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Abstract

Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining
the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, down-
stream functional, and structural studies necessary to characterize when and how changes in molecular function
occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number
of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves
across large protein families. Here we develop an approach combining ASR with structure and function prediction to
efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs)
spanning animals and plants. We find that the characteristic domain architecture of DRBs—consisting of 2–3 tandem
double-stranded RNA binding motifs (dsrms)—arose independently in early animal and plant lineages. The affinity with
which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal
and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the
b1–b2 loop and a small region of a2. These studies provide some of the first direct information about how protein
function evolves across large gene families and suggest that changes in molecular function may occur often and un-
associated with major phylogenetic events, such as gene or domain duplications.

Key words: ancestral sequence reconstruction, double-stranded RNA binding proteins, protein family evolution,
molecular functional evolution, RNA interference.

Introduction
Understanding how proteins evolve novel functional reper-
toires remains an important goal of molecular and evolution-
ary biology (Whelan and Goldman 2001; King et al. 2003;
Orengo and Thornton 2005). Emerging techniques combin-
ing ancestral sequence reconstruction (ASR) with laboratory
functional assays and structure determination have allowed
researchers to meticulously characterize the evolutionary and
structural bases for changes in molecular function (Malcolm
et al. 1990; Shih et al. 1993; Ugalde et al. 2004; Bridgham et al.
2006, 2009; Zmasek and Godzik 2011; Voordeckers et al. 2012;
van Hazel et al. 2013; Ogawa and Shirai 2014; Whitfield et al.
2015; Clifton and Jackson 2016). While these approaches pro-
vide unprecedented opportunities to rigorously investigate
the molecular-functional evolution of protein families (Shih
et al. 1993; Hanson-Smith et al. 2010; Harms and Thornton
2010; Merkl and Sterner 2016), their reliance on detailed ex-
perimental methods limits the scale at which ancestral pro-
tein resurrection can be applied.

Several mechanisms can contribute to the generation of
new protein functions (Chen et al. 2013), including gene du-
plication, fission, or fusion (Song et al. 1987; Wang et al. 2004),
retrotransposition (Cordaux and Batzer 2009), de novo gene

origination (Cai et al. 2008), lateral transfer (Dunning Hotopp
et al. 2007), shifts in a gene’s reading-frame (Ohno 1984) and
domain shuffling (Pao and Saier 1995). The importance of
gene duplication for generating molecular-functional novelty
across protein families is in little doubt (Saha et al. 2006), even
if the particular mechanisms by which duplication allows for
functional evolution may be multifaceted (Rastogi and
Liberles 2005; Bridgham et al. 2008). Aside from gene dosage
effects (Veitia et al. 2013) and post-duplication changes in
gene regulation (Nguyen Ba et al. 2014), retention of duplicate
genes over long periods of time is generally considered to
require significant alteration of at least one duplicate protein’s
molecular function (Hughes 1994; Zhang 2003). Post-
duplication changes in protein function have been observed
in many ASR studies (Tirosh and Barkai 2007; Zhang et al.
2009; Kuraku 2013). Although these findings can be taken as
evidence that gene duplication may correlate with functional
evolution (Taylor and Raes 2004; Conant and Wolfe 2008;
Kassahn et al. 2009), less effort has been invested in looking
for functional evolution not associated with gene duplica-
tions in large protein families (Bridgham et al. 2008; Hobbs
et al. 2012; Bridgham et al. 2014). The low throughput of
traditional ASR approaches, coupled with an historical focus
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on gene duplications, means we have very little unbiased
information about how molecular function evolves in large
protein families, particularly across deep phylogenetic history.

Here we develop an approach that combines large-scale
ancestral sequence reconstruction with molecular dynamics
and structure-based affinity prediction to characterize the
evolution of molecular function across a large family of
double-stranded RNA binding proteins (DRBs). DRBs coord-
inate the first steps of the RNA interference (RNAi) process,
working with Dicer to select dsRNA targets and generate
RNA fragments for loading onto the RNA-induced silencing
complex (Chendrimada et al. 2005; Liu et al. 2006; Kok et al.
2007; Curtin et al. 2008; Cenik et al. 2011; Fukunaga et al.
2012). Vertebrate DRBs have additionally been shown to
regulate cellular stress responses through interactions with
Protein Kinase R (Daher et al. 2009; Dickerman et al. 2015).
DRBs consist of 2–3 double-stranded RNA-binding motifs
(dsrms), short functional domains that either bind double-
stranded RNAs or facilitate protein-protein interactions (see
supplementary fig. S1, Supplementary Material online)
(Kurihara et al. 2006; Laraki et al. 2008; Yang et al. 2010;
Wilson et al. 2015). Although DRB function has been exam-
ined in a handful of model animals and plants, very little is
known about DRB evolutionary history or about how the
functional diversity of DRB dsrms evolved (Clavel et al. 2016).

Results and Discussion

DRB Protein Families Diversified Independently in
Animals and Plants
To begin examining the molecular-functional evolution of
double-stranded RNA-binding proteins (DRBs), we identified
any protein sequence from NCBI’s NR database encoding 2–3
double-stranded RNA-binding motifs (dsrms) and no other
annotated functional domains, consistent with the character-
istic domain architecture of DRBs from well-studied model
organisms (ang, et al. 2010; Wilson et al. 2015). To construct a
reliable consensus phylogeny, we aligned full-length DRB se-
quences and individual functional domains using a variety of
approaches, inferred maximum-likelihood phylogenies from
each alignment and combined results using both supermatrix
and supertree approaches (see Materials and Methods for
details).

A strongly supported consensus phylogeny across all align-
ment methods and tree-reconstruction approaches suggests
that DRB protein families diversified independently early in
animal and plant lineages (fig. 1; supplementary file full_trees.
nexus.txt contains all trees, and Files DRB_full_idmap.txt and
dsrm_full_idmap.txt contain Genbank accession numbers for
all sequences, Supplementary Material online). All plant DRBs
were monophyletic with >0.94 SH-like aLRT, while animal
DRBs grouped with animal Staufen proteins (support>0.92).
Within the plant clade, the well-studied DRB1 protein from
monocots, dicots and basal vascular plants grouped with a
recently characterized DRB6 (support >0.94), but DRB6 has
been lost from Brassicaceae (Clavel et al. 2016). Plant DRB4
grouped with an unresolved clade of DRBs from early vascular
plants as well as DRB2/3/5 sequences from monocots and

dicots (support>0.96), although the DRB2/3/5 clade did not
fully resolve in the consensus tree. That sequences from
mosses group tightly with DRB1, DRB6 and DRB2/3/5/4
clades suggests that these major gene duplications occurred
early in the plant lineage, with later divergence of DRBs 2, 3,
and 5, possibly in flowering plants. Given the consensus tree,
the timing of DRB4’s origin is unclear; it could have diverged
from plant DRB2/3/5 in flowering plants or earlier.

Within the animal clade, DRB sequences from bilateria
separated from Staufen proteins and DRB-like proteins
from cnidaria with >0.96 SH-like aLRT (fig. 1). While DRBs
from arthropods (LOQS) and vertebrates (TARBP2, PRKRA)
grouped with lophotrochozoan and invertebrate deuteros-
tome DRBs (support >0.98), the nematode DRB (RDE4)
and one of the arthropod DRBs (R2D2) were basal to the
main DRB clade (G in fig. 1). This suggests that either the
ancestral DRB duplicated early in the bilaterian lineage, with
arthropods retaining two DRB genes, nematodes losing one,
and the remaining bilateria losing the other, or phylogenetic
errors such as long-branch attraction artifactually reshaped
the branching pattern of early animal DRB divergence in our
analysis.

The grouping of long-branched taxa at the base of a rela-
tively shorter-branched clade is a classic signature of long-
branch attraction (Felsenstein 1978; Kuck et al. 2012).
However, our previous analysis of Dicer and Argonaute pro-
tein families—also participating in RNAi—suggested that
these genes also duplicated early in bilateria, with duplicates
being lost in non-arthropods (Mukherjee et al. 2013). These
results are consistent with a model in which the entire RNAi
pathway may have shared an ancient duplication event, fol-
lowed by lineage-specific losses. Given current results and
sequence data, we feel the most appropriate conclusion is
to remain agnostic as to the precise pattern of DRB duplica-
tions in the animal lineage, although the early divergence of
bilaterian DRBs from Staufens appears well-supported, as
does a later DRB duplication in the vertebrate lineage (sup-
port>0.86; fig. 1).

Although phylogenetic certainty is impossible to com-
pletely ensure, and systematic artifacts can generate strongly
supported errors in some cases, that the same general tree
topology is recovered using different sequence alignments,
alignment processing, and tree inference strategies suggests
our consensus phylogeny is largely robust to many of the
major sources of phylogenetic uncertainty and bias (Zwickl
and Hillis 2002; Ogden and Rosenberg 2006). While additional
sequence data and major advancements in phylogenetic
methods may revise our conclusions in the future, we feel
our consensus tree represents a reasonable inference of DRB
evolutionary history, given current data, and methodology.

DRB’s Tandem-dsrm Domain Architecture Arose
Independently in Animals and Plants
Animal and plant DRBs have a fairly consistent domain archi-
tecture; all well-studied plant DRBs encode two double-
stranded RNA-binding motifs (dsrms), whereas animal
DRBs encode 2–3 dsrms (Yang et al. 2010; Wilson et al.
2015). No major variations on this 2–3 dsrm domain
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architecture have been observed, with the recent exception of
a possible single-dsrm protein from plants (Clavel et al. 2016).
To characterize when and how the DRB domain architecture
evolved, we identified all dsrm protein sequences from the
NCBI RefSeq database and clustered dsrm proteins by
sequence-similarity and phylogenetic analyses to identify
those most closely related to dsrms from DRBs (see
Materials and Methods, supplementary text S1, tables S1–S3,
and fig. S2, Supplementary Materials online). To mitigate
potential phylogenetic errors when examining the evolu-
tionary history of short functional domains over long time-
scales, we used a structural alignment of available dsrm
structures and similar folds to align dsrm-related protein
sequences for reconstructing the maximum-likelihood do-
main phylogeny (see Materials and Methods).

We found that all animal dsrms from DRB proteins were
monophyletic (SH-like aLRT¼ 0.98), all plant dsrms were
monophyletic (support¼ 0.99), and dsrms from animal and
plant DRBs were separated from dsrms from other proteins
with maximal support (fig. 2, supplementary file full_trees.
nexus.txt). Even given the short dsrm sequences, individual
dsrm clades were fairly well-supported within animal and
plant lineages. The second plant dsrm (dsrm2) was mono-
phyletic with SH-like aLRT¼ 0.96. Animal dsrm1 and dsrm3
were each monophyletic with support¼ 0.85 and 0.99, re-
spectively. Aside from dsrm2 from arthropod R2D2, animal
dsrm2 domains grouped together with 0.95 support, but the
branching order of animal DRB dsrm2s and Staufen dsrms
was unresolved. Plant dsrm1 sequences did not form a

monophyletic clade with strong support in the consensus
phylogeny, but dsrm1 sequences from different plant DRBs
did form respective monophyletic groups (support> 0.91).
These results are largely consistent with recent phylogenetic
analyses of plant DRB and dsrm sequences (Clavel et al. 2016).

Together, our results support a model in which a single
ancestral dsrm domain duplicated independently in animal
and plant lineages, suggesting that the 2–3 dsrm domain
architecture of animal and plant DRBs is a case of convergent
evolution. Although we feel the structural alignment is prob-
ably more accurate than sequence-based alignments in this
case, similar results were obtained using three different se-
quence alignment strategies, indicating these results are gen-
erally robust to alignment ambiguity (supplementary figs. S3–
S5, Supplementary Material online). Although support for the
monophyletic groupings of dsrm1, dsrm2, and dsrm3 do-
mains was not always high, phylogenetic inferences do not
appear to be strongly affected by long-branch attraction or
other biases, as major taxonomic groupings tend to follow
current species tree estimates. These results generally argue
against widespread domain-shuffling or other complex evo-
lutionary scenarios shaping animal or plant DRBs.

Alternatively, the canonical domain architecture could
have evolved before the animal–plant split, and partial-
gene conversion events or phylogenetic artifacts may be re-
sponsible for the apparent respective monophyly of animal
and plant dsrms. We did not observe strong evidence for
widespread gene conversion among extant DRBs (supple-
mentary table S4, Supplementary Material online). After
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FIG. 1. Double-stranded RNA-binding proteins (DRBs) diversified independently in animals and plants. We reconstructed maximum-likelihood
phylogenies of all identifiable DRB protein sequences using a variety of alignment strategies and tree reconstruction approaches (see Materials and
Methods). We show a consensus tree across all reconstructions. Branch lengths are scaled to the average number of substitutions/site, and major
taxonomic groups are indicated by branch color. SH-like aLRT support for major clades is indicated in the table for the supermatrix tree
reconstruction, the average support over all individual alignments and the supertree approach (see Materials and Methods); support values
<0.9 are red, and values <0.8 are bold. Nodes on the consensus tree are collapsed if they had <0.8 support from all three methods.
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removing annotated isoforms, we identified 91 pairs of DRB
sequences (out of 1793 sequences) that showed significant
support for possible gene-conversion events in at least one
region (5% of sequences at P< 0.05). Nearly all of these pos-
sible gene-conversion events (83) were among closely related
mammal TARBP2 sequences, with only three among mam-
mal PRKRA, two among arthropod DRBs, and three among
plant DRBs. These results argue against widespread gene con-
version affecting the major branching pattern of the dsrm
phylogeny, although it may impact the branching pattern
within mammalian TARBP2 sequences.

The finding that animal and plant dsrm domains dupli-
cated to produce DRB domain architectures independently in
these lineages suggests our initial approach aligning full-
length animal and plant DRBs could have introduced poten-
tial phylogenetic artifacts (fig. 1). To address this, we inferred
separate maximum-likelihood phylogenies of full-length ani-
mal and plant DRBs, using respective dsrm outgroup

information consistent with the hypothesis that animal and
plant DRB domain architectures were independently derived
(supplementary fig. S6, Supplementary Material online).
These individual animal and plant DRB trees were consistent
with the major clades identified in our initial analysis of full-
length DRB sequences (see fig. 1, supplementary fig. S6,
Supplementary Material online), suggesting our consensus
DRB phylogeny is robust.

High Affinity for RNA Arose Independently in Animal
and Plant dsrms
DRB dsrms from model organisms have been observed to
play two different functional roles: they bind double-
stranded RNA molecules and/or facilitate protein–protein
interactions, primarily with Dicer, mammalian PKR or by
forming dimers (Kurihara et al. 2006; Laraki et al. 2008;
Yang et al. 2010; Wilson et al. 2015). To begin examining
how this functional diversity evolved, we reconstructed
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FIG. 2. The multiple-dsrm domain architecture of animal and plant DRBs evolved independently, and dsrm–RNA affinities diversified early. We
reconstructed the maximum-likelihood domain phylogeny of dsrm functional domains from animal and plant DRB genes, rooted using dsrm
domains from other genes and aligned by structure (see Materials and Methods). We plot a consensus tree in which nodes with<0.8 SH-like aLRT
are collapsed to polytomies. Branch lengths are scaled to substitutions/site. Ancestral sequences were reconstructed at key nodes on the
phylogeny (brown circles), and we inferred the structures of ancestral dsrm protein sequences bound to dsRNA by homology modeling and
molecular dynamics; inferred dsrm–RNA complexes were used to predict RNA binding affinities (see Materials and Methods). We plot the
predicted dsrm–RNA affinities (pKds) of each ancestral sequence, inferred using maximum-likelihood (dark gray bars) or by sampling from the
ancestral state posterior distribution (medium gray bars). Light gray bars indicate experimentally determined dsrm–RNA affinities, with standard
errors shown (see Materials and Methods for ancestral reconstruction and experimental details). Red triangles indicate significant increases in
dsrm–RNA affinities, and blue arrows indicate significant decreases, based on experimentally determined affinity values (P< 0.05). Ancestral
nodes for which maximum-likelihood and sampled ancestral sequences had significantly different predicted affinities are indicated by red stars
(P< 0.05).
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ancestral protein sequences at early key nodes in the animal
and plant dsrm phylogeny, inferred structural complexes with
dsRNA by homology modeling, energy-optimized these mod-
els by molecular dynamics and predicted dsrm–RNA affinities
[pKd ¼ �log10(Kd)] using a previously developed statistical
machine learning approach (see Materials and Methods).

Although maximum-likelihood ancestral sequence recon-
struction (ASR) is typically considered robust (Hanson-Smith
et al. 2010), some concerns have been raised that choosing
the maximum-likelihood state at every position in the ances-
tral sequence could introduce functional artifacts in some
cases, particularly when protein stability is an important com-
ponent of molecular function (Williams et al. 2006). To ad-
dress this concern, some researchers have suggested sampling
a large number of possible ancestral sequences from the pos-
terior distribution at each site (Pollock and Chang 2007), but
to the best of our knowledge, this approach has never been
used in practice, due to the cost of experimentally examining
the functions of large numbers of ancestral sequences.

As affinity prediction approaches do not suffer from the
same efficiency limitations as laboratory analyses, we exam-
ined the robustness of affinity estimates to ASR ambiguity by
reconstructing multiple “random draws” from each ancestral
sequence’s posterior distribution and comparing pKd esti-
mates across these posterior-draw sequences to the pKd of
the maximum-likelihood ancestral sequence, averaged over
multiple structural replicates (see Materials and Methods).
Nodes for which the predicted RNA affinity of the
maximum-likelihood ancestral sequence was not significantly
different from the distribution of RNA affinities over random
draws were considered robust to ancestral sequence uncer-
tainty; we then expressed the maximum-likelihood protein
and measured its affinity for short dsRNA experimentally (see
Materials and Methods).

We found that the predicted RNA affinities of 4/5 of the
early animal ancestral dsrms were robust to uncertainty in the
ancestral sequence reconstruction (at P> 0.05), whereas only
6/10 ancestral plant dsrms were robust to ASR uncertainty
(fig. 2). For the cases in which predicted RNA affinities were
unaffected by ancestral sequence uncertainty, experimental
affinity estimates were generally consistent with maximum-
likelihood pKd estimates (fig. 2). We observed at most a 3.6-
fold difference between experimental and predicted RNA af-
finity. Only two nodes had >3-fold differences between ex-
perimental and predicted affinities (ancAnimal dsrm2 and
ancAnimal dsrm1), and only four additional nodes had >2-
fold affinity differences (ancAnimal dsrm, ancAnimal dsrm3,
ancPlant DRB2/3/5 dsrm2, and ancPlant DRB6 dsrm2).

As figure 2 shows, both animal and plant ancestral dsrms
had relatively low affinity for dsRNA (experimentally deter-
mined Kd> 17 lM, Km> 16 lM; see supplementary fig. S7,
Supplementary Material online) and were statistically indis-
tinguishable from one another (P> 0.34). Ancestral low-
affinity for RNA was retained in ancAnimal dsrm2
(Kd¼ 24.6 lM, Km¼ 22.9 lM; P> 0.27) and at least one of
the ancestral plant dsrm1 lineages (ancPlant DRB4 dsrm1;
Kd¼ 38.9 lM, Km¼ 38.3 lM; P> 0.29). High affinity for
dsRNA (�10-fold increase) evolved at least once in plants,

along the branch leading to ancPlant dsrm2 (Kd¼ 5.2 lM,
Km¼ 4.2 lM; P< 9.75e�4) and at least twice in animals, in-
dependently along branches leading to ancAnimal dsrm3
(Kd¼ 3.2 lM, Km¼ 4.1 lM; P< 4.44e�3) and ancAnimal
dsrm1 (Kd¼ 4.0 lM, Km¼ 4.2 lM; P< 1.42e�2). Finally,
ancPlant DRB6 dsrm2 re-evolved low affinity for dsRNA after
it diverged from ancPlant dsrm2 (ancPlant DRB6 dsrm2
Kd¼ 24.4 lM, Km¼ 24.8 lM; P< 1.17e�2).

The dsrm structural fold is highly conserved across animals
and plants, and structural studies of dsrm–RNA interactions
have indicated that dsrms form stabilizing interactions with
RNA through two primary interfaces, a loop between b1 and
b2, which inserts a canonical histidine into the RNA minor
groove, and a cluster of basic residues at the start of a1, which
appear to stabilize the RNA backbone (Ryter and Schultz
1998; Yang et al. 2010).

Consistent with this model, we found that specific histor-
ical substitutions in the b1–b2 loop and the a1 region were
responsible for observed changes in dsrm–RNA affinities in
animals and plants (fig. 3, supplementary figs. S8 and S9,
Supplementary Material online). The ancestral animal dsrm
lacked the canonical b1–b2 histidine, had a polar—but not
basic—a1 region and bound dsRNA with Kd¼ 17.17 lM.
Along the branch leading to ancAnimal dsrm3, Q31H, and
DSTA52RSKK substitutions occurred, which were collectively
sufficient to increase dsRNA affinity 4.3-fold in the ancAnimal
dsrm background (P¼ 0.011), making its RNA affinity indis-
tinguishable from that of ancAnimal dsrm3 (P¼ 0.46).
Independent Q31H and DSTA52DSKK substitutions along
the branch leading to ancAnimal dsrm1 were sufficient to
increase dsRNA affinity 3-fold (P¼ 0.013), which was also
statistically indistinguishable from the full ancAnimal dsrm1
sequence (P¼ 0.11). These results suggest that both the an-
cestral animal dsrm1 and dsrm3 evolved high dsRNA affinity
from a low-affinity ancestor through similar structural
mechanisms.

Phylogenetic analysis suggests that the evolution of high-
affinity dsrm–RNA interactions in animal DRBs occurred
through convergent mechanisms, with the H31 substitution
arising independently in ancAnimal dsrm1 and dsrm3 as well
as along the dsrm2 lineage (see fig. 3, supplementary fig. S8,
Supplementary Material online). Although the alternative hy-
pothesis that H31 arose in the common ancestor of animal
dsrms is more parsimonious than three independent substi-
tutions, residues flanking H31 are different in ancestral animal
dsrm1 and dsrm3 as well as human TARBP2 dsrm2, suggest-
ing that this region can be highly variable (supplementary fig.
S8, Supplementary Material online). Ancestral residues at this
position were reconstructed with high confidence, arguing
against reconstruction uncertainty as a major explanation
for this result (supplementary fig. S10, Supplementary
Material online). Similarly, the KK54 substitution appears to
have occurred independently in animal dsrm1, dsrm3 and
dsrm2 lineages, with similar variations in flanking residues
and very little uncertainty in ancestral sequences (supple-
mentary figs. S8 and S10, Supplementary Material online).
Individual animal dsrm1, dsrm2, and dsrm3 clades were
strongly supported phylogenetically using a variety of
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alignments and inference strategies, arguing against phylo-
genetic error as the primary explanation for these results
(see fig. 2, supplementary figs. S3–S5, Supplementary
Material online). Although evolutionary history can never
be inferred with absolute certainty, we have not observed
any strong evidence for systematic errors in this case.

Although the ancestral plant dsrm had the canonical high-
affinity H31 residue (fig. 3, supplementary fig. S8,
Supplementary Material online), its STRL53 a2 region was ap-
parently not capable of conferring high dsRNA affinity
(Kd¼ 59.2 lM). Introducing the derived ancPlant dsrm2 a2
region (KNKK53) into the ancestral plant dsrm background
was sufficient to increase dsRNA affinity 9.1-fold (P¼ 0.021),
which was similar to the affinity of ancPlant dsrm2 (P¼ 0.11).
Following the evolution of high RNA affinity in ancPlant dsrm2,
an H31L substitution along the branch leading to ancPlant
DRB6 dsrm2 re-evolved low RNA affinity (6.6-fold change in
Kd; P¼ 0.031). Together, these results suggest that concerted
amino-acid substitutions in the dsrm b1–b2 loop and a1 re-
gion were responsible for repeated gains and losses of dsRNA
affinity during the early evolution of animal and plant DRBs.

Although most of the critical residues in ancestral b1–b2
loop and a1 regions were reconstructed with high confidence,
some critical residues had lower confidence (<0.9 posterior
probability), and in some cases, alternative reconstructions
with>0.1 probability were identified (supplementary fig. S10,
Supplementary Material online). Most alternative reconstruc-
tions were within the same biochemical class as the
maximum-likelihood residue, and introducing all alternative
key residues into the respective maximum-likelihood se-
quences did not change experimentally determined RNA
affinities (P> 0.22). These results suggest that RNA affinity
measurements are likely robust to ancestral sequence ambi-
guity at key residues (see also fig. 2).

Together, our results suggest that the canonical tandem-
dsrm architecture of animal and plant DRB proteins was
pieced together independently in early animal and plant lin-
eages from an ancestral dsrm that had relatively low affinity
for double-stranded RNA. Following early dsrm-domain
duplications, independent but similar substitutions in the
b1–b2 loop and a1 region of animal (dsrm1, dsrm3) and plant
(dsrm2) dsrms produced domains with higher RNA affinity.
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FIG. 3. Observed shifts in early animal and plant dsrm–RNA affinities are explained by substitutions in the b1–b2 loop and the a2 region. We
reconstructed ancestral animal and plant dsrm protein sequences before and after major shifts in dsrm–RNA affinities (see fig. 2) and predicted the
dsrm–RNA structural complex by homology modeling and molecular dynamics (see Materials and Methods). Human TARBP2 dsrm2 and A.
thaliana DRB1 dsrm1 are shown for comparison. We introduced historical substitutions occurring along the branch spanning each observed
functional shift and measured dsrm–RNA affinities using a label-free in vitro kinetics assay (see Materials and Methods). We plot the steady-state
dsrm–RNA affinity of each protein (pKd), with longer bars indicating higher affinity. Bars indicate standard errors. Kinetics curves are shown in
supplementary figure S9, Supplementary Material online.
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Although these results demonstrate quantitative changes
in an important component of DRB molecular function, the
biological consequences of these changes in dsrm–RNA af-
finity are difficult to determine. Increases in RNA affinity dur-
ing early animal dsrm evolution were relatively small (4.3- to
5.4-fold), whereas the change in RNA affinity along the plant
dsrm2 branch was more substantial (11.4-fold). Animal and
plant DRB proteins coordinate key aspects of the RNA inter-
ference process, but how changes in dsrm–RNA affinity might
impact RNAi is not known. RNAi plays important roles in
animal and plant antiviral immunity by directly targeting viral
RNA (Lu et al. 2005; Blevins et al. 2006; Zambon et al. 2006;
Segers et al. 2007; Qu et al. 2008; Saleh et al. 2009; Umbach
and Cullen 2009), suggesting that even small changes in RNA
affinity could impact antiviral RNAi targeting and therefore
have a potentially strong effect on organism fitness. RNAi also
plays important roles in animal and plant development
(Grishok et al. 2001; Ketting et al. 2001; Knight and Bass
2001; Bouche et al. 2006; Kloosterman and Plasterk 2006;
Liu et al. 2007; Nag and Jack 2010; Sayed and Abdellatif
2011; Duarte et al. 2013); changes in DRB-RNA affinity could
therefore impact developmental timing or progression.

Dsrm–RNA Affinity Changed Often in Animal and
Plant DRB Lineages
To the best of our knowledge, all existing ancestral recon-
struction studies have identified particular nodes on the pro-
tein family tree to examine based on phylogenetic patterns
and/or limited functional analyses of extant proteins.
Although productive, existing studies are limited to examin-
ing a small number of nodes on the tree and cannot take a
comprehensive, unbiased view of how molecular function
may have evolved. As a complementary approach, we recon-
structed maximum-likelihood ancestral sequences at every
node on the dsrm phylogeny, built structural models of
each sequence bound to dsRNA, optimized protein–RNA
interactions by molecular dynamics and used statistical ma-
chine learning to directly infer affinities from the resulting
structural complexes (see Materials and Methods).
Although computational—rather than experimental—this
approach provides a direct assessment of protein–RNA affin-
ity across the entire evolutionary history of DRB dsrm do-
mains, providing a largely unbiased view of how molecular
function may have evolved across a large phylogeny.

We found that dsrm–RNA affinity appears to have
changed significantly and often across animal and plant lin-
eages (fig. 4). The smallest pKd estimate was 3.33 (equivalent
to Kd¼ 467.7 lM), and the largest was 6.53 (Kd¼ 0.295 lM),
with an average of 4.79 (Kd¼ 16.2 lM) and a median of 4.75.
Kernel density estimation revealed that the overall distribu-
tion of pKd estimates was slightly skewed toward marginally
smaller values (mode¼ 4.65), with a noticeable excess of es-
timates having pKd> 5.5 (supplementary fig. S11,
Supplementary Material online). We built structural models
of dsrm–RNA complexes using human TARBP2 and
Arabidopsis thaliana DRB1 complexes as templates (see
Materials and Methods, supplementary fig. S1,
Supplementary Material online). These domains bind RNA

in similar conformations (Yang et al. 2010), and pKd estimates
using each structural template were highly correlated across
ancestral and extant dsrm sequences (supplementary fig. S12,
Supplementary Material online). Plotting pKd estimates from
each template on the dsrm phylogeny also revealed similar
patterns of high- and low-affinity dsrms (supplementary fig.
S13, Supplementary Material online).

Dsrm–RNA affinity prediction used structural information
about the dsrm–RNA complex, which we inferred by hom-
ology modeling and molecular dynamics (see Materials and
Methods). Any errors in ancestral sequence reconstruction
that impact protein folding or stability could therefore impact
pKd prediction. Previous studies have found that ASR errors
are associated with high levels of ambiguity in the recon-
structed sequence (Hanson-Smith et al. 2010). If pKd predic-
tions were strongly affected by error or ambiguity in the
ancestral sequence, we would therefore expect a strong cor-
relation between ancestral sequence ambiguity and pKd esti-
mates. We found no correlation between pKd estimates and
the average posterior probability of ancestral states across the
phylogeny (Pearson and Spearman correlations<0.02;
P> 0.98), suggesting that, overall, ancestral sequence ambi-
guity did not have a strong effect on pKd prediction.

When pKd estimates using combined structural templates
were plotted on the dsrm phylogeny (fig. 4, supplementary fig.
S14, Supplementary Material online), we observed a large
number of changes in dsrm–RNA affinity across the tree,
with only a few major clades exhibiting stable affinity esti-
mates. The most obvious such grouping was animal dsrm3,
which appears to have evolved high affinity for RNA early in
its evolutionary history (predicted pKd¼ 5.87 for the ances-
tral dsrm3 vs. 4.33 for the ancestral animal dsrm; P¼ 9.39e�5)
and maintained high affinity across all extant and ancestral
dsrm3s (mean pKd¼ 5.53, SE¼ 0.025). Animal dsrm1 also
appears to have evolved a relatively stable and high affinity
for dsRNA (mean pKd¼ 5.03, SE¼ 0.035), except in the
mammalian TARBP2 lineage, which lost affinity for RNA, ac-
cording to our analysis (mean pKd¼ 4.00, SE¼ 0.060). Animal
dsrm2’s RNA affinity appeared generally lower than dsrm1
and 3 (mean pKd¼ 4.56, SE¼ 0.021).

Overall, plant pKd predictions were slightly lower than
those of animal dsrms (plant mean pKd¼ 4.59, SE¼ 0.014;
animal mean pKd¼ 4.75, SE¼ 0.018), and we observed fewer
large clades with consistently high or low RNA affinities in the
plant lineage (supplementary fig. S14, Supplementary
Material online). Overall, plant dsrm1 and dsrm2 sequences
had similar predicted affinities (dsrm1 mean pKd¼ 4.55,
SE¼ 0.019; dsrm2 mean pKd¼ 4.63, SE¼ 0.022). Within
plant dsrm1 groups, DRB1 had the highest affinity for RNA
(mean pKd¼ 4.72, SE¼ 0.039), and DRB4 had the lowest
(mean pKd¼ 4.39, SE¼ 0.041), but there was only a 2.2-fold
variation in average RNA affinities across the major dsrm1
clades (supplementary fig. S14, Supplementary Material on-
line). The major plant dsrm2 clades exhibited a slightly higher
variation in RNA affinities (2.9-fold). Similar to results from
dsrm1 clades, the dsrm2 domain from DRB1 had the highest
affinity for RNA (mean pKd¼ 4.82, SE¼ 0.039), and DRB4
dsrm2 had the lowest average affinity across the entire clade
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(mean pKd¼ 4.36, SE¼ 0.044). There were some smaller
plant clades with consistently high RNA affinities (fig. 4).
For example, the second dsrm domain of Solanaceae DRB6
had mean pKd¼ 4.93 (SE¼ 0.195). Aside from Brassicaceae
and Rosaceae, the second dsrm domain of eudicot DRB1 also
had relatively high affinity for dsRNA (mean pKd¼ 4.92,
SE¼ 0.037).

In order to characterize the rate at which dsrm–RNA af-
finity evolved across the phylogeny, we treated affinity similar
to a quantitative phenotypic trait, applying a Brownian-
motion model to infer changes in the rate of affinity evolution
across extant and ancestral dsrm domains (Eastman et al.
2011). In general, we expect changes in dsrm–RNA affinity
to be roughly correlated with changes in dsrm protein se-
quence, with significant shifts in the coefficient of proportion-
ality indicating acceleration or deceleration of affinity change,
relative to sequence change. We inferred shifts in the

coefficient of proportionality using a Bayesian “break point”
model across the dsrm phylogeny (see Materials and
Methods).

We found that—with the exception of early branching
dsrm1 sequences from plant DRB6 and DRB2/3/5—plant
dsrms had a higher coefficient of proportionality than animal
dsrms (fig. 5, supplementary fig. S15, Supplementary Material
online), suggesting that changes in dsrm–RNA affinity
occurred more often in plants than in animals, relative to
dsrm sequence change. Although the inference of strongly
supported discrete shifts in the coefficient of proportionality
is a known limitation of this type of evolutionary model
(Eastman et al. 2011), we did identify a number of discrete
increases in the rate of dsrm–RNA affinity change early in the
plant lineage (posterior probability >0.35), as well as a spat-
tering of more weakly supported possible changes in more
terminal plant lineages (fig. 5). In animal dsrms, we found a

other dsrms
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FIG. 4. Dsrm–RNA affinities changed often across animal and plant lineages. We inferred the maximum-likelihood phylogeny of dsrm protein
sequences using a structure-based alignment (see Materials and Methods). Branch lengths are scaled to substitutions/site, and clades with <0.8
SH-like aLRT are collapsed. Ancestral dsrm sequences were reconstructed at each node on the tree, and dsrm–RNA structural complexes were
inferred by homology modeling and molecular dynamics (see Materials and Methods). Dsrm–RNA affinities were predicted by statistical machine
learning (see Materials and Methods). We color branches by the average dsrm–RNA binding affinity (pKd) across multiple replicate models of each
ancestral and extant sequence on the phylogeny, with red indicating high-affinity and blue indicating low-affinity. Triangles indicate branches on
which there was a significant change in predicted pKd, as indicated by FDR-corrected independent t test. Boxes plot the predicted affinity of the
maximum-likelihood ancestral sequence (dark gray), random samples drawn from the ancestral state probability distribution (medium gray) and
the experimentally determined affinity (light gray) before (bottom) and after (top) the observed shift. Bars indicate standard errors, and results
that were not significant (n.s.) using either sampled sequences or empirical affinity measurements are indicated.
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strongly supported discrete shift in the rate of dsrm–RNA
affinity change in the diploblast lineage (posterior probabil-
ity¼0.92), and another strongly supported shift in the verte-
brate TARBP2/PRKRA dsrm2 lineage (posterior
probability¼0.94; fig. 5). We also observed a number of
more weakly supported increases in the rate of dsrm–RNA
affinity change across the animal phylogeny (fig. 5). Overall,
we observed more support for discrete increases in the rate of
dsrm–RNA affinity evolution than decreases. Results were
similar when we inferred changes in the rate of dsrm–RNA
affinity evolution using the same Brownian-motion model
but without considering affinity estimates from ancestral re-
constructed sequences, although the absolute rates tended to
be marginally lower (supplementary fig. S15, Supplementary
Material online).

As a whole, these results suggest that animal and plant
dsrm sequences likely evolved under different dynamics.
Animal dsrms appear to have differentiated into low- and
high-affinity RNA receptors earlier, and affinity was more con-
sistently maintained across larger taxonomic groupings, with
an overall reduced rate of affinity change (figs. 4 and 5; sup-
plementary figs. S14 and S15, Supplementary Material online).
In contrast, the RNA affinities of plant dsrms appear more

evolutionarily labile, with fewer large clades exhibiting high
RNA affinity and potentially more variable affinities across
major clades.

Prediction of dsrm–RNA affinities across a large phylogeny
of ancestral and extant proteins presents an opportunity to
directly identify significant shifts in RNA affinities by compar-
ing the pKd prediction of each ancestral protein to that of its
immediate descendent, thereby identifying particular
branches on which dsrm–RNA affinity has changed (see
Materials and Methods). This approach may not detect
slow changes in dsrm–RNA affinities that occur across mul-
tiple branches, and it is unlikely that this approach will have
equal power on all branches of the phylogeny. Nonetheless,
this simple approach does provide a means for identifying
strong, abrupt changes in protein-ligand affinities not linked
to specific topological events, such as gene- or domain-
duplications.

After correcting for multiple tests, we identified 13
branches across the dsrm phylogeny exhibiting significant
support for a shift in RNA affinity, using maximum-
likelihood ancestral sequence reconstruction (P< 0.05; fig.
4). Many of these observed shifts in predicted dsrm–RNA
affinities were not robust to ancestral sequence ambiguity,

Plants Animals

posterior rates
11.4

4.3

1.7

0.6

0.2

0.09

0.04

0.01

0.005

dsrm3

dsrm1dsrm2

staufen dsrms

direction
1.0

0.8

0.5

0.2

0.0

-0.2

-0.5

-0.8

-1.0

probability

1.000

0.875

0.750

0.625

0.500

0.375

0.250

0.125

rate shift

DRB6

DRB2/3/5

DRB4

DRB1

DRB6

DRB1

DRB2/3/5

DRB4
dsrm2

dsrm1

FIG. 5. The rate of dsrm–RNA affinity evolution is higher in plants than in animals and exhibits a number of discrete shifts across the dsrm
phylogeny. We inferred the evolution of the rate at which dsrm–RNA affinity changes using a Brownian motion “break point” model of affinity
evolution fit to predicted dsrm–RNA affinities across extant and ancestral-reconstructed sequences (see Materials and Methods). Branches are
scaled to the inferred number of protein substitutions/site and colored by the posterior rate multiplier, averaged over four independent MCMC
runs. Red branches indicate faster evolution of dsrm–RNA affinity, with blue branches indicating slower evolution of affinity. Circles on nodes
indicate inferred increases (red) or decreases (blue) in the rate multiplier, with the size of the circle indicating the posterior probability of a discrete
shift at the specified node. Outgroup branches have been removed. Major taxonomic and gene family lineages are indicated.
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particularly in the plant lineage (fig. 4). When we recon-
structed multiple replicate ancestral sequences from the
posterior distribution (see Materials and Methods), only
3/8 of the inferred shifts in plant dsrm–RNA affinity re-
mained statistically significant, whereas 4/6 shifts observed
in the animal lineage were robust to ancestral sequence
uncertainty (fig. 4). All but one of the dsrm–RNA affinity
shifts that were robust to ancestral sequence ambiguity
could be experimentally verified (fig. 4).

Sampling ancestral states from the posterior distribution
has been suggested as one approach to alleviate potential
state frequency biases in maximum-likelihood ancestral re-
construction (Pollock and Chang 2007). However, the incorp-
oration of low-probability ancestral residues is also expected
to introduce a larger number of possible errors, which can
collectively degrade protein function (Hobbs et al. 2012). We
found that pKd estimates obtained from sampled ancestral
sequences were almost always the same as or less than es-
timates using maximum-likelihood ancestral sequences,
consistent with a larger number of potential errors intro-
duced by sampling (figs. 2 and 4). Some of the significant
shifts in dsrm–RNA preference identified using the
maximum-likelihood sequences could in fact be real, even
if they failed to be confirmed by posterior sampling (fig. 4).
However, here we consider only those shifts found to be
robust to ancestral sequence ambiguity.

One of the inferred shifts in animal dsrm–RNA affinity—
the shift to high affinity along the branch leading to the dsrm3
lineage—was observed in our earlier analysis (fig. 2) and was
found to have occurred via a Q31H substitution in the b1–b2
loop and the introduction of a number of basic residues in the

a2 region (fig. 3). Of the remaining three shifts in the animal
lineage, one occurred in the Staufen dsrms, and two occurred
in early mammals: one a 10.0-fold loss of RNA affinity in
mammalian TARBP2 dsrm1 (based on experimentally deter-
mined affinities, P< 0.012), and the other a 3.79-fold increase
in PRKRA dsrm2’s affinity for RNA (P< 0.036).

The loss of RNA affinity in mammalian TARBP2 dsrm1
occurred at the base of the Boreoeutherian lineage. We
hypothesized that the insertion of a pair of residues upstream
of the RNA-contacting H31 were primarily responsible for the
observed loss of RNA affinity by repositioning H31 out of
favorable RNA contact (DD29QV insertion; fig. 6A). Indeed,
introducing this insertion into the ancestral TARBP2 dsrm1
background reduced RNA affinity nearly 10-fold, which was
indistinguishable from that of the derived Boreoeutherian
TARBP2 dsrm1 (P> 0.43; fig. 6A, supplementary fig. S16A,
Supplementary Material online). This insertion was strongly
supported by ancestral sequence reconstruction (supplemen-
tary table S5, Supplementary Material online). The ancestral
DD29 states were reconstructed with posterior probabil-
ity>0.999, as were the derived QV29 residues.

The second major change in animal dsrm–RNA affinity
occurred in the Eutherian mammal PRKRA dsrm2, after the
Eutherian mammals diverged from marsupials. In this case,
both ancestral and derived PRKRA dsrm2 domains had the
canonical H31 RNA-contact residue, although the ancestral
mammal PRKRA dsrm2 bound RNA with relatively low affin-
ity (fig. 6B). We hypothesized that a single K33R substitution
in the dsrm2 b1–b2 loop was responsible for increasing RNA
affinity by introducing favorable polar contacts (fig. 6B). The
ancestral K33 residue was disengaged from the RNA ligand in
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FIG. 6. Observed shifts in animal and plant dsrm–RNA affinities are explained by substitutions in the b1–b2 loop and the a2 region. We
reconstructed ancestral animal and plant dsrm protein sequences before (bottom) and after (top) major shifts in dsrm–RNA affinities (see fig.
4) and predicted the dsrm–RNA structural complex by homology modeling and molecular dynamics (see Materials and Methods). We introduced
historical substitutions occurring along the branch spanning each functional shift and measured dsrm–RNA affinities using an in vitro kinetics
assay (see Materials and Methods). We plot the steady-state dsrm–RNA affinity of each protein (pKd), with longer bars indicating higher affinity.
Bars indicate standard errors. Kinetics curves are shown in supplementary figure S16, Supplementary Material online.
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the structural model, whereas the derived R33 could extend
into the RNA’s minor groove to form hydrogen bonds with
the RNA base. Consistent with this hypothesis, introducing
the K33R substitution into the ancestral mammal dsrm2
background was sufficient to increase dsrm–RNA affinity to
that of the derived Eutherian dsrm2 (P> 0.22; fig. 6B, supple-
mentary fig. S16B, Supplementary Material online). The an-
cestral K33 residue was reconstructed with posterior
probability 0.998, and the derived R33 was reconstructed
with posterior probability 1.0, suggesting that ancestral recon-
struction ambiguity did not affect this result (supplementary
table S5, Supplementary Material online).

We found that similar changes in the b1–b2 loop were
responsible for the two observed increases in plant dsrm–
RNA affinities (figs. 4 and 6C–D). Both these RNA–affinity
shifts occurred in plant dsrm1 lineages, one in Fabaceae
DRB4 (fig. 6C) and the other in Rosid DRB6 (fig. 6D). The
ancestral plant DRB4 dsrm1 lacked the canonical H31 RNA-
contact residue (reconstructed as D31 with posterior prob-
ability 0.98; see supplementary table S5, Supplementary
Material online) and bound dsRNA with relatively low affinity
(experimentally determined pKd¼ 4.31). Introduction of the
H31 substitution into this background increased affinity 8.1-
fold, which was marginally higher than the derived Fabaceae
DRB4 dsrm1 (P< 0.046; fig. 6C, supplementary fig. S16C,
Supplementary Material online). Finally, the ancestral Rosid
DRB1 dsrm1 increased RNA affinity 3-fold after Rosids
diverged from other plant lineages (from pKd¼ 4.41 to
pKd¼ 4.89; fig. 6D). This occurred through a pair of substitu-
tions flanking the H31 contact residue, a P30S substitution
that introduced favorable dsrm–RNA polar contacts and a
V32E substitution (fig. 6D). Introducing these substitutions
into the ancestral plant DRB1 dsrm1 recapitulated the
observed shift in dsrm–RNA affinity along the Rosid lineage
(P> 0.37; fig. 6D, supplementary fig. S16D, Supplementary
Material online). As in the animal shifts, all key residues af-
fecting these shifts in plant dsrm–RNA affinity were recon-
structed with high confidence, suggesting ancestral sequence
ambiguity did not affect these results (supplementary table
S5, Supplementary Material online).

Together, these results suggest that convergent evolution-
ary changes in the b1–b2 region of animal and plant dsrms
were responsible for increases and decreases in dsrm–RNA
affinities across various animal and plant lineages (figs. 3 and 6;
supplementary figs. S9 and S16, Supplementary Material on-
line). These independent changes altered dsrm–RNA affinities
through similar structural mechanisms: either by establishing/
interfering with a critical H31-RNA contact or by altering
dsrm–RNA polar contacts within the b1–b2 loop or a2 re-
gion. These findings strongly suggest that the b1–b2 loop is a
“hot spot” for “tinkering” with dsrm–RNA affinities across a
very broad evolutionary timespan.

We note that not all changes in dsrm–RNA affinities were
identified by our phylogeny-wide scan; some of the changes
identified during our study of early dsrm diversification were
not found (figs. 2 and 4). This suggests that the phylogeny-
wide scan approach is not a direct replacement for other
methods used to identify potential shifts in ancestral

molecular function but could be complementary, potentially
identifying changes in molecular function not readily pre-
dicted by other means. We also note that there are some
differences between computationally predicted and experi-
mentally determined pKd estimates (figs. 2 and 4); this is
expected, given that the statistical prediction algorithm was
trained across a wide variety of protein–RNA and protein–
DNA complexes (Dias and Kolazckowski 2015), and the RNA
crystalized with TARBP2 and DCL1 templates is short and
may not engage the entire potential RNA-binding region
(Ryter and Schultz 1998; Yang et al. 2010). Particularities of
the experimental conditions can also have a large effect on
affinity measurements (Svec et al. 1980; Reverberi and
Reverberi 2007). Nonetheless, the patterns of changes in af-
finity were generally consistent between computational and
experimental approaches, suggesting that computational pre-
diction of protein–RNA affinities is a potentially useful strat-
egy for examining broad-scale changes in molecular function
across the evolutionary histories of RNA-binding proteins.

Conclusions
The continued explosion of “big data” in biology has gener-
ated particular challenges that cut across fields; one of which
is how best to sort through large, complex data sets to iden-
tify specific hypotheses that can be rigorously tested experi-
mentally. Ancestral sequence resurrection studies have
historically relied on an ad-hoc assortment of heuristics to
identify particular ancestral nodes for functional analysis,
including examining gene duplication patterns or patterns
of branch lengths, characterizing changes in selection and
projecting functional diversity of extant proteins “back in
time” along the phylogeny (Malcolm et al. 1990; Shih et al.
1993; Ugalde et al. 2004; Bridgham et al. 2006; Bridgham et al.
2009; Zmasek and Godzik 2011; Voordeckers et al. 2012; van
Hazel et al. 2013; Ogawa and Shirai 2014; Whitfield et al. 2015;
Clifton and Jackson 2016). While these approaches are useful,
they are indirect assessments of the hypothesis under exam-
ination, which is when and how molecular function has
changed across a protein family’s phylogeny.

Here we have presented a statistical approach for directly
examining changes in molecular function across large phylog-
enies computationally. We have applied this technique to
study the evolution of ligand affinity in a family of animal
and plant double-stranded RNA binding proteins contribu-
ting to RNA interference and demonstrated its capacity to
identify shifts in molecular function that were then confirmed
experimentally. The scalability of this approach allows re-
searchers to directly examine the effects of ancestral sequence
ambiguity and other sources of uncertainty on functional
inferences, which is difficult to achieve using low-
throughput experiments. We expect that similar computa-
tional approaches will help inform future ancestral sequence
resurrection studies, ultimately providing a direct and un-
biased view of how protein families evolve functional
diversity.

Our results demonstrate how individual dsrm functional
domains within animal and plant DRB proteins have gained
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and lost affinity for dsRNA through evolutionary tinkering at
two primary dsrm–RNA structural interfaces. However, the
implications of these changes in dsrm–RNA affinity for DRB
function—or for the functioning of the RNA interference
systems they participate in—remain unclear. In addition to
binding RNA, DRB dsrms have been shown to directly medi-
ate interactions with Dicers in animals and plants (Kurihara
et al. 2006; Wilson et al. 2015), but the extent to which dsrm–
RNA and dsrm–protein binding may involve evolutionary
“trade-offs” in specialization is not clear. In humans, DRBs
appear to interact directly with a short protein-biding domain
within the Dicer Helicase (Wilson et al. 2015), potentially
altering the structural dynamics and catalytic efficiency of
the DRB–Dicer–RNA system, particularly under conditions
of high RNA concentrations (Taylor et al. 2013; Fareh et al.
2016). While it is conceivable that changes in dsrm–RNA
affinity could impact the functional dynamics of the DRB–
Dicer–RNA system, this has not been examined. DRBs have
also been shown to help determine specificity of RNA inter-
ference pathways in arthropods, although the structural
mechanisms are not known (Liu et al. 2006; Zhou et al.
2009; Marques et al. 2010; Hartig and Forstemann 2011).
Plant Dicers (aka, “Dicer-like” or “DCL”) lack the protein-
binding domain facilitating DRB–Dicer interactions in ani-
mals, and appear to interact via dsrm–dsrm contacts
(Kurihara et al. 2006), although the structural interface has
not been determined. The potential does appear to exist for
evolution of DRB function to impact RNA interference
through possible effects on Dicer processing of RNA targets.
However, further examination of DRB–Dicer–RNA inter-
actions within an explicit evolutionary framework will be
required to begin linking specific changes in DRB sequence
to potential changes in RNAi processing.

Materials and Methods

DRB Sequence Identification, Alignment, and
Phylogenetic Analysis
Protein sequences containing at least one double-stranded
RNA-binding motif (dsrm, NCBI conserved domain database
id CD00048) were identified by rpsblast search of the NR
database using an e-value cutoff of 0.01 (Marchler-Bauer
and Bryant 2004; Marchler-Bauer et al. 2015; Coordinators
2016). Double-stranded RNA-binding proteins (DRBs) were
identified as full-length protein sequences containing 2–3
dsrms and no other annotated functional domains with e-
value<0.01.

Full-length DRB protein sequences were aligned using
Clustal Omega v1.2.3 (Sievers et al. 2011), MUSCLE v3.8.31
(Edgar 2004), mafft-einsi v7.215 (Katoh and Standley 2013),
and MSAProbs v0.9.7 (Liu et al. 2010) with default parameters.
Alignments of only annotated functional domains—with
intervening sequence removed—were also produced using
the same methods. Alignments were left unprocessed or pro-
cessed by Gblocks v0.91 to remove potentially ambiguous
regions (Talavera and Castresana 2007). We set the minimum
number of sequences for a flank position (-b2) equal to 3/5
the total number of sequences in the alignment. The

maximum number of contiguous nonconserved positions
(-b3) was set to 10. The minimum block length (-b4) was
5, and gap positions were allowed (-b5¼ a). Other Gblocks
parameters were left at default values.

Initial maximum likelihood phylogenies were constructed
from each alignment using FastTree v2.1.7 with default par-
ameters (Price et al. 2010). Initial trees were used as starting
trees for full maximum-likelihood reconstruction using
RAxML v8.0.24 (Stamatakis 2014), with the best-fit evolution-
ary model selected from each alignment using AIC in ProtTest
v3 (Darriba et al. 2011). Clade support was evaluated by SH-
like aLRT scores (Anisimova and Gascuel 2006). Maximum-
likelihood phylogenies produced from each alignment were
converted to a clade presence–absence matrix using the
Super Tree Toolkit v0.1.2 (Hill and Davis 2014), and a super-
tree was inferred from this matrix using the BINCAT model in
RAxML (Nguyen et al. 2012). We also concatenated all indi-
vidual alignments into a single supermatrix and reconstructed
the maximum-likelihood protein family phylogeny using
RAxML, with the best-fit evolutionary model selected by
AIC (Wheeler et al. 1995). We present a consensus of
“supertree” and “supermatrix” results.

Dsrm Functional Domain Identification, Structural
Modeling, and RNA Affinity Prediction
We identified all dsrm functional domains from the RefSeq
database (Pruitt et al. 2007) using the approach described in
the previous section. Dsrm protein sequences were clustered
using MCL v14-137 (Enright et al. 2002). We calculated all-vs.-
all blast distances among identified dsrms with an e-value
cutoff of 0.1. E-values were –log10-tranformed and capped
to �200. Node degrees were capped at 280, which was the
smallest maximum node degree that maintained a fully con-
nected graph. MCL clustering was performed at various infla-
tion parameters (1.01, 1.05, 1.1, 1.15, 1.2, 1.4, 1.6, 1.8, 2.0, and
3.0) after pre-inflating the graph (-pi 3) to improve contrast
between high and low edge weights. Annotated DRBs from H.
sapiens, D. melanogaster, and A. thaliana genomes were
mapped to clusters, and we selected the optimal MCL clus-
tering as that which maximized the number of annotated
DRBs per cluster. All sequences within any cluster containing
at least one annotated DRB were considered potential closely
related DRB homologs.

Dsrm sequences closely related to those from DRBs were
also identified phylogenetically. All dsrm protein sequences
were aligned using the methods described above, and
maximum-likelihood phylogenies were inferred from each
dsrm alignment. Any dsrm sequences grouping with anno-
tated DRBs from H. sapiens, D. melanogaster and A. thaliana
with SH-like aLRT> 0.9 were considered closely related, and
we combined closely related dsrms from Markov clustering
and phylogenetic analysis.

We identified experimentally determined dsrm structures
by sequence search of the RCSB protein data bank (Rose et al.
2013), using dsrms from annotated human, D. melanogaster
and A. thaliana DRBs as queries and an e-value cutoff of 0.01.
Resulting X-ray and NMR structures were aligned using the
cealign algorithm in Pymol v1.8.1. We used the mafft –add
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parameter to align dsrm protein sequences to the structure-
based alignment. We inferred the maximum-likelihood dsrm
domain tree from the structure-based alignment, collapsed
nodes with <0.8 SH-like aLRT support and reconstructed
ancestral dsrm sequences at each node on the phylogeny
by maximum-likelihood (Yang et al. 1995). We additionally
sampled 20 ancestral dsrm sequences at each node from the
posterior distribution of residues reconstructed at each site
(Pollock and Chang 2007).

For each ancestral and extant dsrm protein sequence, we
used MODELLER v9.14 (Eswar et al. 2008) to infer structural
models of the dsrm bound to double-stranded RNA, using
human TARBP2 (PDB ID: 3ADL) and A. thaliana DRB1 (PDB
ID: 3ADI) as templates (Yang et al. 2010). Using each tem-
plate, we constructed 100 potential structural models and
selected the best one using the modeler objective function
(molpdf), DOPE and DOPEHR scores (Shen and Sali 2006).
Each score was re-scaled to units of standard-deviation across
the 100 models, and we selected the best model as that with
the best average of re-scaled molpdf, DOPE and DOPEHR
scores.

Each initial dsrm–RNA structural model was used as a
starting point for a short molecular dynamics simulation
using GROMACS v4.6.5 (Pronk et al. 2013). We used the
amber99sb-ildn force field and the tip3p water model.
Initial dynamics topologies were generated using the
GROMACS pdb2gmx algorithm with default parameters.
Topologies were relaxed into simulated solvent at pH¼ 7
using a 50,000-step steepest-descent energy minimization.
The system was then brought to 300 K using a 50-ps dy-
namics simulation under positional restraints, followed by
pressure stabilization for an additional 50 ps. Simulations
were run using Particle-Mesh Ewald electrostatics with cubic
interpolation and grid spacing of 0.12 nm. Van der Waals
forces were calculated using a cutoff of 1.0 nm. We used
Nose–Hoover temperature coupling, with protein, RNA
and solvent systems coupled separately and the period of
temperature fluctuations set to 0.1 ps. Pressure coupling
was applied using the Parrinello–Rahman approach, with a
fluctuation period of 2.0 ps. Nonbonded cutoffs were treated
using buffered Verlet lists. We selected five complexes from
the last 20 ps of each pressure stabilization simulation for
affinity prediction.

Dsrm–RNA affinities were predicted from structural com-
plexes using a statistical machine learning approach (Dias and
Kolazckowski 2015). Simulated solvent and ions were
excluded from the protein–RNA complex, the binding site
was identified, and protein–RNA interactions were decom-
posed into a vector of atom–atom interaction features likely
to correlate with binding affinity, as described in (Dias and
Kolazckowski 2015). Affinities [reported as pKd ¼ �log(Kd)]
were predicted using a support vector regression model pre-
viously trained using a large number of protein–RNA and
protein–DNA complexes with associated experimental affin-
ity measurements. We report the mean of predicted affinities
across the five complexes sampled from each dsrm structural
model. Differences in predicted pKds were assessed using a
two-tailed unpaired t test, assuming unequal variances and

correcting for multiple tests using an FDR correction
(Benjamini and Hochberg 1995). We characterized the impact
of ancestral sequence ambiguity on predicted protein–RNA
affinities by calculating Pearson and Spearman correlations
between pKd estimates and the average posterior probability
of ancestral states at each node. Significance was evaluated
using the Student’s t-test.

Brownian Motion Modeling of dsrm–RNA Affinity
Evolution
We modeled the evolution of dsrm–RNA affinity using a
Brownian motion process (Felsenstein 1973; Eastman et al.
2011), in which we allowed the rate of affinity evolution to be
proportional to the number of substitutions/site along each
branch of the phylogeny. The coefficient of proportionality
was treated as a free model parameter, and we inferred
changes in this parameter’s value using reversible-jump
Markov chain Monte Carlo (Eastman, et al. 2011). Proposed
changes in the coefficient of rate proportionality (i.e., “rate
shifts”) were assumed to be inherited by descendent nodes
on the phylogeny, unless subsequent rate shifts were also
present in a descendent subtree. Four independent MCMC
runs were performed using the full model of Brownian mo-
tion including jumps with relaxed rates (type¼ jump-rbm)
for 100,000 generations, sampled every 100 generations, and
the first 25% of samples were discarded as burnin. We con-
firmed that the average standard deviation in rate shift pos-
terior probabilities was<0.01 across independent runs,
suggesting that MCMC chains had converged to the station-
ary distribution (Ronquist et al. 2012). We report posterior
probabilities combined from all four independent runs.
MCMC analyses were conducted using either extantþ ances-
tral affinity predictions (pKds, see above) or only using affinity
predictions from extant sequences. Standard errors in affinity
predictions were included in all Brownian motion models.

Experimental Measurement of dsrm–RNA Affinity
We generated blunt-ended GC-rich 28-bp RNA molecules
in vitro using T7 RNA reverse transcriptase and synthetic
dsDNA as template. Complementary purified single-
stranded RNAs were annealed to produce double-stranded
RNA by combining at 1:1 ratio, heating to 95 �C for 5 min and
then cooling to 25 �C. Blunt-ended dsRNA was produced by
exposure to alkaline phosphatase. The 30 end of one RNA
strand was biotinylated to facilitate kinetics assays using the
PierceTM 30 End RNA Biotinylation Kit (Thermo).

Ancestral and extant dsrms were expressed in E. coli
RosettaTM 2(DE3)pLysS cells using pET-22b(þ) constructs,
which were verified by Sanger sequencing. Proteins were puri-
fied by His-affinity purification and visualized by SDS-page
stained with 1% coomassie. Protein concentrations were
measured using a linear-transformed Bradford assay (Zor
and Selinger 1996).

We measured dsrm–RNA binding using a label-free in vitro
kinetics assay at pH¼ 7 (Abdiche et al. 2008; Frenzel and
Willbold 2014). Biotinylated RNA molecules were bound to
a series of eight streptavidin probes for 5 min, until saturation
was observed. Probes were washed and then exposed to
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25 mg/ml biocytin to bind any remaining free streptavidin.
Each probe was then exposed to dsrms at increasing concen-
trations in 1� Kinetics Buffer (ForteBio) for 6 min, followed by
dissociation in Kinetics Buffer for an additional 4 min before
exposure to the next concentration of dsrm protein (Frenzel
and Willbold 2014). Molecular binding at each concentration
over time was measured as the change in laser wavelength
when reflected through the probe in solution, sampled every
3 ms. Two probes were not exposed to dsrm protein as con-
trols to evaluate system fluctuation across the time of the
experiment; measurements from these control probes were
averaged and subtracted from each analysis probe.

For each replicate experiment, we estimated the dsrm
concentration at which 1=2-maximal steady-state RNA bind-
ing was achieved (Kd) by fitting a one-site binding curve to the
steady-state laser wavelengths measured across dsrm concen-
trations at saturation, using nonlinear regression. We add-
itionally fit 1-site association/dissociation curves to the full
time-course data in order to estimate the initial rates of RNA
binding across dsrm concentrations and used these rates to
calculate the dsrm concentration at which the 1=2-maximal
RNA-binding rate was achieved (Km). Kds and Kms were –
log10 transformed to facilitate visualization, and standard
errors across three experimental replicates were calculated.
We calculated the statistical significance of differences be-
tween Kds and Kms using the two-tailed unpaired t test,
assuming unequal variances.

Data Availability
The structural alignment of dsrm domains and all phylogen-
etic trees reconstructed in this study are available in supple-
mentary file full_trees.nexus.txt, Supplementary Material
online with identifiers mapped to NCBI accessions in supple-
mentary files DRB_full_idmap.txt and dsrm_full_idmap.txt,
Supplementary Material online. Ancestral-reconstructed se-
quences are provided in supplementary file ancestral_dsrms.
fasta.txt, Supplementary Material online. Software, statistical
models, usage tutorials, and protein–RNA affinity predictions
are available online at: https://github.com/Klab-Bioinfo-Tools/
GLM-Score (last accessed February 21, 2017). Supplementary
text, data tables, figures, and references are available in
Supplementary File SI_01.pdf, Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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