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Abstract At higher field strengths, spin echo (SE)
functional MRI (fMRI) is an attractive alternative to
gradient echo (GE) as the increased weighting towards
the microvasculature results in intrinsically better local-
ization of the BOLD signal. Images are free of signal
voids but the commonly used echo planar imaging (EPI)
sampling scheme causes geometric distortions, and T2*
effects often contribute considerably to the signal
changes measured upon brain activation. Multiply refo-
cused SE sequences such as fast spin echo (FSE) are
essentially artifact free but their application to fast fMRI
is usually hindered due to high energy deposition, and
long sampling times. In the work presented here, a com-
bination of parallel imaging and partial Fourier acqui-
sition is used to shorten FSE acquisition times to near
those of conventional SE-EPI, permitting sampling of
eight slices (matrix 64 × 64) per second. Signal acqui-
sition is preceded by a preparation experiment that
aims at increasing the relative contribution of extra-
vascular dynamic averaging to the BOLD signal. Com-
parisons are made with conventional SE-EPI using a
visual stimulation paradigm. While the observed signal
changes are approximately 30% lower, most likely due
to the absence of T2* contamination, activation size and
t-scores are comparable for both methods, suggesting
that HASTE fMRI is a viable alternative, particularly
if distortion free images are required. Our data also
indicate that the BOLD post-stimulus undershoot is
most probably attributable to persistent elevated
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oxygen metabolism rather than to delayed vascular
compliance.
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Introduction

Echo planar imaging (EPI) [1] is commonly used for
functional MRI (fMRI). It finds application in most
methods for blood oxygenation level dependent
(BOLD) fMRI [2] as well as other functional imaging
sequences such as arterial spin labeling (ASL) [3] or
vascular space occupancy (VASO) [4] fMRI. For BOLD
fMRI, gradient echo (GE) EPI is popular as whole-brain
images with high functional contrast to noise (CNR) can
typically be acquired at a sufficiently high temporal res-
olution to adequately sample the BOLD response. An
attractive alternative for fMRI at high field strengths is
provided by spin echo (SE) based T2 contrast, which
arises from changes in extravascular dynamic averaging
and intravascular changes in the effective T2 of blood,
both associated with the BOLD effect. Signal attenua-
tion due to dynamic averaging is diffusion-induced and,
in contrast to static dephasing effects in the field inho-
mogeneities around larger vessels, is not refocused in
the spin echo experiment as it is a random process.
At higher field strengths, this leads to an intrinsically
better spatial specificity, as the relative contribution of
the intravascular compartment is reduced, and the sig-
nal is weighted towards the microvasculature, that is
expected to be closer to the ‘true’ site of neuronal activ-
ity [5–10]. While at 1.5 T the intravascular contribution
to the SE fMRI signal dominates [11], the intravascular
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signal nearly vanishes at ultra-high field strength such
as 9.4 T [7]. At 3 T still approximately half of the func-
tional signal change is of intravascular origin [12,13],
but the increased specificity of SE over GE could be
demonstrated [14]. Quantitative measurement of the
spatial extent of the BOLD response [6] showed a 13%
narrower point spread function for SE-EPI, albeit at
the cost of a factor 3 reduction in functional CNR. An
additional advantage of SE imaging is its insensitivity to
through-plane susceptibility gradients which can result
in substantial signal voids in GE images. It was shown in
Ref. [12] that parts of the inferior prefrontal brain acti-
vation associated with cognitive tasks could be imaged
with SE-EPI, but not GE-EPI. However, SE-EPI suf-
fers from in-plane distortions, and some T2* weighting
will remain, caused by the long EPI readout of typi-
cally 40 ms [15,16]. The severity of T2* related artifacts
increases rapidly with field strength due to the shortened
relaxation time. As pointed out in Ref. [15] T2* effects
can further lead to a broadening of the PSF, causing
the effective spatial resolution to be less than the voxel
size in regions of short T2*, particularly at higher field
strengths (4 and 7 T) as used in their study.

BOLD fMRI with pure T2 contrast, and with no
EPI artifacts, can be performed by using a multiply-
refocused sequence, such as fast spin echo (FSE). This
was demonstrated in an early study at 1.5 T [17] with a
fully sampled multi-shot FSE sequence at relatively high
in-plane resolution (1.6 × 3.2 mm2). The resulting long
repetition time (TR) of >20 s for five slices, however,
only allowed use of very long block stimuli. At the field
strength of 1.5 T the FSE sequence was mainly sensi-
tive to intravascular BOLD effects, but it was suggested
in [17] that by adjusting the echo spacing the sensitiv-
ity could be tuned towards a specific range of vessel
sizes. At 3 T, the increased contribution of extravascular
dynamic averaging effects can be utilized. If for a given
TE the echo train for signal acquisition is preceded by a
preparation period with a long refocusing interval, the
relative contribution from the extravascular compart-
ment, and thus the more desirable portion of the BOLD
contrast can be increased. As in SE-EPI, the centre of
k-space should be acquired at a TE approximately equal
to T2. Sampling times can be made compatible with the
requirements for fast fMRI by the use of partial Fourier
and parallel imaging. By following this sampling strat-
egy, repetition times comparable to that of SE-EPI can
be realized (see Methods section). Acquisition rates of
eight slices per second can be achieved, permitting good
sampling of the BOLD response with near whole brain
coverage in about 3 s.

In this paper, the value of such an approach is investi-
gated, and comparisons are made with the more conven-

tional, singly refocused SE-EPI sequence (some authors
also refer to the spin echo in this context as the Hahn
spin echo). To facilitate a conservative comparison of
functional sensitivity, full k-space acquisition is used for
SE-EPI.

Methods

Data acquisition

Two practical problems must be overcome to make fast
multi-slice experiments viable as an alternative to
SE-EPI. First, image acquisition times should ideally
not exceed those of a conventional SE-EPI experiment.
Second, the energy deposition of the refocusing pulses
must not exceed specific absorption rate (SAR) lim-
its; yet a high enough signal to noise (SNR) must be
achieved at sufficient spatial resolution. Both constraints
may be addressed by using a combination of partial
Fourier (PF) imaging, and parallel imaging such as
SMASH [18], SENSE [19] or GRAPPA [20].

To reduce total acquisition time, we implemented the
HASTE sequence (half-Fourier acquisition single shot
turbo SE) with linear ascending phase-encoding sam-
pling scheme with acceleration factor 4 and 7/8 PF. The
first echo is refocused at 50 ms by a three-lobed 180◦
selective sinc pulse. All following pulses are 2 ms sin-
gle-lobed sinc pulses. Sampling starts on the partially
acquired side of k-space. Echo spacing was adjusted such
that the k-space centre is acquired at the ‘target’ TE of
80 ms (at 3 T), giving an inter-echo TE of 6.5 ms. Under
the conservative assumption of a tissue T2 of 80 ms the
line-broadening in this sequence caused by transverse
relaxation is less than one pixel. The sequence is shown
schematically in Fig. 1. Images were reconstructed offline
in Matlab (The MathWorks, Inc., USA) using SENSE
[19] reconstruction. Sensitivity maps were calculated
from separate moderately smoothed (FWHM 3 pix-
els) full resolution FLASH scans, using a third order
polynomial fit for extrapolation beyond the edge of
the object. The acquisition parameters were as follows:
matrix size 64 × 64, FoV = 224 mm, voxel size 3.5 × 3.5
× 5 mm3, TR = 2 s, pixel bandwidth 300 Hz, effective
echo train length of 14 k-space lines and Tacq = 130 ms
per slice. Five slices covering the visual cortex were
acquired. Fully sampled SE- and GE-EPI measurements
were made using a singly refocused double-echo
sequence, with the same geometric parameters as for
HASTE and at a bandwidth of 2,700 Hz/pixel. For the
EPI sequence, this resulted in a total acquisition time
Tacq = 120 ms per slice. Images were reconstructed
online using the product image reconstruction. All data
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were acquired on a 3 T Siemens Magnetom Trio system
(Siemens Medical Solutions, Erlangen, Germany) using
the product eight-channel head coil.

Stimulus material and subjects

Visual stimuli consisting of 30 s rest followed by 21 s
of 8 Hz inverting black and white checkerboards were
shown using Presentation software (Neurobehavioral
Systems, Inc., USA). Each experimental run lasted 6 min
(180 images). Scan order was alternated between ses-
sions. Six subjects with normal or corrected-to-normal
vision were scanned, after having given written consent
according to local regulations.

Data processing and analysis

Linear trend removal and high-pass filtering of all time
courses were carried out in Brainvoyager 2000 (Brain
Innovation, The Netherlands). T tests were performed at
P < 0.0001 (all p values uncorrected for small volumes).
Mean and maximum t-scores, as well as count of active
voxels were noted. Functional CNR was calculated for
each subject as the average signal change divided by
the mean error on the average stimulus response curve.
In addition, a spatial map of pixel-wise temporal SNR
(tSNR) was calculated in one dataset to assess the effect
of parallel imaging on temporal stability.

Results

Stable SENSE reconstruction of the T2 prepared
HASTE images could be achieved despite the high accel-
eration factor. Only in some cases could weak residual
fold-over be observed. Figure 2 shows GE-EPI, SE-EPI
and HASTE images for comparison. Figure 3a and b
show corresponding slices from SE-EPI and HASTE
experiments in one functional subject. The activation
overlay represents t-scores at P < 0.0001. Temporal SNR
of the two preprocessed time courses is shown in Fig. 3c
and d. In the occipital cortex, tSNR of HASTE is com-
parable to that of SE-EPI, but lower in other regions.
The spatial noise variation not only shows the expected
dependence on tissue type, but also clearly resembles
that of the g-map (Fig. 3e). The g-factor is the coil geom-
etry related noise increase caused by the use of parallel
imaging [19]. Figure 3f illustrates that the visual cortex
is not strongly affected by g-noise; typical values here
are between 2.0 and 2.6. Higher values of to up to 6
were observed in central brain regions.

The average (n = 6) BOLD response curves for
SE-EPI and HASTE measurements are shown in Fig. 4
(top). The time evolution of both curves is identical,
however, the maximum signal change in SE-EPI (1.88%)
is higher than in the HASTE measurement (1.33%),
at comparable baseline intensities. Both methods show
that about 9 s is required for the signal to return to
baseline, followed by a BOLD undershoot. Normaliz-
ing the activation time courses shows that both main
response and undershoot of HASTE are proportion-
ately reduced compared to SE-EPI, and the curves are
almost perfectly aligned (not shown).

At P < 0.0001, average activation volumes are com-
parable in SE-EPI (332 voxels) and HASTE (305 vox-
els). Averages of mean and maximum t-scores in the
HASTE measurements are 7.25 ± 0.37 and 16.42 ± 1.86,
respectively, and 7.35 ± 0.32 and 16.12 ± 1.72, respec-
tively for SE-EPI. Considering only voxels active in
both scans yields a similar picture, with 7.81 ± 0.75 and
16.30 ± 2.04 for HASTE, and 7.99 ± 0.59 and 16.01 ±
1.87 for SE-EPI. Differences in t-scores are not signifi-
cant (permutation test, P < 0.05) and much smaller
than the natural variation between subjects. Calculation
of functional CNR yields 16.55 (noise 0.12) for SE-EPI,
and 11.19 (noise 0.11) for HASTE; this means that the
differences in sensitivity can be explained by the differ-
ences in signal change amplitude alone.

Discussion

Considering the acquisition parameters used and the
g-factors observed in the occipital lobe, ‘within-image’
SNR of HASTE would be expected to be approximately
30% lower than that of SE-EPI. The observation of com-
parable effective temporal SNR of both methods (in the
visual areas) is attributable to the contribution of physi-
ological noise which markedly reduces the relative effect
of image noise, and thus the use of parallel imaging on
temporal stability [21]. In central brain areas, however,
much higher g-factors and the reduced tSNR suggest
that functional sensitivity would be compromised. The
g-noise can be reduced by a choosing lower accelera-
tion factor and/or different coil array, as the g-maps are
uniquely related to the combination of coil geometries
with acceleration factor a, and g-values rapidly grow
with the number of pixels overlapping in the foldover (cf.
Fig. 3). While a protocol with acceleration factor 3 might
therefore produce a ‘more benign’ g-map, it would not
have allowed meeting our demands on Tacq and target
TE of 80 ms, and required use of ambitious PF (<60%)
if the number of refocusing pulses were to be kept con-
stant. On future systems this is will not be an issue as the
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Fig. 1 Schematic of the HASTE sequence used for the activa-
tion studies. The initial 50 ms period sensitizes for BOLD contrast
by allowing dynamic averaging. Using a combination of four-fold

accelerated SENSE and 7/8 partial Fourier only 14 k-space lines
are sampled, reducing total slice acquisition time to 130 ms, close
to that of a typical SE-EPI experiment

Fig. 2 Five brain slices spanning from inferior to superior brain,
acquired with GE-EPI (top), SE-EPI (middle) and T2-prepared
HASTE (bottom). The signal voids due to through-plane dephas-
ing that are clearly present in the GE-EPI are absent in SE-EPI,
but in-plane distortions remain and are particularly severe in the
inferior brain. In both cases Nyquist ghosting can be observed.
These EPI artifacts are not present in the HASTE images, how-

ever the effect of coil sensitivity variations (e.g., in the left frontal
regions) appears more pronounced. Traces of weak residual fol-
dover that resembles the pattern of the g-map (see Fig. 3e) can
be seen in the third and fourth slices. In no instance, however, did
this result in a projection of artifactual visual activation into other
brain areas

rapidly growing number of coil elements [22] can yield
much higher SNR: The g-noise penalty for acceleration
factors much smaller than the number of coils would be
much lower than for the g-factors observed here. Fur-
thermore, k-space based reconstruction (e.g., GRAPPA
or SMASH) would yield spatially almost invariant noise
distributions, which might be regarded as favorable in
an fMRI setup.

Magnetization transfer effects due to off-resonance
power deposition posed no problem for the 5-slice exper-
iment in this study, but could potentially lead to signal
attenuation and SNR reduction for short TR and/or
longer refocusing pulse trains [23]. Substantial power

reductions with only moderate SNR loss could be
achieved by use of variable flip-angle schemes [24], and
help improve fast multi-slice experiments.

A clear advantage of HASTE is the absence of inho-
mogeneity artifacts, yielding images that are free of both
dropout and distortion. The latter allows precise map-
ping from functional to anatomical data, and can further
be expected to be beneficial for group studies. It was
shown in Ref. [25] that the application of post-hoc dis-
tortion correction to EPI data not only improves coregis-
tration with the anatomical images, but also that group
statistics on functional studies improved considerably.
HASTE acquisitions should yield the same benefits,
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Fig. 3 Typical SE-EPI (a) and HASTE (b) images with activation
overlays at P < 0.0001 (color scale represents t-scores). Subfig-
ures (c) and (d) show tSNR maps of the SE-EPI and HASTE data,
respectively. Spatial variation in the latter resembles that of the
g-map (e). The overlay of g-map on HASTE image (f) illustrates
that visual areas are not strongly affected by g-noise

without the difficulties associated with correction meth-
ods that rely on the use of separately acquired reference
data such as field maps.

In our implementation of the HASTE sequence, the
signal acquisition is preceded by a preparation exper-
iment for dynamic averaging that lasts 50 ms. Ideally,
the sequence would refocus the first echo at the opti-
mal TE of 80 ms to maximize the dynamic averaging
contribution, followed by centre-out acquisition of
k-space, but at the price of a much longer total acquisi-
tion time. The compromise was chosen to achieve com-
parable slice acquisition times for SE-EPI and HASTE
and permit a conservative comparison of the two meth-
ods. While we chose to use conventional SE-EPI with-
out k-space undersampling for an unbiased assessment
of relative functional sensitivities, SE-EPI readout times
could also have been reduced by using factor a parallel

Fig. 4 Results of SE-EPI and HASTE BOLD measurements.
Top Stimulus response curve considering all active pixels, aver-
aged over subjects (error bars SEM over subjects, they reflect var-
iation in signal change across subjects, but not sensitivity). Note
that the average response curves of individual subjects were not
normalized prior to averaging to allow comparison of the ampli-
tude of the signal change between HASTE and EPI. The shaded
region marks the 21 s stimulation period. Bottom Mean and maxi-
mum t-scores at P < 0.0001 (subject average, error bars SD). For
the calculation of overlapping pixels the distortion was assumed
to be negligible

undersampling. This would have resulted in a g ·√a fold
SNR penalty, and hence sensitivity reduction in favor
of HASTE, but the benefit of a-fold reduction in EPI
distortion/T2* blurring.

The presence of T2* decay during the long readout
train can be expected to contribute considerably to the
functional signal changes in SE-EPI [15,16]. This most
likely explains the majority of the observed difference
between SE-EPI and HASTE. Phantom studies at 1.5 T
have shown that up to 37% of the SE signal changes
can arise due to static dephasing [26]. In vivo data at
higher fields suggest an even larger contribution of T2*
effects, approximately 60% [27]. The amount of T2* con-
tribution depends on the spatial features of the acti-
vated areas, and would be largest for activation with
higher spatial frequency components. Quantification of
this effect is, hence, object dependent and beyond the
scope of this paper.

A difference between SE-EPI and HASTE based T2
contrast is also likely to arise due to differences in refo-
cusing interval: A standard SE-EPI protocol for fMRI
will have a single refocusing pulse for TE 80 ms, but our
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HASTE implementation has a spin echo preparation
experiment with TE 50 ms, followed by multiple refocus-
ing pulses, with the k-space centre at TE 80 ms. In par-
tially oxygenated blood the proton exchange between
erythrocytes and blood plasma, or diffusion in the local
fields gradients arising from the presence of deoxyhe-
moglobin, results in a shortening of the effective intra-
vascular T2 with increasing deoxyhemoglobin levels and
increasing refocusing interval in CPMG sequences [28,
29]. This effect in itself forms the basis of the recently
proposed VERVE fMRI contrast mechanism [30]. The
rapid refocusing in the HASTE acquisitions thus implies
elongation of the intravascular T2 compared to SE-EPI,
where only a single refocusing pulse is applied, and
hence a reduction in the functional sensitivity to intra-
vascular signal changes. Similarly, increasing the number
of refocusing pulses reduces the dynamic averaging
contribution. Consequently both functional contrast
mechanisms that contribute to spin-echo BOLD will be
somewhat reduced in effect by the addition of extra refo-
cusing pulses. It is difficult to assess the significance of
this sensitivity loss, but as the difference in sensitivity
between SE-EPI and HASTE in the present study is
consistent with the literature regarding the T2* sensitiv-
ity of SE-EPI [26,27], it may be expected to be small.

A potential source of functional contrast is inflow
effects. These could in principle explain some of the dis-
crepancy in signal change if they contribute differently
to the two methods. However, inflow should contribute
little given the SE-EPI acquisition parameters [10], and
be similar as the same TR of 2 s is used in both sequences.

An interesting question is raised by the fact that such a
pronounced undershoot is observed in the SE data, par-
ticularly the HASTE. While it is generally accepted that
the post-stimulus undershoot is in some way caused by
the complex temporal relationship between the param-
eters cerebral blood volume (CBV), blood flow (CBF)
and oxygen consumption (CMRO2), there are two main
types of explanation. First, the ‘balloon model’ fam-
ily [31,32], which assumes a strong coupling between
CMRO2 and CBF, but a temporally varying relationship
between of CBV and CBF. According to this model, fol-
lowing stimulation, delayed vascular compliance causes
CBV to return to baseline more slowly than CBF and
CMRO2, leading to a negative BOLD signal. The second
type of explanation postulates a decoupling of CBF and
CMRO2: the undershoot is then caused by post-stim-
ulus oxygen consumption that remains elevated even
after CBF has returned to baseline [33].

We observed no difference between the normalized
response curves of SE-EPI and HASTE, meaning that
any T2* effects present in the SE-EPI data equally affect
both main BOLD signal and undershoot. These curves

Fig. 5 Normalization of the curves shown in Fig. 4 results in both
response curves being perfectly aligned, showing that HASTE
sensitivity in the main and undershoot response scales by the same
factor compared to SE-EPI

are shown in Fig. 5. Comparison of the normalized acti-
vation time courses with the GE-EPI data (not shown)
which were simultaneously acquired with the SE-EPI
also showed no difference in the undershoot. This sug-
gests that the same combination of contrast mechanisms
must be contributing to both the main BOLD signal and
the post-stimulus undershoot. The Balloon model [31]
predicts that the undershoot is largely due to extravascu-
lar static dephasing around the larger (downstream) ves-
sels. An undershoot in the BOLD signal could, however,
also be the result of intravascular T2 changes as would
result from sustained post-stimulus oxygen metabolism.
Static dephasing effects are refocused by the SE experi-
ment, so if the standard balloon model hypothesis were
true, then the undershoot would have to be reduced
in magnitude relative to the main response. Observa-
tion of the same signal contribution to both parts of
the BOLD response thus rather excludes the interpreta-
tion of the undershoot as a downstream static dephasing
effect, leaving changes in deoxyhemoglobin concentra-
tion as the more likely explanation. Such post-stimulus
elevation in deoxyhemoglobin could be the result of
ongoing oxygen metabolism after the return of CBV
and CBF back to baseline, as suggested by Lu et al. [33].
That elevated CBV alone cannot be the cause for a post-
stimulus signal decrease has recently been reported by
Yacoub et al. [34].

In conclusion, the application of fast spin echo
sequences to fMRI was investigated. BOLD activation
was robustly detected by HASTE acquisitions preceded
by a preparation experiment for dynamic averaging.
While the functional CNR in the occipital lobe was
∼ 30% lower than for a conventional SE-EPI acquisi-
tion of approximately equal TR, the absence of image
artifacts makes HASTE a viable alternative where dis-
tortion free images are required.
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