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ABSTRACT
Atomic-level information is essential to explain the specific interactions governing protein–protein recognition in terms of structure and
dynamics. Of particular interest is a characterization of the time-dependent kinetic aspects of protein–protein association and dissociation.
A powerful framework to characterize the dynamics of complex molecular systems is provided by Markov State Models (MSMs). The central
idea is to construct a reduced stochastic model of the full system by defining a set of conformational featured microstates and determining
the matrix of transition probabilities between them. While a MSM framework can sometimes be very effective, different combinations of
input featurization and simulation methods can significantly affect the robustness and the quality of the information generated from MSMs
in the context of protein association. Here, a systematic examination of a variety of MSMs methodologies is undertaken to clarify these
issues. To circumvent the uncertainties caused by sampling issues, we use a simplified coarse-grained model of the barnase–barstar protein
complex. A sensitivity analysis is proposed to identify the microstates of an MSM that contribute most to the error in conjunction with the
transition-based reweighting analysis method for a more efficient and accurate MSM construction.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0039144., s

I. INTRODUCTION

One of the most important questions in biology is how liv-
ing cells communicate and respond to the flow of information at
the molecule level. To decipher the molecular basis of cellular com-
munication, one must explain the specific interactions governing
protein–protein recognition in terms of structure and dynamics.1–3

While the protein–protein equilibrium binding affinity and speci-
ficity are certainly important, a characterization of the kinetic aspects
of association and dissociation is perhaps of even greater significance
to understand the time-course of biological processes.4 In principle,
atomic-level information is essential to study protein complexes in
terms of structure and dynamics. However, the long timescales and
high dimensionality present outstanding computational challenges
in computer simulations of rare events.5

Markov state models (MSMs) provide a powerful framework
for characterizing the kinetics of complex molecular systems.6–11

MSMs are discrete state and discrete time stochastic master equa-
tion models. Building an MSM involves defining a set of discrete
microstates within a subspace of collective variables (features), and
then estimating the hopping transition probabilities between such
states at a fixed lag-time interval from the information generated by
detailed dynamical simulations.12 Assuming that the resulting MSM
thus constructed is indeed representative of the system of inter-
est, the framework can then be used as a generator to predict any
equilibrium or long-term kinetic properties at low computational
cost.

The overall accuracy and usefulness of MSM analysis is typi-
cally burdened by two opposing problems. The first problem arises
from the need to achieve Markovian dynamics. An MSM must
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satisfy ergodicity, but often important transitions are not sampled
due to computational limits and are missing in the MSM. In addi-
tion, the evolution of the system monitored at a given lag-time
interval exhibits non-Markovian correlated dynamics when the tra-
jectories are mapped onto a set of coarsely defined microstates.
Immediate remedies to reduce such non-Markovian effects are to
choose a longer lag-time or refine the definition of the microstates
by using a featurization space of higher dimensionality with more
collective variables. However, as the lag-time and the number of
microstates are increased, the finite amount of information from
the detailed simulations becomes rapidly insufficient to determine
the larger number of transition probabilities accurately. Thus, as we
try to address the first problem, achieving Markovian dynamics, the
statistical accuracy of the MSM breaks down, causing the second
problem.

Different strategies have been devised to mitigate these two
contradictory problems by trying to efficiently identify the small-
est number of most relevant features expected to display the least
amount of non-Markovian dynamics. One such method is the time-
lagged independent component analysis (TICA),13,14 which was pro-
posed to process high-dimensional data without the loss of kinet-
ically relevant information. Unfortunately, the optimal selection
of input features and the process of discretization to define the
microstates are often unclear, and there are various different ways
one can construct an MSM for the same system.6,7 Furthermore, the
accuracy of the MSM relies quite heavily on having a well-sampled
configurational space. Despite the recent advances in computational
modeling and achievements in MSMs applied to large biomolecu-
lar systems,15,16 the construction of robust and well converged MSM
from full atomistic simulations still remains a highly demanding
feat. By itself, the MSM framework does not directly help improve
the exploration of rare events and (high free energy) configura-
tions. Sampling issues must be tackled indirectly through sensitivity
analysis and adaptive strategies. Different methodological aspects
may be brought to bear on the problem to ensure an optimal out-
come, including featurization, enhanced sampling techniques,16,17

and sensitivity analysis18–21

Our principal goal is to test the robustness and reliability of
the methodology by exploring different strategies for the efficient
construction of MSMs. To maintain complete control over the con-
vergence of the present analysis and circumvent the statistical uncer-
tainties caused by sampling issues, a simplified coarse-grained (CG)
model of the barnase–barstar protein complex was used for all the
simulations. Several MSMs were built from different sets of fea-
tures as well as combinations of biased and unbiased simulations
to understand how these inputs may affect the resultant thermody-
namic and kinetic observables. We then re-examine the transition-
based reweighting analysis method (TRAM).17 Using an approach
similar to the eigenvalue-based sampling,22–24 we propose a sensi-
tivity analysis18–21 that can identify regions of undersampling and
efficiently add in biased simulations only where necessary.

II. METHODS
A. Coarse-grained system

The barnase–barstar system is taken from the crystal structure
1BRS Protein Data Base ID.25 Chain B is selected for barnase and

FIG. 1. The barnase–barstar protein complex with one coarse-grained (CG) parti-
cle per residue. In order to model the interactions in the simplified protein complex,
four Lennard-Jones potentials between key non-bonded particles, corresponding
to the important residues involved in binding, were chosen to simulate association
in the correct native bound state. The key pairwise residues are depicted as CG
beads.

chain D for barstar. The CG representation is constructed by map-
ping each amino acid residue as a single bead with its mass and
position corresponding to the Cα. We designed our CG potential as
a Gō-like model26,27 using attractive potentials to represent the pair-
wise contacts of the native complex. Four Lennard-Jones (LJ) 6-12
potentials with a well depth of 3.0 kcal/mol were introduced between
the non-bonded beads of barnase and barstar (Fig. 1) to accurately
simulate the association in the native bound state. The four Gō-like
contact pairs, listed in Table I, were selected due to their importance
for binding as reported in the literature.28–30

In addition, root-mean-square deviation (RMSD) restraints
were applied to each protein to maintain their folded conforma-
tion. The complex was enclosed in a finite spherical volume with a
radius of 73.46 Å using a flat-bottom potential, yielding an effective
concentration of 1 μM. The barnase was restrained at the origin in
position and orientation, while barstar was allowed to freely diffuse
in the cavity. Because the protein complex is invariant by translation
and rotation, this does not affect the equilibrium features of the sys-
tem. 25 independent, unbiased Langevin molecular dynamic (MD)
simulations were performed at 300 K with a damping constant of
1 ps−1 and time step of 1 fs for a total aggregate simulation time of
25 μs. Umbrella sampling (US) simulations were carried out using
harmonic biasing potentials chosen along the distance between the
center-of-mass (COM) of barnase and the COM of barstar, with
spring constants of 1 kcal/mol. 70 windows were assigned along the

TABLE I. Gō-like contact pairs chosen from key amino acid residue pairs on barnase
and barstar with minimum distances Rmin.

Barnase Barstar Rmin (Å)

Asp 37 Glu 46 4.96
Arg 59 Asp 35 5.65
Hist 102 Gly 31 4.82
Hist 102 Ala 36 5.83
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TABLE II. MSMs constructed from different featurization and simulation methods. Models were estimated at a lag time of 12 ns.

Model name Features Simulation Microstates

MSM-6D Four TICA components from long-lived pairwise contacts, MD 550
RMSD with respect to the native bound state, and COM distances

TRAM-6D Four TICA components from long-lived pairwise contacts, MD + US 100
RMSD with respect to the native bound state, and COM distances

TRAM-1D COM distances MD + US 100
TRAM-1D-inv Squared inverse COM distance MD + US 100

reaction coordinate from 4 Å to 73 Å at 1 Å intervals, yielding 200
ns of simulation time per window at a 5 fs time step. All simulations
were performed using the NAMD program31 with the CHARMM32

force field parameter file to choose non-bonded pairs for imple-
menting Gō contacts. The visualization program VMD33 was used
to render the barnase–barstar complex.

B. Markov state model construction
We construct four MSMs using different combinations of

biased and unbiased trajectories and different choices in featuriza-
tion. These selections account for the limitations MSMs often face
due to (1) undersampling and (2) non-optimal selection of features
due to the many possible reaction pathways that arise from the sim-
ulation of huge biomolecules. We evaluate the performances of the
MSMs by comparing them with the properties calculated from the
raw trajectories of the MD and US simulations. The MSMs and their
construction input parameters are summarized in Table II. Detailed
discussions of the models follow in Sec. III.

MSM-6D is a traditional MSM built from unbiased MD tra-
jectories using six features corresponding to the four slowest linear
combinations of pairwise contacts computed from TICA, the mini-
mum RMSD of the complex with respect to the native bound state,
and the COM distances between the barnase protein and the barstar
protein. We will treat MSM-6D as the reference MSM since it is a
traditionally constructed MSM using only unbiased simulations and
has a relatively long aggregate simulation time of 25 μs with many
observed association and dissociation events. TRAM-6D was built
using the same approach as MSM-6D with the addition of biased US
trajectories. TRAM-1D was generated using only the COM protein
distances from the MD and US trajectories. Finally, TRAM-1D-inv
was built upon the squared inverse COM distances as features to
consider an indirect reaction coordinate. Clustering was performed
using k-means,34,35 and the number of microstates was determined
by the elbow method,36 which optimizes the minimization of the
intra-cluster variance. The models were constructed with lag times
of 12 ns. The MDTraj37 software was used for trajectory analysis. The
PyEMMA38 software and a few functionalities of the msmtools pack-
age were used to construct the MSMs and perform several analyses.
Figures were rendered using Matplotlib.39

For MSM-6D and TRAM-6D, which rely on a larger set of
features, a number of methods were employed to make the MSM
construction feasible despite the large volume of data. Given the 110
residue beads on barnase and 89 on barstar, we would have to work

with 110 × 89 = 9790 pairwise distances. In order to reduce the com-
putational effort in such a high dimension, we considered only the
pairwise distances that were deemed kinetically relevant. Employ-
ing a similar strategy used by Plattner et al. with their hidden MSM
built upon the full atomistic simulations of the barnase–barstar com-
plex,15 we obtained 817 long-lived pairwise contacts that were within
a distance of 12 Å and bound for at least 1 ns.

TICA was utilized to further reduce dimensionality. TICA is
a powerful dimensionality reduction algorithm that extracts the
most kinetically relevant linear combinations of the long-lived pair-
wise contact distances. Briefly, TICA first computes the time-lagged
covariance matrices C(τ) from a given set of mean-free input data
r(t) (e.g., the long-lived pairwise distances) at time t with the
following elements:

cij(τ) = ⟨ri(t)rj(t + τ)⟩ (1)

= 1
N − τ − 1

N−τ
∑
t=1

ri(t)rj(t + τ), (2)

where τ is the lag time and N is the size of the data. Then, solving for
the generalized eigenvalue problem gives

C(τ)U = C(0)UΛ, (3)

where U is an eigenvector matrix consisting of time-lagged indepen-
dent components (ICs) as the columns and Λ is a diagonal eigen-
value matrix. The dataset r(t) is then projected onto the TICA space
that maximizes the autocorrelation of the transformed coordinates,

z⊺(t) = r⊺(t)U. (4)

We reduced down to the desired number of dimensions by choos-
ing a subspace of only the first few columns of U. A more detailed
discussion of TICA can be found in Refs. 13 and 14.

For this study, we kept the four slowest ICs from TICA that
had noticeably slower timescales compared to the rest of the ICs,
as demonstrated in Fig. S1 of the supplementary material. Then,
the RMSD and COM distances were added as additional features
to include physical observables that are more intuitively under-
standable. Clustering was performed on this six-dimensional feature
space. This feature selection is similar to the hidden MSM of the all-
atom barnase–barstar reported by Plattner et al.15 Hence, we can
avoid any uncertainty underlying the number of dimensions dur-
ing the MSM construction by employing a similar feature selection
for the CG descriptions (MSM-6D and TRAM-6D) that is based
on the atomistic MSM. We note that selecting the six features and

J. Chem. Phys. 154, 084101 (2021); doi: 10.1063/5.0039144 154, 084101-3

© Author(s) 2021

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0039144


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

other MSM hyperparameters for MSM-6D and TRAM-6D manually
was straightforward for the present CG complex. However, for more
complicated systems, the Generalized Matrix Rayleigh Quotient
(GMRQ)40–43 and the variational approach for Markov processes
(VAMP) score44,45 would provide useful tools for systematically
determining the optimal features and MSM hyperparameters.

C. Determination of the optimal cutoff distance
For the purpose of comparing the kinetic rates and binding

constants of the MSMs with those calculated from the raw analy-
ses of the trajectories, we first have to choose a cutoff distance that
clearly delineates between the bound and unbound states in the sim-
ulations. For rcut values that are much smaller or larger than an
optimal rcut, there will be faster fluctuations and numerous rapid
recrossings on a short timescale. We want to determine the rcut for
which the influence of such rapid fluctuations is minimized. Here,
for rcut in the range of 25 Å–35 Å along the COM distance, an indi-
cator state function h(t) was assigned to be equal to 0 when unbound
and 1 when bound,

h(t) = {0 if unbound,
1 if bound.

(5)

Then, the time-correlation function, averaged from the aggregate
trajectories, was calculated for each rcut value,

C = ⟨h(0)h(τ)⟩, (6)

where τ is the lag time. Normalizing the time-correlation function,
we can rewrite Eq. (6) as

C = ∑
N−τ
i=1 (hi − h̃)(hi+τ − h̃)
∑N

i=1(hi − h̃)2
, (7)

where N is the total simulation time length and h̃ is the averaged
data. In order to determine the relaxation lag time, the correlations

FIG. 2. Autocorrelation of the bound state indicator (blue triangles) for rcut = 29 Å.
A biexponential decay curve was fitted (orange) to the autocorrelation using two
exponential functions A1e−t/τ1 and A2e−t/τ2 (red and green, respectively), where
A1 = 0.715, τ1 = 26.1 ns, A2 = 0.211, and τ2 = 159.4 ns.

FIG. 3. Relaxation times as a function of rcut. The lag times τ1 and τ2 peak at an
rcut of 29 Å, and we choose this rcut value as the bound state cutoff to minimize
any statistical fluctuations in our trajectory analyses.

were fitted (Fig. 2) using biexponential decaying functions of the
form

A(t) = A1e−t/τ1 + A2e−t/τ2 . (8)

Upon fitting, the rcut values were adjusted until the relaxation time in
the correlation function was the longest (i.e., when the biexponential
τ’s were the longest).

As demonstrated in Fig. 3, the optimal value of rcut yielding the
largest relaxation times is 29 Å, although we note that the results are
fairly similar for a COM distance varying between 25 Å and 35 Å
(supplementary material Table S1 lists the rcut values and the biex-
ponential lag times, τ1 and τ2). Accordingly, we define the bound
and unbound states as

state = {bound if r ≤ rcut,
unbound if r > rcut,

(9)

where a bound state is defined as having a COM distance between
barnase and barstar that is within 29 Å and an unbound state is
defined as having a COM distance greater than 29 Å. Since the com-
plex has been reported to go through a loosely bound state before
reaching the final native bound state,15,46 a τ1 of 26 ns can be thought
of as the timescale to achieve the loosely bound state, while a τ2
of 159 ns can be taken as the average lifetime of the fully bound
state. This rcut value was employed for analysis of the MD and US
trajectories in Table III of Sec. III.

D. Calculation of thermodynamic and kinetic
properties from MSMs

In order to understand protein–protein interactions by means
of MSMs, we must be able to calculate thermodynamic and kinetic
quantities from them. The equilibrium binding constant and the
ΔGb of binding can be obtained from the stationary distribution, π,
which gives the equilibrium probability distribution by the first left
eigenvector from the MSM transition matrix, T, as follows:

π = πT. (10)

J. Chem. Phys. 154, 084101 (2021); doi: 10.1063/5.0039144 154, 084101-4

© Author(s) 2021

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0039144


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

We can then calculate the binding constant from the ratio of the
probabilities of the bound to unbound states given by π,

KeqC =
Pbound

Punbound
, (11)

where C = V−1 is the concentration and V is the volume correspond-
ing to the “bulk” region,

V = 4
3
π(r3

cavity − r3
cut). (12)

An rcavity equal to 73.46 Å is the radius of the spherical cavity used
to enclose the protein complex during simulation and rcut equal to
29 Å represents the cutoff distance used to delineate between the
bound and unbound states. The volume of the bulk region yields a
concentration of 1 μM. The binding free energy can be defined as

ΔGb := − kBT ln( Pbound

Punbound
). (13)

The binding constant can also be calculated by integrating over the
radial potential of mean force (PMF),

Keq = ∫
rcut

0
dr 4πr2 e−βW(r), (14)

where β = 1/kBT, kBT = 0.596 kcal/mol. Here, it is assumed that the
PMF has been offset to have limr→∞W(r) = 0.

Perron-cluster cluster analysis (PCCA) is a method that clus-
ters eigenvectors in order to define metastable, or long-lived, states
in an MSM.47,48 We performed the PCCA++ method implemented
in PyEMMA to define two metastable states, the bound state and
the unbound state, in order to obtain the mean first passage times
(MFPT) between these two states. Kinetic rates of association and
dissociation can be calculated accordingly,

kon =
1

MFPTon C
, (15)

koff =
1

MFPToff
. (16)

III. RESULTS
In this section, we now discuss the results obtained from the

four MSMs described in Table II. Figure 4 compares the free energy
profiles of a one-dimensional MSM (25 μs MD simulation) and

FIG. 4. Free energy profiles of the raw trajectories, MSM, and TRAM. The free
energy profiles obtained from a raw MD trajectory of 25 μs aggregate simulation
time (blue), the PMF of a US simulation of 200 ns per window (orange), a one-
dimensional traditional MSM from COM distance feature and 25 μs aggregate sim-
ulation time (green), and TRAM-1D (red) show near identical agreement, proving
the robustness of the MSM methodology even when using only one feature.

TRAM-1D (25 μs MD simulation and 200 ns per window US sim-
ulation) with the PMFs from the raw MD and US trajectories. The
free energies, MFPTs, and resultant binding constants and rates are
within agreement, indicating that using just the one-dimensional
COM distance can adequately capture the binding process of this
protein complex. Table III summarizes the thermodynamic and
kinetic properties calculated from the MSMs. The kinetic rates and
binding constants were calculated from the MSMs and demonstrate
that the MSM methodology is robust and consistent. Notably, even
stripping the features down to only one dimension seems to produce
MSMs that can recapitulate the thermodynamics and kinetics.

Calculations were also performed for the raw unbiased (MD)
and biased (US) simulations for comparison with the MSMs. The
binding constants obtained by integrating the free energy profiles
from 0 to rcut [Eq. (14)] are listed under KPMF

eq , and the binding
constants obtained by calculating the probability ratios of bound
and unbound states [Eq. (11)] are listed under KPbound

eq . The asso-
ciation and dissociation rate constants are listed under kon and koff,
respectively. We will describe each of the MSMs in more detail in
Secs. III A and III B.

TABLE III. Equilibrium binding constants and kinetic rates obtained from the five different MSMs.

Model name KPMF
eq (×105Å3) KPbound

eq (×105Å3) kon (×1013Å3s−1) koff (×107 s−1)

MD 9.24 8.86 2.67 2.98
US 9.04 . . . . . . . . .
MSM-6D . . . 8.83 ± 0.17 2.31 ± 0.04 2.70 ± 0.03
TRAM-6D . . . 8.72 ± 0.17 2.37 ± 0.04 2.75 ± 0.03
MSM-1D . . . 8.72 ± 0.20 2.50 ± 0.03 2.86 ± 0.04
TRAM-1D . . . 8.67 ± 0.16 2.44 ± 0.03 2.89 ± 0.04
TRAM-1D-inv . . . 8.66 ± 0.20 2.43 ± 0.04 2.88 ± 0.04
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FIG. 5. Representative structures of the MSM-6D microstates. The centroids from k-means clustering are colored by the COM distance of the complex and plotted on top
of the free energy landscape along the two slowest modes of TICA. Representative structures are taken from each of the centroids to give a better idea of the microstate
assignment. Starting from the top right and going counterclockwise, we have clusters representing the bound state, an intermediate state where one LJ pair is separated, an
intermediate state where two LJ pairs are separated, and three dissociated states.

A. MSM-6D
We start off by examining MSM-6D, which is a conventional

MSM using a set of high-dimensional features from unbiased tra-
jectories. As illustrated in Fig. 5, MSM-6D can clearly distinguish
the bound and unbound configurations. The free energy landscape
along the two slowest TICA components, or independent compo-
nents (IC) 1 and 2, reveal a free energy well corresponding to the
bound configurations and another well for completely dissociated
structures. The 550 centroids in Fig. 5 are colored based on the COM
distance between barnase and barstar.

The first IC corresponding to the slowest degree of freedom
represents the binding pathway along the COM distance, while the
second, third, and fourth ICs can be interpreted as the orienta-
tional changes during association and dissociation. Although the
free energy landscape along ICs 2, 3, and 4 does not change as drasti-
cally as that for IC 1, these slow modes are still important for associa-
tion. Since the rate-limiting step involves a partially bonded confor-
mation where some of the pairwise contacts are formed while others
are not, the orientation of the proteins may change even though the
COM distance between them remains the same. In other words, by
including the four ICs from TICA, our six-dimensional MSM effec-
tively encodes both translational and orientational contributions in
the course of protein association. The full relationship among the
four ICs is depicted in Fig. S2 of the supplementary material.

The MSM-6D timescales plotted in Fig. 6 indicate two much
slower timescales at 17 ns and 19 ns and another relatively slower
timescale at 10 ns, suggesting that there should be at least three or

four important metastable states. Then, carrying out PCCA with
four states, as illustrated in Fig. 7, we generated one metastable state
where the complex is primarily in the bound state, a metastable state
consisting of intermediate states and loosely bound states, and two
metastable states with where the complex is completely dissociated.

FIG. 6. Timescales of MSM-6D with 550 microstates. There are two timescales
lasting longer than 15 ns and one lasting around 10 ns, indicating that there should
be three or more long-lived, or metastable, states.
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FIG. 7. Four metastable states of MSM-6D determined by PCCA. Metastable state 1 consists of primarily bound states. Metastable state 2 consists of intermediate or loosely
bound states. Metastable states 3 and 4 consist of completely dissociated complexes. PCCA assignments use fuzzy clustering, while a crisp assignment is employed to
visualize how the 550 microstates map to each of the metastable states. The gray shading is the same free energy landscape shown in Fig. 5.

The dissociated conformations in metastable states 3 and 4 are dis-
tinguished by the orientational position of barstar with respect to
barnase. It should be noted that the PCCA metastable assignment
uses fuzzy clustering. For example, metastable state 1 corresponding
to the bound state still contains a few structures that clearly corre-
spond to dissociated states. We can perform a crisper assignment by
manually selecting the set of states, which is fairly straightforward,
but we choose PCCA here because it is more generally applicable for
systems with reaction coordinates that are not so readily straight-
forward. For the purpose of obtaining the MFPTs of the bound
and unbound states in order to calculate the kinetic rates listed in
Table III, we generated a two-state PCCA.

B. TRAM
TRAM allows the estimation of MSMs by stitching together the

different thermodynamic and kinetic information from the biased
and unbiased simulations.48 As we ultimately want to take advantage
of both biased and unbiased data, in Secs. III B 1 and III B 2, we
examine MSMs built from biased trajectories in addition to unbiased
trajectories. In particular, we show that incorporating a sensitivity
analysis into the TRAM construction can efficiently improve results.

1. TRAM-1D and TRAM-1D-inv
In this section, we present two interesting cases that test the use-

fulness and robustness of TRAM. For featurization, we consider only
the one-dimensional COM distance between barnase and barstar in

order to understand how a minimum set of features would compare
with higher dimensional models.

Given an undersampled and relatively short 5 μs MD trajectory,
the MSM built from it using a one dimensional feature space, in this
case the COM, is quite inaccurate, as shown by the MSM free energy
profile in Fig. 8. However, adding minimal biased US data to an
MSM built from undersampled MD simulation can recapitulate the
same free energy profiles as an MSM from long simulations of 25 μs.
The addition of only 3 ns (per window) of US simulation drastically
improves upon the MSM via reweighting of the thermodynamics
with TRAM. Compared to the MSM-6D from very long simulations,
the MSM from short simulations yields a binding constant and rates
that are vastly different. The addition of biased trajectories by way
of TRAM recuperates the thermodynamics and kinetics seen from
MSM-6D. The TRAM-1D model in Table III corresponds to TRAM
model with 200 μs of biased simulations in Fig. 8. Figure 9 demon-
strates that PCCA assignment is able to clearly distinguish between
the bound and unbound states along this feature.

Even though the bound and unbound states can be straightfor-
wardly distinguished by the COM distances in the present model,
large biomolecules often exhibit ambiguous binding pathways that
involve various internal degrees of freedom, and determining a cor-
rect reaction coordinate may be highly challenging. Still, a desired
MSM model should be able to extract important binding properties
using indirect reaction coordinates. We choose the squared inverse
COM distances as features for TRAM-1D-inv to examine how well
it can still capture the binding process and whether this less direct
feature may introduce any instability near the short-range binding
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FIG. 8. Efficiency of TRAM. The MSM from short MD trajectories of only 5 μs
of simulation time (blue square) does not recover as agreeable of a free energy
profile as the TRAM models constructed from (a) 5 μs of MD simulation and 2.5 ns
per window US simulation (orange dot), (b) 3 ns per window US simulation (green
diamond), and (c) 200 ns per window US simulation (red triangle, TRAM-1D in
Table III). With the addition of only 3 ns of US simulation, TRAM is within near
agreement to the reference MSM estimated from a long MD simulation time of
25 μs (black).

distance, compared with the direct COM distances. Remarkably,
Fig. 10 shows that the free energy profile of TRAM-1D-inv is in near
identical agreement with the unbiased MSM, and the thermody-
namic and kinetic properties are also well-reproduced. Even though
it is not a direct reaction coordinate of the binding pathway, this
type of feature can resolve the bound and unbound states. Error esti-
mation was performed using bootstrapping by sampling blocks of
trajectories, but the error bars of the PMFs in Figs. 9 and 10 are three
orders of magnitudes smaller and, thus, too small to be visualized.

It is interesting to note that these one-dimensional models are
able to faithfully recapitulate the thermodynamics and kinetics just

FIG. 9. PCCA metastable states of MSM-1D and TRAM-1D. The bound (blue)
and unbound (red) states are able to be clearly distinguished when using COM
distances as the only feature.

FIG. 10. PCCA metastable sets generated from MSM and TRAM using 1/COM2 as
the feature. The bound (blue) and unbound (red) states are still able to be clearly
distinguished when using this indirect feature.

as well as the more computationally expensive models, MSM-6D
and TRAM-6D. This can be understood from the timescales of
TICA shown in Fig. S1, where the first timescale is predominately
larger than the other timescales by an order of magnitude. This sug-
gests that the COM distance is the most crucial collective variable
for understanding the current system, even though some orienta-
tion and internal motions are also present and should be impor-
tant in order to fully understand the overall processes. Therefore,
from these one-dimensional models, we conclude that the binding
pathway may be accurately described using only a few well-chosen
collective variables, which could prove to be extremely useful for
MSMs of large protein complexes in which the binding pathway is
not completely unambiguous. Future work may involve examining
such MSMs by employing features such as the dihedral angles of
residues that are not explicitly related to the COM distances or any
other inherently intuitive distance criteria for the binding process.

2. TRAM-6D: Optimizing efficiency with biased data
Since a major challenge in MD studies is to obtain enough sam-

pling, we often end up with undersampled unbiased data that have
high statistical uncertainty. Earlier work involving eigenvalue-based
sampling have attempted to improve the accuracy of MSMs by start-
ing simulations from the states that present the most uncertainties
in their eigenvalues or kinetics. While a few error analysis methods
have been proposed in literature for use with adaptive sampling,22

here we apply a simple sensitivity analysis in order to pinpoint the
discretized microstates of an MSM that contribute the most error.
Then, the problematic microstates are mapped back to their corre-
sponding subset of features (i.e., COM distance between the pro-
teins) in order to add biased simulations for TRAM only where the
additional windows will provide the most benefit. In this section, we
will demonstrate that this idea is rather straightforward and easy to
implement.

The relationship between the sensitivity and the complex con-
figuration is depicted in Fig. 11. The highly sensitive microstates
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FIG. 11. The π global sensitivity as a function of the average COM of each
MSM microstate. Higher π sensitivities correspond to the microstates with shorter
averaged COM distances that belong to the bound or intermediate states.

correspond to the bound states and the loosely bound intermediate
states, which is expected since these states are the key players in the
binding process. We note that while this may seem readily apparent
here for our CG system, it may not be as straightforward for larger
and more complex biomolecular systems that have multiple different
binding pathways. For such highly complicated cases, the sensitivity
analysis can be even more advantageous for pinpointing regions of
undersampling.

To employ this sensitivity analysis approach, we first construct
a traditional MSM. A local sensitivity matrix can be computed for
each element from the transition matrix,

Sij = (
∂f (T)
∂Tij

), (17)

where f (T) is the observable of interest and T is the MSM tran-
sition matrix.18,19 In the present case, the observable of interest is
the equilibrium distribution of the states πi(T) defined by the tran-
sition matrix of the MSM. A variance-based sensitivity analysis,
also known as the Sobol method,20,49 was used to obtain the global
sensitivities as follows:

Sglobal = ∑
ijkl

Sji cov[Tij,Tkl] Skl, (18)

where Sji and Skl are the local sensitivity matrix elements defined
from Eq. (17) and cov[Tij, Tkl] is the covariance of Tij and Tkl.

The local sensitivity matrices for each of the 100 stationary
distribution elements are plotted in Fig. S3 of the supplementary
material. To have a better picture of microstate sensitivity in rela-
tion to local sensitivity, Fig. S4 of the supplementary material plots
the element values of the sensitivity matrix for several observables
of a preliminary MSM built from short MD trajectories of 1 μs sim-
ulation time. We can immediately see a trend where the same few
microstates contribute toward the most error in all of the observ-
ables. Figure S5 of the supplementary material shows the global sen-
sitivity of the stationary distribution observable, illustrating how the
same several microstates have significantly higher sensitivity.

Figure 12 compares the binding free energy, ΔGb, from
a six-dimensional traditional MSM and a six-dimensional trad-
itional TRAM over a range of simulation time lengths. The
MSM was constructed using the 25 μs aggregate MD simulations.
The sensitivity analysis identified 14 US windows out of 70
total windows to be the most important for addition into TRAM,
allowing for a much more computationally efficient estimation.

FIG. 12. Comparison of MSM and TRAM in six dimensions. (a) Binding free energy ΔGb from MSM and TRAM as a function of the MD simulation time. Blocks of trajectories
used in the estimation are taken from the 25 μs aggregate MD simulations. For TRAM, the input also included the US trajectories of 200 ns per window with 14 windows
biased along a COM distance of 13 Å–26 Å. These 14 US windows were identified by the sensitivity analysis to be the most important windows out of 70 total windows for
addition into TRAM. (b) Convergence of ΔGb compared to the reference value from MSM-6D built using the full 25 μs of simulation time. After 3.75 μs, TRAM has converged
with an error of 18.6%, while MSM has not with a relatively larger error of 23.1%.
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Therefore, the following inputs were used to perform reweighting
with TRAM: (1) the 25 μs aggregate MD simulations and (2) the US
simulations of 200 ns per window with 14 windows biased along a
COM distance of 13 Å–26 Å. Bootstrapping was performed to esti-
mate the observable errors and to obtain the error bars in Fig. 12. The
ΔGb of the MSM fluctuates wildly when we have shorter trajectories
and only stabilizes when we have 4 μs of aggregate simulation time.
In contrast, TRAM starts to generate much more consistent results
after only 1 μs of simulation time. While the error bars are relatively
large for both the MSM and TRAM estimated with shorter trajectory
blocks, which is also observed, in general, for MSMs of full atomistic
simulations,15 it is encouraging to observe that the average ΔGb con-
verges considerably faster to the reference value for TRAM than for
the MSM, and TRAM also generally shows lower error. As shown
in Fig. 12(b), TRAM converges to the reference value after 3.75 μs
with an error of 18.6%, whereas the MSM still has not fully con-
verged with an error of 23.1%. It is interesting to note that when less
than 3 μs of MD simulation time was used to build the MSM/TRAM,
we observe very high error. This can be explained due to the pres-
ence of absorbing states, of which TRAM is also susceptible. When
such an absorbing state is reached, the state cannot be left within the
timescale of the short simulation. Figure S6 of the supplementary
material highlights this absorbing state case: for very short trajec-
tories, we may see little to no transition events to build a reasonable
MSM. The properties calculated for TRAM-6D in Table III are taken
from the TRAM model built upon the full 25 μs of MD simulations
and 200 ns per window of US simulations.

These results show that the presented protocol combining the
adaptive TRAM scheme with the sensitivity analysis can further
facilitate the construction of more accurate models while reducing
the computational cost by potentially orders of magnitudes. By help-
ing to achieve accurate statistical sampling while keeping the magni-
tude of the computational effort under control, this focused TRAM
approach should be especially advantageous in the construction of
MSMs for large biomolecular systems.

IV. CONCLUSION
To obtain accurate thermodynamics and kinetic properties of

large systems such as biomolecules and protein complexes, MSMs
are generally constructed and then judged on the basis of on dynam-
ical criteria. However, the overall construction process may become
inefficient and even ambiguous when the wide range of possibilities
for the numerous methodological aspects of MSMs (featurization,
discretization, and lag-time) are further compounded by sampling
limitations.

In this work, we seek to illustrate the conditions under which
MSMs may be able to perform consistently by exploring how mod-
els constructed from different features and simulations at different
thermodynamic states are able to capture the binding process and
produce observables in good agreement with each other. While sim-
ulation data from an all-atom model would yield more accurate
and realistic information, full atomistic simulations of large biosys-
tems are highly demanding. In this work, we constructed the MSMs
based on the CG representation of the barnase–barstar protein com-
plex, where the simplified nature of the model allows for efficiently
constructing and evaluating many different MSMs under different
conditions.

Taking advantage of the sensitivity analysis, we showed that one
can pinpoint precisely where to add these biased simulations with
the help of TRAM in order to improve sampling and reduce com-
putational effort. For large protein complexes requiring extensive
computations, the ability to incorporate a small set of well-chosen
biased simulations in MSMs is expected to be of tremendous value.
The next step will be to implement the MSM-based strategy pro-
posed here to process and analyze the results of an all-atom simu-
lation of the barstar–barnase complex with explicit solvent. Using
similar features such as the Cα’s to create a bottom-up CG model,
the strategy is expected to impart a more accurate MSM estimation
at lower computational costs. This work is underway.

We conclude by noting that the MSMs in this work are quite
robust and seem to be invariant to the complexity of input data,
even when the number of features is highly reduced. From our CG
protein complex, the MSMs are able to resolve the binding process
very well. Notably, stripping the features down to one dimension,
as discussed in Sec. III B 1, does not seem to affect the MSM, and
the observables remain in agreement to those from higher dimen-
sional MSMs. This could prove to be especially applicable for large
proteins, of which we could build CG designs and construct their
MSMs from a minimal set of features. Given the success of CG
modeling for biomolecules,50–52 this work serves as a stepping stone
for introducing MSM analysis to more rigorously designed reduced
models of interest in order to not only accurately but also efficiently
reproduce dynamics. Future work includes qualitatively recapitu-
lating the thermodynamic and kinetic information from the all-
atomistic barnase–barstar complex, with a special focus on improv-
ing the description of the dissociation process through TRAM. For
other more complicated protein–protein interactions, Hamiltonian
replica exchange molecular dynamics (H-REMD)53 may be useful to
circumvent sampling issues and aid in the efficiency of TRAM.54

One end goal of computational biochemistry is to provide accu-
rate free energies that are comparable with the experimental observ-
ables, with errors in the order of kBT. While results are certainly
limited by force field accuracy, sampling remains problematic due
to the enormous computational costs. The strategies presented here
can provide insight for the design of more effective all-atom compu-
tations to help overcome sampling challenges, progressively moving
toward quantitatively reliable computational predictions.

SUPPLEMENTARY MATERIAL

See the supplementary material (Table S1 and Figs. S1–S6) for
additional information about the analysis.
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