of relevant anthropogenic stressors, the enormous diversity of

parasite taxa, life-history traits and infection strategies, and

the range of possible functional responses and interactions

between them—coupled with simultaneous responses among

host populations—make this a hugely challenging task. Here,

we offer one approach based on co-production, knowledge

transfer and wider participation.

The subtle, ‘covert’ ways in which multiple drivers of

global change can affect parasite transmission are complex

when considering individual stressors, while the impact of

interacting stressors on future disease risk remains largely

unknown. The current practice of making iterative changes

in management strategy, based on accumulated evidence of

infection patterns, is too static to keep up with the increasing

uncertainty around transmission patterns. At the same time,

advances in information and communication technology

open up new data collection modalities. Organizing and

applying such data streams could provide novel and power-

ful ways of gathering real-time understanding of changing

transmission, and adapting control practices accordingly.

The zenith of adaptive management would track and

react to not only parasite transmission but also evolutionary

processes, including those of host populations, such that trans-

mission functions are re-evaluated as life-history parameters

change (see §§ 3 and 4 above). This would require repeated

confrontation of alternative transmission models with avail-

able data, and inferring shifts in key parameters from

model fits. In principle, this is already possible, but auto-

mation of the process and the availability of sufficient,

robust and timely data present challenges to implementation.

Citizen Science has been leveraged to gather real-time infor-

mation on the distribution of invasive plant diseases [246],

while mobile phone networks have been used effectively to

gather data on the changing epidemiology of diseases in live-

stock and humans [106,247,248]. Involved professionals such

as farmers and veterinary laboratories are also a source of

specific surveillance data [249], which could be collated

more quickly to track epidemiological patterns, and update
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models accordingly. For example, confirmed diagnoses of

infection with the helminth N. battus in lambs are currently

used to populate web-accessible maps that are updated

daily during high-risk periods (www.scops.org.uk). Linking

these data with models of parasite transmission dynamics

and life-history parameters modified according to observa-

tions could make such models robust to parasite evolution

(e.g. bet-hedging; see §4c), even pending more complete

knowledge of how evolution alters epidemiology.

A major challenge in dynamic data-driven model fitting is

the reliability of data collected from disparate sources, and not

always by professionals using verified methods. However, the

decline of expensive, centrally funded monitoring stations and

systems, both for meteorological and disease data, limits the

alternatives. Networks of privately collected meteorological

data (e.g. forecast.io) are increasingly available and may use-

fully compensate for the loss of, and sometimes exceed the

capability of, official sources. Similar networks for data on

phenology or even parasitic infections could be envisaged.

Separate observational or experimental data will always be

needed and can constrain fitted parameters within plausible

ranges, or select parameters most likely to be open to parasite

evolution. Models of parasite transmission dynamics that are

validated, updated with shifts in epidemiology and evolution,

and whose outputs are accessible to end users, could form the

backbone of a new wave of decision support systems that

maximize the opportunities afforded by advances in model-

ling and new sources of data. In addition, by involving

the public in disease monitoring, we can promote disease

awareness, improving socio-ecological resilience [250].

We suggest that a truly predictive understanding of the

effects of global change on parasite transmission will, there-

fore, need to incorporate the evolutionary consequences of

changes imposed by combinations of abiotic and biotic stres-

sors acting at various locations under conditions of migration,

habitat loss and fragmentation. These are themselves difficult

to predict, especially as the experiments required to fuel such

predictions would tend to remove ‘extraneous’ variation that

could actually be core to complex evolutionary trajectories

under global change. Reverse engineering of models to esti-

mate parameter alterations, which are needed to maintain
parasite fitness under changing scenarios, and subsequently

assessing these predictions for biological plausibility, could

provide more adaptive predictions. In any case, models of

parasite population dynamics that neglect the possibility of

evolution of transmission strategies will have a short shelf-

life under global change, and greater attention ought to be

paid to this challenging area.
6. Conclusion
Differences in transmission ecology, parasite life history and

the ecology of intermediate hosts and vectors will clearly

play a key role in determining the sensitivity of infections to

abiotic and biotic stressors [202]. Monitoring these stressors

at high spatial and temporal resolution, perhaps using remo-

tely sensed products (e.g. [251]), is likely to be of

considerable help in improving our understanding of how dis-

eases might spread in the future. However, while there is a

move away from using keystone species in the general ecologi-

cal field as early warning indicators of vulnerable ecosystems

in favour of monitoring the balance between diversity, func-

tional groups and connectivity, it would be naive to take this

approach for infectious diseases. The impact of infectious dis-

eases, particularly EIDs, is context-dependent (the devil is in

the detail) and the importance of particular parasite species

and strains will change over space and time, and so at least

for the moment, targeted disease monitoring and surveillance

at appropriate spatio-temporal resolution are still necessary.
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Cymru National Research Network for Low Carbon, Energy and
Environment AquaWales Project.

Acknowledgements. We thank the BES Parasite and Pathogen Ecology
and Evolution Special Interest Group for organizing the 2012 Ecology
Meets Medicine Retreat and the 2015 Transmission Retreat.
References
1. Waters CN et al. 2016 The Anthropocene is
functionally and stratigraphically distinct from the
Holocene. Science 351, aad2622. (doi:10.1126/
science.aad2622)

2. Mouchet J, Faye O, Julvez J, Manguin S. 1996
Drought and malaria retreat in the Sahel, West
Africa. Lancet 348, 1735 – 1736. (doi:10.1016/
S0140-6736(05)65860-6)

3. Parmesan C. 2006 Ecological and evolutionary
responses to recent climate change. Annu. Rev. Ecol.
Evol. Syst. 37, 637 – 669. (doi:10.1146/annurev.
ecolsys.37.091305.110100)

4. Pozio E, Rinaldi L, Marucci G, Musella V, Galati F,
Cringoli G, Boireau P, La Rosa G. 2009 Hosts and
habitats of Trichinella spiralis and Trichinella britovi
in Europe. Int. J. Parasitol. 39, 71 – 79. (doi:10.
1016/j.ijpara.2008.06.006)
5. Walther GR. 2010 Community and ecosystem
responses to recent climate change. Phil. Trans.
R. Soc. B 365, 2019 – 2024. (doi:10.1098/rstb.2010.
0021)

6. Rockström J et al. 2009 Planetary boundaries:
exploring the safe operating space for humanity.
Ecol. Soc. 14, 32. (doi:10.5751/ES-03180-140232)

7. Steffen W et al. 2015 Planetary boundaries: guiding
human development on a changing planet. Science
347, 1259855. (doi:10.1126/science.1259855)

8. Smits HL. 2009 Prospects for the control of
neglected tropical diseases by mass drug
administration. Expert Rev. Anti Infect. Ther. 7,
37 – 56. (doi:10.1586/14787210.7.1.37)

9. Anderson R, Hollingsworth TD, Truscott J, Brooker S.
2012 Optimisation of mass chemotherapy to control
soil-transmitted helminth infection. Lancet Lond.
Engl. 379, 289 – 290. (doi:10.1016/S0140-
6736(12)60120-2)

10. Cox FEG. 2002 History of human parasitology. Clin.
Microbiol. Rev. 15, 595 – 612. (doi:10.1128/CMR.15.
4.595-612.2002)

11. Ward J, Warren C (eds). 2006 Silent victories: the history
and practice of public health in twentieth-century
America. Oxford, UK: Oxford University Press.

12. Stephenson J. 2002 River blindness coconspirator.
J. Am. Med. Assoc. 287, 1794. (doi:10.1001/jama.
287.14.1794-JWM20004-2-1)

13. Eberhard ML et al. 2014 The peculiar epidemiology
of dracunculiasis in Chad. Am. J. Trop. Med. Hyg. 90,
61 – 70. (doi:10.4269/ajtmh.13-0554)

14. Kongs A, Marks G, Verlé P, Van der Stuyft P. 2001
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Basáñez M-G, Cohuet A, Christophides GK. 2015
Antibiotics in ingested human blood affect the mosquito
microbiota and capacity to transmit malaria. Nat.
Commun. 6, 5921. (doi:10.1038/ncomms6921)

134. Brown HW. 1952 The use of antibiotics in the
treatment of helminthic infections. Ann. N Y Acad.
Sci. 55, 1133 – 1138. (doi:10.1111/j.1749-6632.
1952.tb22676.x)

135. Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C,
Roberts IS, Grencis RK. 2010 Exploitation of the
intestinal microflora by the parasitic nematode
Trichuris muris. Science 328, 1391 – 1394. (doi:10.
1126/science.1187703)

136. Weinstein P, Newton W, Sawyer T, Sommerville R.
1969 Nematospiroides dubius: development and
passage in the germfree mouse, and a comparative
study of the free-living stages in germfree feces and
conventional cultures. Trans. Am. Microsc. Soc. 88,
95 – 117. (doi:10.2307/3224664)

137. Marcogliese DJ, Cone DK. 1997 Food webs: a plea
for parasites. Trends Ecol. Evol. 12, 320 – 325.
(doi:10.1016/S0169-5347(97)01080-X)

138. Lafferty KD, Dobson AP, Kuris AM. 2006 Parasites
dominate food web links. Proc. Natl Acad. Sci. USA 103,
11 211 – 11 216. (doi:10.1073/pnas.0604755103)

139. Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ,
Memmott J, Orlofske SA, Poulin R, Thieltges DW.
2010 When parasites become prey: ecological and
epidemiological significance of eating parasites.
Trends Ecol. Evol. 25, 362 – 371. (doi:10.1016/j.tree.
2010.01.005)

140. Hatcher MJ, Dick JTA, Dunn AM. 2006 How parasites
affect interactions between competitors and
predators. Ecol. Lett. 9, 1253 – 1271. (doi:10.1111/j.
1461-0248.2006.00964.x)

141. Thieltges DW, Jensen KT, Poulin R. 2008 The role of
biotic factors in the transmission of free-living
endohelminth stages. Parasitology 135, 407 – 426.
(doi:10.1017/S0031182007000248)

142. Tompkins DM, White AR, Boots M. 2003 Ecological
replacement of native red squirrels by invasive greys
driven by disease. Ecol. Lett. 6, 189 – 196. (doi:10.
1046/j.1461-0248.2003.00417.x)

143. Unestam T, Weiss DW. 1970 The host – parasite
relationship between freshwater crayfish and the
crayfish disease fungus Aphanomyces astaci:

http://dx.doi.org/10.1073/pnas.1201243109
http://dx.doi.org/10.1098/rspb.2014.2124
http://dx.doi.org/10.1371/journal.pntd.0002570
http://dx.doi.org/10.1186/1471-2458-10-31
http://dx.doi.org/10.1590/S0074-02762010000500011
http://dx.doi.org/10.1590/S0074-02762010000500011
http://dx.doi.org/10.1371/journal.pntd.0003792
http://dx.doi.org/10.4081/gh.2016.408
http://dx.doi.org/10.1111/cobi.12380
http://dx.doi.org/10.1126/science.1251817
http://dx.doi.org/10.1098/rstb.2012.0110
http://dx.doi.org/10.1016/S0167-8809(99)00103-6
http://dx.doi.org/10.1073/pnas.1507442112
http://dx.doi.org/10.1073/pnas.1507442112
http://dx.doi.org/10.1111/j.1744-7429.2010.00698.x
http://dx.doi.org/10.1046/j.1523-1739.2003.01260.x
http://dx.doi.org/10.1073/pnas.0233733100
http://dx.doi.org/10.1038/nature09575
http://dx.doi.org/10.1073/pnas.1506279112
http://dx.doi.org/10.1073/pnas.1506279112
http://dx.doi.org/10.1371/journal.pone.0054341
http://dx.doi.org/10.1371/journal.pone.0054341
http://dx.doi.org/10.1017/S0031182012000200
http://dx.doi.org/10.1111/ele.12101
http://dx.doi.org/10.1111/ele.12094
http://dx.doi.org/10.1111/ele.12094
http://dx.doi.org/10.1890/13-1041.1
http://dx.doi.org/10.1525/bio.2009.59.11.6
http://dx.doi.org/10.1525/bio.2009.59.11.6
http://dx.doi.org/10.1016/j.tree.2013.06.012
http://dx.doi.org/10.1111/j.1753-4887.2012.00493.x
http://dx.doi.org/10.1111/j.1753-4887.2012.00493.x
http://dx.doi.org/10.1038/nri2515
http://dx.doi.org/10.1093/jmedent/31.4.561
http://dx.doi.org/10.1371/journal.ppat.1000423
http://dx.doi.org/10.1038/ncomms6921
http://dx.doi.org/10.1111/j.1749-6632.1952.tb22676.x
http://dx.doi.org/10.1111/j.1749-6632.1952.tb22676.x
http://dx.doi.org/10.1126/science.1187703
http://dx.doi.org/10.1126/science.1187703
http://dx.doi.org/10.2307/3224664
http://dx.doi.org/10.1016/S0169-5347(97)01080-X
http://dx.doi.org/10.1073/pnas.0604755103
http://dx.doi.org/10.1016/j.tree.2010.01.005
http://dx.doi.org/10.1016/j.tree.2010.01.005
http://dx.doi.org/10.1111/j.1461-0248.2006.00964.x
http://dx.doi.org/10.1111/j.1461-0248.2006.00964.x
http://dx.doi.org/10.1017/S0031182007000248
http://dx.doi.org/10.1046/j.1461-0248.2003.00417.x
http://dx.doi.org/10.1046/j.1461-0248.2003.00417.x


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160088

15
responses to infection by a susceptible and a
resistant species. J. Gen. Microbiol. 60, 77 – 90.
(doi:10.1099/00221287-60-1-77)

144. Dunn AM. 2009 Parasites and biological invasions.
Adv. Parasitol. 68, 161 – 184. (doi:10.1016/S0065-
308X(08)00607-6)

145. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe
S, Paterson S, Begon M. 2010 Species interactions in
a parasite community drive infection risk in a
wildlife population. Science 330, 243 – 246. (doi:10.
1126/science.1190333)

146. Lello J, Boag B, Fenton A, Stevenson IR, Hudson PJ.
2004 Competition and mutualism among the gut
helminths of a mammalian host. Nature 428,
840 – 844. (doi:10.1038/nature02490)

147. Kaunisto S, Härkönen L, Rantala MJ, Kortet R. 2015
Early-life temperature modifies adult encapsulation
response in an invasive ectoparasite. Parasitology 142,
1290– 1296. (doi:10.1017/S0031182015000591)

148. Skelton J, Doak S, Leonard M, Creed RP, Brown BL. 2016
The rules for symbiont community assembly change
along a mutualism – parasitism continuum. J. Anim.
Ecol. 85, 843 – 853. (doi:10.1111/1365-2656.12498)

149. Waltz E. 2016 US reviews plan to infect mosquitoes
with bacteria to stop disease. Nature 533,
450 – 451. (doi:10.1038/533450a)

150. Folt C, Chen C, Moore M, Burnaford J. 1999
Synergism and antagonism among multiple
stressors. Limnol. Oceanogr. 44, 864 – 877. (doi:10.
4319/lo.1999.44.3_part_2.0864)
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230. Grégoir AF, Hablützel PI, Vanhove MPM, Pariselle A,
Bamps J, Volckaert FAM, Raeymaekers JAM. 2015 A
link between host dispersal and parasite diversity in
two sympatric cichlids of Lake Tanganyika. Freshw.
Biol. 60, 323 – 335. (doi:10.1111/fwb.12492)

231. Henrich T, Benesh DP, Kalbe M. 2013 Hybridization
between two cestode species and its consequences
for intermediate host range. Parasit. Vectors 6, 33.
(doi:10.1186/1756-3305-6-33)

232. Sherrard-Smith E, Perkins SE, Chadwick EA, Cable J.
2015 Spatial and seasonal factors are key
determinants in the aggregation of helminths in
their definitive hosts: Pseudamphistomum truncatum
in otters (Lutra lutra). Int. J. Parasitol. 45, 75 – 83.
(doi:10.1016/j.ijpara.2014.09.004)

233. Craig MH, Snow RW, le Sueur D. 1999 A climate-
based distribution model of malaria transmission in

http://dx.doi.org/10.1016/0169-4758(90)90339-6
http://dx.doi.org/10.1016/0169-4758(90)90339-6
http://dx.doi.org/10.1016/j.pt.2006.09.001
http://dx.doi.org/10.1098/rstb.2016.0091
http://dx.doi.org/10.3201/eid0301.970106
http://dx.doi.org/10.1079/JOH2006351
http://dx.doi.org/10.1890/09-0910.1
http://dx.doi.org/10.4319/lo.1999.44.3_part_2.0925
http://dx.doi.org/10.1126/science.1206360
http://dx.doi.org/10.1046/j.1461-0248.1998.0007d.x
http://dx.doi.org/10.1017/S0031182000067317
http://dx.doi.org/10.1017/S0031182000067317
http://dx.doi.org/10.1126/science.289.5485.1766
http://dx.doi.org/10.1126/science.289.5485.1766
http://dx.doi.org/10.1073/pnas.0602447103
http://dx.doi.org/10.1371/journal.ppat.1004308
http://dx.doi.org/10.1371/journal.ppat.1004308
http://dx.doi.org/10.1111/j.1744-7348.1982.tb01948.x
http://dx.doi.org/10.1111/j.1744-7348.1982.tb01948.x
http://dx.doi.org/10.3201/eid0702.700178
http://dx.doi.org/10.1016/j.pt.2005.08.020
http://dx.doi.org/10.1016/S0304-4017(97)00107-6
http://dx.doi.org/10.1016/S0304-4017(97)00107-6
http://dx.doi.org/10.1046/j.1365-2109.2000.00517.x
http://dx.doi.org/10.1002/ps.932
http://dx.doi.org/10.1098/rspb.1999.0869
http://dx.doi.org/10.1126/science.1137126
http://dx.doi.org/10.1371/journal.ppat.1004810
http://dx.doi.org/10.1098/rspb.2009.1659
http://dx.doi.org/10.1098/rspb.2009.1659
http://dx.doi.org/10.1034/j.1600-0706.2002.960110.x
http://dx.doi.org/10.1017/S0031182000025178
http://dx.doi.org/10.1017/S0031182000025178
http://dx.doi.org/10.1017/S0031182000060467
http://dx.doi.org/10.1017/S0031182015000633
http://dx.doi.org/10.1017/S0031182015000633
http://dx.doi.org/10.1098/rspb.2013.0937
http://dx.doi.org/10.1098/rspb.2013.0937
http://dx.doi.org/10.1111/j.1365-2699.2008.01951.x
http://dx.doi.org/10.1098/rstb.2013.0553
http://dx.doi.org/10.1002/ece3.1333
http://dx.doi.org/10.1371/journal.pntd.0002160
http://dx.doi.org/10.1371/journal.pntd.0002160
http://dx.doi.org/10.1038/529010a
http://dx.doi.org/10.1038/529010a
http://dx.doi.org/10.1098/rspb.2001.1897
http://dx.doi.org/10.1017/S0950268805005303
http://dx.doi.org/10.1017/S0950268805005303
https://doi.org/10.1017/S0031182016002419
http://dx.doi.org/10.1016/j.ijppaw.2014.04.002
http://dx.doi.org/10.1111/fwb.12492
http://dx.doi.org/10.1186/1756-3305-6-33
http://dx.doi.org/10.1016/j.ijpara.2014.09.004


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160088

17
sub-Saharan Africa. Parasitol. Today 15, 105 – 111.
(doi:10.1016/S0169-4758(99)01396-4)

234. Heukelbach J, Jackson A, Ariza L, Feldmeier H. 2008
Prevalence and risk factors of hookworm-related
cutaneous larva migrans in a rural community in
Brazil. Ann. Trop. Med. Parasitol. 102, 53 – 61.
(doi:10.1179/136485908X252205)

235. Masih I, Maskey S, Mussá FEF, Trambauer P. 2014 A
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Glossary
term
 definition
parasitological terms
definitive host
 Host in or on which a parasite

reaches sexual maturity.
ectoparasite
 Parasite that lives on the exterior of a

host.
endoparasite
 Parasite that lives inside the body of a

host.
helminth
 Parasitic worm from either the

Phylum Plathyhelminthes or

Nematoda.
intermediate host
 Host required for larval development

or growth of a parasite before it is

infective to another intermediate

host or the definitive host.
macroparasite
 Parasite that produces infective stages

released away from the host; typically

of a larger body size than a

microparasite.
microparasite
 Parasite that reproduces in situ on the

host; typically microbes (viruses, bac-

teria, protozoa) but exceptions

include viviparous helminths, such

as Gyrodactylus spp.
parasite
 Organism that lives at the expense of

its host and causes harm; includes

both micro- and macroparasites.
parasite intensity
 Number of individual parasites of a

particular species infecting a host.
prevalence
 Number of individuals of a host

species infected with a species of

parasite. Expressed as a percentage.
systems biology terms
global change
 Any climatic or anthropogenic change

that has an impact directly or

indirectly on an ecosystem; includes

all stressors associated with urbaniz-

ation and human population growth

(growth of urban areas, depletion of

rural and natural resources, etc.).
industrialization
 Social and economic change that has

transformed human societies from

agrarian to industrial, resulting in

urbanization, exploitation of natural

resources and environmental

pollution.
planetary

boundaries
Framework for identifying a ‘safe

operating space for humanity’ cover-

ing nine earth system processes.

Each process has a tipping point

demarcating safe zones [6,7].
social–ecological

resilience
Capacity of an integrated ecosystem

that includes humans to withstand

perturbations and stressors.
systems change
 Biological, social and political

drivers, affecting interactions, func-

tioning and dynamic processes

within ecosystems.
urbanization
 Increased numbers of people in

towns and cities resulting in growth

of urban areas.
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