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Tissue-resident-memory CD8+ T cells (TRM) have been described as a non-circulating

memory T cell subset that persists at sites of previous infection. While TRM in all

non-lymphoid organs probably share a core signature differentiation pathway, certain

aspects of their maintenance and effector functions may vary. It is well-established

that TRM provide long-lived protective immunity through immediate effector function

and accelerated recruitment of circulating immune cells. Besides immune defense

against pathogens, other immunological roles of TRM are less well-studied. Likewise,

evidence of a putative detrimental role of TRM for inflammatory diseases is only beginning

to emerge. In this review, we discuss the protective and harmful role of TRM in

organ-specific immunity and immunopathology as well as prospective implications for

immunomodulatory therapy.
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INTRODUCTION

During an infection, our immune defense operates in a sensitive balance in which the eradication
of an invading pathogen should take place efficiently with the least possible damage to the body’s
own structures. For this, different subsets of immune cells have evolved, which form several lines of
defense and are equipped with different functional specializations. Various leukocyte subsets—from
broadly acting innate immune cells to antigen-specific and specialized lymphocytes—act together
to constitute a joint defense reaction against infectious intruders. CD8+ (so-called cytotoxic) T
lymphocytes are essential executors of the adaptive immune system and are particularly specialized
in eliminating aberrant cells that are either infected with an intracellular pathogen or of tumorous
nature. Regional and functional specialization can also be observed among CD8+ T cells, especially
among memory T cells that provide long-term protection against reinfection with a previously
encountered pathogen (1). While central memory (CM) T cells home to secondary lymphoid
organs (SLO) where they provide a stem cell-like pool of highly-proliferative antigen-specific
memory T cells, effector memory (EM) T cells lack homing receptors for SLOs and patrol the
body, charged with effector molecules (2, 3). In the last decade, a third memory T cell subset,
referred to as resident-memory (RM) T cells, has emerged as an important guardian providing
potent local immune surveillance at sites of previous infection, especially at barrier sites in the body
(4, 5). TRM procure superior protective immune memory in comparison to circulating memory
T cells (6, 7) and presence of TRM in tumors is associated with enhanced tumor control and
survival (8). The generation and maintenance of this non-circulating, “sessile” immune subset is
therefore the focus of intensive research efforts, for example with the aim of developing more
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potent vaccines (9). Conversely, more and more reports start to
emerge linking the presence of TRM with chronic inflammation
and autoimmune diseases (10). Consequently, we need to
deepen our understanding of TRM biology in order to consider
protective and possible harmful functions of TRM into our
strategies for new therapeutic approaches. There is currently
a tendency to generalize the observed TRM functions across
different organs, although some reports suggest that besides
sharing a common differentiation program, TRM generation
seems to be influenced by multiple factors and also adapt to
the environment of their tissue of residence. In this review, we
will focus on the presumed role of TRM in protective immunity,
chronic inflammation and organ-specific autoimmune diseases.
In particular, we will place special emphasis on CD8+ TRM,
as they are the best studied TRM population so far. However,
other resident lymphocyte populations have also been described.
The latter include resident CD4+ memory T cells (11) and
several resident invariant lymphocyte populations, such as liver
NKT cells, gut-associated intraepithelial lymphocytes [including
CD8αα T cells and (mucosal-associated invariant T)MAIT cells],
and skin- and gut-resident memory γδ T cells (12–15). Moreover,
resident innate lymphocyte (ILC) populations have been reported
(16). Although we do not discuss these populations further in this
review, some of our considerations might also apply to these cell
subsets.

TRM GENERATION AND MAINTENANCE

The principal hallmark of bona fide TRM is their long-term
persistence in non-lymphoid tissues (NLT) as a stable memory
T cell pool independent of input from circulating T cells. TRM

are often identified by a combination of surrogate markers (see
Table 1), the most commonly used being CD69 and CD103,
which are associated to their persisting and resident phenotype.
Phenotypically, TRM resemble a mixture of TCM cells and
effector T cells expressing markers associated with homeostatic
proliferation and survival, such as Ki-67 and Bcl-2, and effector
function, such as Granzyme B and co-inhibitory molecules
(6, 32). Table 1 summarizes frequently used TRM markers in
mice and humans. However, a mere phenotypical identification
without functional analysis might include circulating T cell
subsets that can transiently express e.g., CD69 and CD103 (33,
34). In order to unequivocally identify TRM, besides phenotypical
analysis, functional experiments assessing TRM tissue egress,
persistence, and their disequilibrium with peripheral TCM and
TEM cells are usually performed (6, 35). TRM demonstrate a
strong disequilibrium (>90%) in parabionts (36, 37) and remain
stable in numbers even when recruitment of circulating T cells
to NLT is inhibited (20, 27). In most NLT, with exception of
the liver (25), TRM are anatomically separated from the blood
and therefore not accessible to intravenously applied antibodies
(32, 38, 39).

In humans, TRM and TRM-like cells are mostly identified in
a descriptive manner based on the homology with mouse TRM

(17, 40) and by differential gene expression when compared to
circulating memory T cell subsets (19, 24, 41). While functional

analyses in humans are obviously more limited, studies in
patients treated with immune-ablative regimens (42, 43), or
transplantations of human tissue (44) indicate that human TRM

-like populations identified on this basis likely constitute a
similarly stable persisting T cell pool. TRM-like populations in
human NLT vastly outnumber T cells in circulation (17, 30, 45,
46), something that cannot be found in mice housed in a specific-
pathogen free (SPF) environment, but in pet shop mice (47).
Human TRM will probably remain challenging to study, due to
limited access to these cells and the lack of an in vitro culture
system to this point. However, since not all aspects of human TRM

biology can be reproduced in SPF mice, a combined approach of
mouse and human research will be instrumental to extend our
knowledge about the role of TRM in human health and disease.

TRM Differentiation and Maintenance
Program
TRM mostly arise from CD127(IL7Rα)+KLRG1- memory
precursor cells (22, 48, 49). Their differentiation into a long-
term stably persisting and non-circulating cell population is
based on two main requirements: the inhibition of tissue egress
(residency) as well as longevity and/or homeostatic proliferation
(maintenance). Once T cells have been recruited to the site
of infection, TRM precursor cells probably receive local signals
from their future tissue of residence that guide the timely
activation and inhibition of specific transcriptional programs.
The most common mechanism is the upregulation of CD69,
which antagonizes sphingosin-1-phosphate-receptor-1 (S1P1)-
mediated tissue egress, and thereby confers early tissue retention
until TRM differentiation is complete (50–52). Most TRM express
CD69 constitutively and in the absence of CD69, TRM generation
in organs is strongly impaired (22). However, CD69 might be
dispensable for long-term maintenance of fully-differentiated
TRM, as has been described in the lung and the thymus (53, 54).
Thus, temporary CD69 expression may be sufficient for TRM

generation and may explain the absence of CD69 expression
on a subset of long-term persisting TRM in the pancreas,
salivary gland and female reproductive tract (37). Loss of S1P1,
and potentially other tissue egress receptors, e.g., mediated by
downregulation of the transcription factor KLF2 (31), together
with expression of specific adhesion molecules, confers long-
term tissue residency. Further, a combination of gene expression
programs otherwise involved in the differentiation of both
peripheral TCM and effector T cells ensure maintenance of a
stable population of TRM by conserving proliferative capacity as
well as acquisition of constitutive expression of effectormolecules
(49, 55). The transcription factors known to be involved in
this process have been reviewed in detail recently (56, 57).
TRM and TCM are probably generated from the same naive
precursors (58), however, the gene expression profile of TRM

is clearly distinct from peripheral memory T cells in mice
(22, 59) and in humans (19, 24, 41). In mice, particularly the
expression of transcription factors Blimp1, Hobit, and Runx3 in
TRM precursors seems to be essential to acquire tissue residency
(49, 59). For the maintenance of stable TRM population, a
combination of signals stimulating longevity and homeostatic
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TABLE 1 | Frequently used TRM markers in mice and humans.

Marker Expression Proposed function Mouse Human

CD69 Almost all Antagonisation of S1P1-mediated tissue egress (4) (17–19)

CD103 Subset * Epithelial location via binding to E-Cadherin (4) (18)

CD44 All Binding to hyaluronic acid (20)

Bcl-2 Subset Longevity (21, 22) (23)

CD49a Subset Binding to Collagen and Laminin, specialization of

effector function

(4, 22) (19, 24)

CD101 Subset Inhibition of T cell activation and proliferation (25) (19)

GrB All Cytotoxicity (21, 26) (24)

CD127 Subset Homeostatic proliferation (27–29) (30)

S1P1low All Low sensitivity to tissue egress signals (31) (19)

S1P5low All Low sensitivity to tissue egress signals (22, 26)

CD62L low All Low sensitivity to tissue egress signals (4, 21) (19)

Ccr7low All Low sensitivity to tissue egress signals (26) (18)

CX3CR1low Subset Low sensitivity to tissue egress signals (26) (19)

KLRG1low All High memory potential (22, 29)

*Mucosal sites and skin. GrB, Granzyme B.

proliferation seems to be necessary. Most TRM express CD127
(IL7Rα), while expression of CD122 (IL2rβ), which can bind
IL-2 as well as IL-15 when paired to CD132 (common γ

chain, γc), seems to be more variable (22, 60). Previous
studies have shown that IL-7 and IL-15-dependent longevity
and homeostatic proliferation are maintaining TCM by Stat5
signaling (61–63). Likewise, both cytokines have been implied
to contribute to TRM survival and maintenance (22, 64) and
phosphorylation of Stat5 has been observed in a subset of brain
TRM (32). However, the sources providing homeostatic signals
assuring TRM long-term survival are so far still not completely
known.

Tissue-specific Influences on TRM

Differentiation and Maintenance
The gene expression program of TRM generated in different
tissues is largely overlapping (19, 22, 59, 65), but some variations
of this program as well as particular requirements for TRM

differentiation seem to exist in different experimental settings,
organs and even show inter-individual variability. A particular
TRM phenotype and its functional characteristics are thus likely
to be due to pathogen- and tissue-specific cues as well as the
genetic background of the host (see Figure 1A). Moreover, most
TRM markers are not homogeneously expressed in the whole
resident population (18, 68), suggesting further specialization of
a particular TRM population into functional subsets—even if they
have been generated by one definite infection and harbor the
same antigen-specificity. Differential gene expression programs
and surface receptor expression on putative TRM subsets are
likely to confer different tissue locations and functionality, as
we will further discuss below. More detailed analysis, probably
using single cell-based approaches will soon identify possible
TRM subsets on a phenotype and functional basis.

One of the major incongruities of TRM differentiation in
different organs is the dependency on local antigen expression.

While TRM in the gut, skin and some mucosae can be generated
and maintained independently of local antigen presentation (69–
71), expression of local antigen seems to be required for the
generation of TRM in the brain (29, 32). In theory, local antigen
expression serves various purposes: In a very basic manner, local
antigen expression will enhance recruitment and local expansion
of TRM precursor cells and thereby increase the resulting TRM

population (72). For some organs, local antigen expression might
be strictly required for tissue entry of antigen-specific T cells,
as suggested for the brain (73), and thereby be essential for
TRM generation. In general, however, inflammatory cues, such
as certain cytokines and chemokines, seem to be sufficient to
promote TRM differentiation, such as evidenced by so-called
“prime-and-pull” and “prime and trap” vaccination approaches,
which efficiently generate TRM in skin, mucosae and the liver (25,
60, 70). Local antigen expression, and thus the local reactivation
of TRM precursor cells by antigen-presenting cells (APC), might
also serve the expression of cytokines and chemokines required to
guide TRM differentiation and localization (55, 74), which could
explain why in some experimental settings antigen is required
(75), but not in others (22).

TRM heterogeneity is particularly evident with regard to
their expression of adhesion molecules. TRM in different organs
(and even further, different subsets of TRM) show sometimes
combined, sometimes exclusive expression of adhesionmolecules
such as CD103 (IntegrinαE), CD49a (Integrinα1β1), LFA-1
(IntegrinαLβ2), and E-Cadherin (22, 24, 28, 37, 46, 76, 77).
Depending on their interaction partner, adhesion molecule
expression on a specific TRM subset probably serves its specific
retention and positioning in their tissue of residence (68). CD103
mediates epithelial localization and TRM retention in the skin
and gut by interacting with E-Cadherin (4, 22, 69, 78), while
CD49a expression anchors TRM to the collagen matrix (79).
Besides TRM localization, expression of adhesion molecules has
also been linked to TRM functionality. CD103 expression has been
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FIGURE 1 | Multiple factors influence TRM functionality. (A) Activated T cells recruited to NLT will encounter an inflammatory environment shaped by the nature and

extent of infection. The encountered signals will consist of different cytokines (e.g., Il-2, IL-12, IL-15, type I and type II interferons) potentially in concert with varying

levels of cognate antigen presented on professional APC and infected cells as well as tissue-derived trophic factors, metabolites or the microbiome. Probably

additionally influenced by the genetic background of the infected individual, the strength of the resulting signal to activated T cells will direct their expansion and

differentiation into TRM. In analogy to the signal strength model of CD8+ T cell differentiation (66), higher signal strength will result in higher TRM numbers and be

associated with more terminal differentiation, which manifests with progressive loss of proliferative capacity, acquisition of expression of effector molecules and

increasing levels of inhibitory receptors. Encounter of very strong signals, such as during chronic infection, might lead to dysfunctional and exhausted TRM and even to

their elimination. The combined effect of all these factors will then determine the responsiveness of the resulting TRM population to a secondary antigenic challenge or

other inflammatory stimuli. (B) As a result of T cell activation and tissue-derived signal, circulating and resident memory T cells of different responsiveness will be

generated. Circulating memory cells, namely central memory T cells (TCM) and effector memory T cells (TEM) show a delayed recruitment to the infected site. In

addition, those cell subsets seem to specialize in either proliferative potential or immediate effector function. In contrast, a moderately strong TRM differentiation signal

will result in high numbers of highly-responsive TRM that combine features of both TCM and TEM cells. Even though TRM may express inhibitory receptors such as

(Continued)
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FIGURE 1 | PD-1 to some degree, they can overcome this regulation e.g., due to their high expression of inflammatory cytokines (67). Highly-responsive TRM can

efficiently protect against re-infection but due to their low threshold for reactivation they could be prone to drive immunopathology or be involved in aberrant immune

responses such as in allergies and autoimmune diseases. Alternatively, TRM can be subject to regulation by regulatory T cells and other mechanisms, which may

impair their longevity and/or induce a suppressed phenotype.

associated with an enhanced cytotoxic capacity of CD8+ T cells
toward E-Cadherin-expressing target cells (80). Likewise, CD49a
expression by human skin TRM seems to discriminate between
IFN-γ- and IL-17A-producing cells (24). We are however only
beginning to understand how the exposure of TRM precursors
to their specific inflammatory context affects TRM differentiation
and functionality.

Cytokine redundancy (the common use of receptors and
receptor subunits by different cytokines) and pleiotropy
(multiple different functions exerted by one cytokine) are
possible explanations for some of the observed variations in
the dependency of TRM generation on cytokines in different
experimental contexts. Interestingly, resting non-activated
T cells share a common receptor (CD122/γc) for IL-2 and
IL-15. It seems therefore likely that in conditions in which TRM

precursors are exposed to e.g., high levels of IL-2 during the acute
inflammatory response, IL-15 signaling becomes redundant for
TRM generation. As mentioned above, both IL-7 and IL-15 can
mediate pro-survival as well as homeostatic proliferation, and a
certain functional redundancy might occur between these two
cytokines, depending upon which receptors predominate on
TRM or their precursors and which cytokine is available in the
tissue niche occupied by TRM. Consistent with this idea, IL-15
dependency of TRM varies considerably between different organs
and might be differentially required for TRM differentiation,
survival and/ or homeostatic proliferation (81). This could
also explain why expression levels of anti-apoptotic signaling
molecules in TRM, such as Bcl-2, vary between organs, as do
the rates of their spontaneous proliferation (22, 29, 32). Thus,
it seems possible that for maintaining a stable TRM population,
TRM longevity and potential for self-renewal can partly substitute
for each other and the signals driving either process might
therefore be functionally redundant to some extent. Similarly,
transcriptional programming of TRM precursors might vary
between one tissue to another. Hobit and Blimp1 have been
described to play a partially redundant role during TRM

differentiation, but depending on the tissue, TRM generation is
more dependent on one of these transcription factors than the
other (59). This indicates that transcriptional regulation of TRM

differentiation could be incited in a different manner depending
on the tissue niche and inflammatory context, possibly giving
rise to TRM of different reactivity and functional potential
(Figure 1A). In support of this concept, a recent study describes
that the presence of pro-inflammatory cytokines like type I
interferons and IL-12 drive differentiation of CD103– TRM (74),
in contrast to the TGF-β-dependent differentiation of CD103+
TRM (22, 55, 78).

During their differentiation and long-term maintenance, TRM

have to adapt to the metabolic environment of their tissue of
residence. In most NLT, nutrients such as glucose and certain
amino are more limited than in the circulation, and invading

T cells need to adapt their metabolic processes to match their
energy demands in this environment (82). While glucose plays
a central role as energy source for all T subsets, activated T cells
show especially high glycolysis rates and also fuel glucose-derived
carbons into anabolic pathways such as fatty acid synthesis
(83). Further, T cells are dependent on amino acid uptake
and metabolism for full activation and differentiation (84–86).
However, memory T cells critically rely on fatty acid oxidation
(FAO) as an energy source (87–89), for which they synthesize
long-chain fatty acids as substrates from glycolytic intermediates
intracellularly (90). By contrast, TRM in the skin and adipose
tissue rely on uptake of fatty acids from the extracellular space
(91, 92), possibly due to the limited amount of glucose available
for de novo fatty acid synthesis. However, it remains to be
determined if TRM in more nutrient-rich organs such as the
gut, liver and brain might show distinct tissue-specific metabolic
adaptations.

Despite providing the energy for T cell expansion and survival,
the metabolic environment also dictates T cell differentiation
and effector function (93). Cytokine production, cytotoxicity,
migration, and tissue invasiveness as well as the differentiation
of memory T cells are instructed by metabolic changes (87,
94–97). One central regulator of this so-called metabolic
reprogramming is mammalian target of rapamycin (mTOR)
(98). mTOR is phosphorylated in response to TCR ligation,
cytokine signaling as well as intracellular energy state. In turn,
mTOR regulates CD8+ T cell differentiation via T-bet and
Eomesodermin (99) as well as via the regulation of fatty acid
metabolism (87). Inhibition of mTOR leads to a higher number
of memory precursors and circulating memory T cells (94),
by contrast, formation of long-lived TRM in mucosal tissues is
impaired (100). Interestingly, activation of mTOR (together with
phosphoinositol-3-kinase) induces downregulation of KLF2 and
S1P1 in activated T cells (101), indicating that mTOR activation
during TRM differentiation could contribute to establish tissue
retention. In line with this, upregulation of CD69 on γδ T cells
has been shown to enhance uptake of the amino acid tryptophan,
which in turn enhanced mTOR- and arylhydrocarbon receptor
(AhR)-dependent signaling pathways (102). AhR has been shown
to be required for generation of TRM in the skin (103), further
corroborating the idea of a mechanistic link between the
metabolic, possibly tissue-specific, environment encountered by
TRM precursors and the successful formation of a tissue-resident
and long-lived T cell population.

Altogether, it seems likely that the combination of antigen
load, inflammatory signals and nutrients in a tissue-specific niche
creates a specific environmental context for TRM differentiation
and maintenance (Figure 1). Given that some TRM niches,
especially mucosal tissues and epithelial layers, undergo constant
turnover and replacement of cells, it seems likely that the
inflammation-induced TRM niche undergoes certain changes in
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cellular composition and expression of TRM-maintaining factors.
To date, the exact sources of these determining factors still
remain largely unknown. It might even be possible that the TRM-
maintaining niche in some organs or under certain circumstances
has only a limited lifespan, which could explain why TRM are
not maintained long-term in some experimental settings (104).
The environmental context probably determines not only the
functional features of TRM residency and maintenance but also
TRM responsiveness toward new inflammatory stimuli during a
secondary infection (see Figure 1A). Future studies are needed
to reveal more context-dependent variations in TRM generation
and functionality, discovering new targets, potentially in a tissue-
specific manner, for experimental and therapeutic manipulation
of TRM.

TRM IN ACUTE-RESOLVED INFECTION

TRM serve as a front-line defense against viral re-infection in
various tissues. Due to their unique positioning, often directly at
barrier surfaces, they can rapidly detect invading pathogens and
provide immediate immune function. In comparison, immune
surveillance by circulating memory T cells is slower and often
allows virus spread for several days before sufficient recruitment,
local expansion, and differentiation of peripheral memory T
cells takes place to confine and successfully combat infection
(27, 32). This notion is supported by a breadth of experimental
models, that demonstrate accelerated pathogen control in the
presence of TRM at the pathogen entry site in comparison to
circulating memory T cells alone (9). Protective functions of
TRM have been described for barrier tissues such as the skin
(4, 27, 70, 105), the lung (106–109), the gut (48), and the
reproductive tract (110). TRM localized to body surfaces may
thus play an important role to prevent systemic infection by
recurring pathogens invading via the skin and mucosae and to
limit extensive tissue damage and scarring at the entry sites.
As a consequence, TRM of a multitude of epitope specificities
accumulate with age at these pathogen entry zones in free-living
mice and humans (17, 47, 111). Interestingly, a protective role
of TRM-mediated immune defense has been described also for
internal organs such as the liver and the brain (25, 32), which
display unique immune-regulatory functions (112, 113). As such,
immune cell activation is impeded in these organs, e.g., due
to low expression of MHC molecules, and often occurs with
considerable delay, which increases the risk of persistent and
widespread infection. The latter in turn can contribute to more
severe immunopathology once an immune response is finally
triggered. Similar to their positioning at epithelial surfaces in
barrier tissues, TRM in the brain and liver are also preferentially
located at potential pathogen entry sites, be it in meninges and
close to brain blood vessels (32) or liver sinusoids (25). This
enables TRM to quickly react and eliminate invading pathogens
and thereby protect these vulnerable organs from potentially
harmful inflammation.

Upon re-encounter of their cognate antigen, TRM employ
two main paths to assure protection against the recurring
pathogen. Firstly, they instantly provide highly potent cytotoxic

effector functions that can eliminate the initially infected
cells (barrier immunity) (27, 32). Indeed, a subset of TRM

constitutively expresses Granzyme B, and perforin-mediated
elimination of infected cells contributes to their protective effect
in the brain (32). Secondly, TRM trigger a variety of local and
recruited innate and adaptive immune mechanisms that can
even provide bystander resistance to unrelated pathogens (39,
105, 110). TRM-derived interferon-γ (IFN-γ) plays an important
role by stimulating the expression of adhesion molecules
and chemokines that facilitate endothelial transgression of
peripheral memory T and B cells (39). Further, the expression
of IFN-γ-responsive genes—many of them with direct anti-viral
functions—in uninfected bystander cells limits pathogen spread
(105). Moreover, Granzyme B can deactivate a viral protein in
neurons during latent HSV infection without inducing neuronal
apoptosis (114) and IFN-γ can even purge viruses from infected
cells in a non-cytolytic manner, a process that seems important
to maintain tissue homeostasis in non-regenerative tissues such
as the brain (115, 116). It is important to note that the protective
capacity of TRM related to their cytotoxic activity and cytokine
production requires the presentation of cognate antigen on
MHC-I molecules, even though TRM can show signs of bystander
activation in an inflammatory environment (32).

The protective capacity of TRM makes their generation a
new objective for the development of vaccines. Indeed, skin
vaccination and scarification during small pox vaccination that
has now been associated with the generation of TRM has
been shown to provide superior protective immunity than
hypodermal injection (117). Alternatively, the above-mentioned
“prime and pull” and “prime and trap” vaccination strategies,
in which systemic administration of a vaccine is combined
with local application of chemokines or antigen, improves
immunological barrier functions through TRM generation (25,
60, 70). Interestingly, upon recruitment and activation in
skin and mucosae, some T cells exit and give rise to SLO-
associated TRM (118). Being positioned at entry sites for
draining peripheral antigen, these SLO TRM provide a second
line of defense and extend TRM-mediated immune memory
to the draining lymphoid tissue (119). During antigenic re-
challenge, TRM are the predominant population undergoing
secondary expansion and together with recruited circulating
T cells give rise to new generations of TRM (120, 121). This
implies that protective immunity mediated by TRM can be
boosted by repeated local immunizations. Further, infections
with different pathogens can lead to a persisting TRM population
that contains multiple specificities at once, which provide
broader and more efficient protection (122). Future vaccination
approaches implementing these new insights could thus improve
T-cell-mediated protection at external and internal anatomical
barrier sites.

TRM AND CHRONIC INFLAMMATION

Chronic inflammation results from repeated or continuous
immune cell activation by recurrent or persisting antigens.
Such responses are desirable to control latent-reactivating or
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TABLE 2 | TRM in human chronic inflammatory diseases.

Diseases Phenotype References

Allergic contact dermatitis CD3+ (58)

DED CCR7– CD45RO+/– CD69+ CD103+/– (124)

Chronic rhinosinusitis CD69+ S1P1– (125)

FDE CD69+ GrB+; CD45RA+ CD62L–CCR7– CD103+ (126, 127)

Psoriaris CD103+; CD103+/– CD45RO+; CD103+ CD49a+ GrB+ (128–131)

Systemic sclerosis CD69+ CD103+/– (132)

Type I diabetes CD69+ CD103+; CD69+ CD103+/– (133, 134)

Multiple sclerosis CD69+ CD103+/– GrB+/– S1P1– (135)

HIV-1 CD69+ CD103+/– S1P1– (136)

HBV CD69+ CD103+/–; CD69+ CD103+/– GrB+/– (137, 138)

HCV CD69+ CD103+/– GrB+/– (138)

Chronic pancreatitis CD103+ (139)

Rasmussen’s encephalitis CD103+ (140)

HSV-2 CD69+ CD103+/– (141)

EBV CD103+ (142)

Breast cancer CD69+ CD103+ GrB+ (143)

Lung cancer CD62L– CD69+ CD103+; CCR7– CD62L– CD69+ CD103+

CD49a+ S1P1–

(144, 145)

Ovarian cancer CD103+/– (146)

Colorectal cancer CD69+ CD103+/– CD49a+/– (147)

DED, dry eye disease; FDE, fixed drug eruption; HIV-1, human immunodeficiency virus-1; HBV, chronic Hepatitis B virus; HCV, chronic hepatitis C virus; HSV-2, herpes simplex virus-2;

EBV, Epstein-Barr virus.

persistent infections and to eliminate neoplastic cells. However,
aberrant inflammation caused by environmental or self-antigens
carries the risk of developing chronic inflammatory diseases,
such as allergies and autoimmune diseases (AD). Indeed, TRM

have been detected in several human inflammatory diseases
(10, 123) (see Table 2). In principle, two main roles for
TRM in chronic inflammatory settings can be envisaged. TRM

can be drivers of chronic inflammation, thereby providing a
compartmentalization of the immune response. And in a not
necessarily exclusive scenario, TRM could trigger the bystander
activation of allergen-reactive or self-reactive T cells and thereby
serve as contributing triggers to chronic inflammatory diseases.

TRM Functionality in the Context of
Persisting Antigen
TRM in Chronic Infection
One of the earliest reports on resident T cell responses came
from latently-infected sensory ganglia, in whichHSV reactivation
was controlled by a non-circulating T cell population (148,
149). Together with the above-mentioned observations during
prime-and-boost vaccinations (122), this demonstrates that TRM

may retain their inflammatory activity over repeated rounds of
antigen stimulation. In the best scenario, this will prevent virus
reactivation and ensure continuous virus latency and limitation
of virus spread. Indeed, TRM can be detected in sanctuaries of
persistent viruses such as human and mouse Cytomegalovirus
(CMV) (150, 151), Hepatitis B virus (HBV) (67), Hepatitis C
virus (HCV) (138), and Human Immunodeficiency Virus (HIV)
(136, 152). Interestingly, high TRM numbers in HBV-infected

liver and HIV-infected gut as well as clonal expansion of
SLO TRM have been inversely correlated to virus loads and
associated with spontaneous resolution of chronic infection
(67, 136, 152), provoking interest in TRM-directed therapeutic
approaches (137). Infection with most persisting viruses leads to
chronic immune activation over time, including accumulation of
a large virus-specific T cell population, a process referred to as
“memory inflation” (153). Inflationary T cells can acquire a TRM-
like phenotype and become resident, e.g., in the salivary gland,
despite being probably an ontogenically-different T cell subset
(154). Chronic inflammatory tissue damage is the common
long-term consequence of persisting virus infection. Since
HBV-specific TRM overcome immunosuppressive mechanisms
in the liver and have high expression of pro-inflammatory
cytokines like IL-2, IFN-γ, and TNF-α (67), it remains
possible that TRM are also drivers of tissue damage in the
context of chronic virus infections. Therefore, a potential
harmful role of TRM in persisting infections merits further
investigations, especially at the chronic stage of HBV and
HCV infection.

So far, we understand very little about how and whether
functional TRM can be generated in conditions in which their
cognate antigen is continuously present. Chronic high levels
of antigen in some persistent infections, such as Lymphocytic
choriomeningitis virus (LCMV) clone 13 or latent CMV, seem
to hamper de novo generation of TRM (69, 151). It is therefore
likely that virus levels have to significantly contract after initial
infection to allow for efficient TRM generation, even in the
context of chronic infection. Interestingly, when TRM retention
is impaired by lack of TGF-β signaling during chronic LCMV
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clone 13 infection in the gut, a stable population of anti-viral
CD8+ T cells is maintained by continuous recruitment (78),
indicating that impaired TRM formation can be compensated
for. This suggests that depending on the cytokine milieu present
during chronic infection, the local T cell pool might consist of
variable proportions of TRM and recruited T cells.

TRM and Cancer
Tumors can be a source of neo-antigens stimulating anti-tumor
CD8+ T cell responses (155, 156) and T cell infiltration is a
prognostic marker for a beneficial outcome in some cancers
(157, 158). Recent studies demonstrate, that a subset of tumor-
infiltrating lymphocytes (TIL) in solid tumors resemble bona
fide TRM and are associated with its epithelial layers (159–161).
TRM-like TILs, in particular when they express CD103, have
been associated with better prognosis (143–145, 162), a fact that
could be explained by an enhanced cytotoxic efficiency upon
interaction of CD103 on TRM with its ligand E-Cadherin on
tumor cells (80). Accordingly, experimental strategies inducing
tumor-specific TRM show superior tumor control in comparison
to approaches that solely generate circulating tumor-specific
effector T cells (163–165).

Tumor cells rely heavily on the uptake and metabolism
of glucose and other nutrients, resulting in a metabolically-
deprived tumor microenvironment (TME) (166, 167).
Tumor-infiltrating T lymphocytes (TIL) are further subject
of active immunosuppression by myeloid-derived suppressor
cells (MDSC) and regulatory T cells (168). MDSC express ligands
for immune checkpoint inhibitors (e.g., PD-L1 and PD-L2) and
can also contribute to nutrient deprivation in the TME by uptake
and metabolism of arginine. As a consequence of the increase
of lactate in the TME, TIL lose cytotoxic effector functions
and show impaired motility (169). TRM adapt to the metabolic
environment of their tissue of residence by utilizing free fatty
acids (92), and are under certain circumstances resistant to
checkpoint blockade (67). This indicates that tumor-specific
TRM might be better adapted to the immunosuppressive tumor
microenvironment than their circulating counterparts (8).
This opens new avenues for cancer immunotherapies. TRM

already present in the tumor could be functionally enhanced
by checkpoint inhibitors, potentially together with increasing
their catabolic fatty acid metabolism. Indeed, administration of
a PPAR-α agonist or free fatty acids increases the functionality
of TIL in a melanoma model, especially in combination with
anti-PD-1 treatment (170). Moreover, one could envisage to
genetically engineer T cells for cell therapy with the aim to
promote TRM generation. Recently, such an approach has
been realized by modifying chimeric antigen receptor (CAR)
T cells to express orthogonal IL-2 receptors allowing for a
specific targeting of the transferred cell population (171). A
better understanding of TRM differentiation and maintenance
could inform a similar strategy aiming at increasing TRM

differentiation, maintenance of functionality during CAR T
cell therapy. In addition, reprogramming of tumor-infiltrating
dendritic cells with β-glucan curdlan in a humanized mouse
model of breast cancer enhances the differentiation of CD103+
TIL via DC-derived TGF-β production, resulting in rejection

of an established tumor (172), highlighting how adoptive cell
therapy can target TRM differentiation.

It remains unknown, how tumor-associated TRM are
generated. Analogous to persistent infections (69), tumor-
specific TRM are chronically exposed to their cognate antigen,
which could impair their successful differentiation. Otherwise,
one may speculate that tumor-associated TRM are already
generated after development of the first tumor cells when
there is still little cognate antigen present. This would imply
that these TRM could also play a role in the control of tumor
transformation, since they might co-reside with a primary tumor
for years. Therapeutic induction of tumor-specific TRM, together
with other resident populations, could enforce local anti-tumor
immune response to the cancer (173) and may help to eradicate
tumor cells from the body as well as reduce systemic side effects.
To take advantage of this therapeutically, application of e.g.,
viral vectors that efficiently generate local TRM with only limited
numbers of peripheral tumor-specific effector cells could be
envisaged. The constitutive expression of checkpoint inhibitors
by TRM (19) also harbors the hope that the anti-tumor activity
of endogenous or therapeutically-induced TRM could be further
enhanced by checkpoint inhibitor blockade (174). However, one
has to keep in mind, that enhancing TRM activity and expansion
might come with undesired side effects, and disinhibiting TRM

might in turn give rise to tumors. Due to their localization and
non-circulating behavior, TRM are refractory to most immune
ablative therapies, as evidenced by mycosis fungoides, a human
TRM-like skin lymphoma (42).

TRM-driven Chronic Inflammatory Diseases
T cells specific for self-antigens or environmental antigens
are considered active drivers of diverse allergic reactions such
as food and drug allergies, asthma, and diabetes, as well as
autoimmune diseases such as psoriasis, inflammatory bowel
disease, and multiple sclerosis (MS). In the past, these diseases
were considered to be driven by effector or effector memory
T cells that infiltrate the affected organ, however, several lines
of evidence suggest that some of these chronic inflammatory
diseases or some disease stages are instead predominantly driven
by resident immune cells (10, 123). Therapeutic inefficacy of
drugs inhibiting T cell recruitment indicates a putative TRM

involvement in disease progression since TRM reside behind
the blood-tissue barrier and are often refractory to systemic
blockade or ablation. This applies, for example, to psoriasis
(128) and progressive stages of MS (135). Interestingly, new
exacerbations in fixed drug eruption (FDE) and psoriasis
frequently occur at sites of previously-resolved skin lesions,
indicative of an involvement of localized immune memory (175).
Likewise, so-called smoldering lesions characterized by activated
macrophages/microglia together with T cells at their fringes
are almost exclusively observed in progressive MS (176, 177).
Evidence of TRM persistence has been found in resolved psoriatic
skin lesions (178) and in chronic MS lesions (135), in which
they constitute the dominant T cell subset (our own unpublished
observations). Indeed, psoriatic normal-appearing skin contains
all immune components necessary to elicit lesion formation
upon an environmental trigger (44) and compartmentalized
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inflammation has been correlated to cumulative brain damage
during progressive MS. Beyond that, indications for TRM

involvement were found in many other chronic inflammatory
diseases (see Table 2), suggesting possible common mechanisms
for their development and involvement in disease pathogenesis.

One hallmark of allergic exacerbations is the short time frame
(24–48 h) after exposure to the environmental trigger, in which
exacerbations occur as is observed in FDE, a T cell-driven
allergic local cutaneous reaction to certain administered drugs
(179). This short time interval between trigger and reaction
cannot be explained by recruitment of circulating T cells, which
typically takes longer (58). Evidently, analog time intervals are
difficult to determine for flares of autoimmune diseases, where
the trigger of an exacerbation is unknown. TRM generally have
a low threshold for re-activation, and presence of their cognate
antigen (e.g., by exogenous administration of peptide) is usually
enough to elicit expression of cytolytic effector molecules and
cytokines (39, 105, 110, 180). Likewise, induction of antigen
expression in non-hematopoietic cells, without concomitant
danger signals, is sufficient to elicit activation of resident T cells in
the skin (180), probably via intermediary presentation of antigen
on professional APC (180, 181). One may speculate that the
reactivation threshold of TRM depends upon the residence organ
and/or the TRM-generating stimulus, which could in turn result
in organ-dependent susceptibility to allergic and self-reactive
TRM responses (see Figure 1B).

Allergen- or self-reactive T cell responses are usually
considered to be elicited by preceding sensitizing events, which
are hypothesized to occur in twomainways. Sequence similarities
between a pathogen and an allergen- or self-antigen (also
called molecular mimicry) can elicit pathogen-specific T cells
that may cross-react to allergens or self-antigen upon future
exposure (182). In case these T cells differentiate into TRM, a
compartmentalized allergic or autoreactive T cell response is
the consequence. Alternatively, exposure of allergen- or self-
reactive T cells to a pro-inflammatory environment, such as
that generated during an infection, could elicit their bystander
activation and recruitment (183). As mentioned above, non-
specific inflammation can be sufficient to allow for TRM

differentiation in the absence of their cognate antigen (25, 60,
69, 70), making this a plausible scenario for the generation
of TRM specific for environmental or self-antigens. Moreover,
bystander activation could also explain how TRM could serve as
triggers for chronic inflammatory diseases. Antigenic challenge
of TRM not only induces a new generation from the pre-
existing TRM pool, but can also activate and recruit bystander
T cells of unrelated antigen-specificity, which give rise to
newly formed TRM (120, 121). Accumulation of TRM can
further lead to the displacement of other pre-existing resident
immune cells (47, 103). Although this might serve to replace
the more resident innate immune system by a more specific
and efficient resident adaptive immune system, it carries the
risk of replacing mostly “naive” immune cells by more trained,
and possibly more pro-inflammatory immune cell components.
Indeed, TRM are often observed in clusters together with mature
professional APCs and often CD4+ T helper cells as well as
other immune cells, indicative of organ-associated lymphoid

tissues (19, 29, 64, 184, 185). These specific niches are speculated
to contribute to chronic inflammation, since they provide an
optimal environment for T cell re-stimulation (186–188). Such
structures have been shown to contribute to TRM maintenance
by chemokine and cytokine production (64, 184), however,
whether TRM actively sustain these immune cell clusters is
not clear.

Altogether, this supports the idea that pathogen-specific TRM

generated during an infection could trigger and/or drive chronic
inflammatory diseases. A possible connection between TRM

and chronic inflammation could also provide a mechanistic
explanation for the observed epidemiological association of
infections and the development or exacerbation of allergic and
autoimmune diseases (189). In many chronic inflammatory
diseases, not only CD8+ TRM, but also other immune cells
such as T helper (Th) cell subsets, regulatory T cells, APCs
and innate lymphocytes can probably become resident and
thereby contribute to a compartmentalized immune response
that is resistant to many systemic immunomodulatory therapies.
Thus, more research efforts are needed to understand the
requirements for the differentiation and maintenance of resident
immune cells in order to be able to functionally impair
or even deplete TRM in chronic inflammatory diseases. By
identifying signaling pathways involved in TRM retention and
maintenance, we are currently undertaking the first steps toward
a specific targeting of TRM without global immunosuppression.
One possibility could be to interfere with TRM metabolism.
Pharmacological treatments with Rapamycin (100) or inhibitors
of FAO such as Trimetazidine and Etomoxir (92) have
already been shown to decrease TRM numbers in experimental
models.

Immunoregulatory mechanisms are in place to prevent
extensive TRM accumulation in some organs or their over-
activation. TRM generation is intimately linked to TGF-β (55,
78), a cytokine associated to resolution of infection. This
indicates that TRM differentiation might not occur in presence
of chronic antigen exposure, thereby preventing extensive TRM

generation in chronic inflammatory settings. Further, TRM can
express inhibitory receptors, such as PD-1, Lag3, and Tim3
(19, 29, 49, 107), in principle making them susceptible to
checkpoint inhibition. Although TRM have the possibility to
overcome PD-1-associated inhibition (67), exhausted TRM have
been detected in immune privileged sites such as the eye
(190). TRM are also susceptible to regulatory T cell-mediated
immunosuppression (191, 192). For the lung, liver and brain
and other immune privileged sites, even mechanisms of natural
suppression of TRM accumulation have been suggested (104)
that could assure tissue homeostasis by prevention of TRM

accumulation.

CONCLUSION

Vaccine strategies inducing TRM against recurring infections are
promising approaches to improve immunological protection.
Equally, tumor-specific TRM might help to eradicate aberrant
tumor cells from the body and enforce a localization of this
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response, thereby minimizing systemic side effects. However,
several challenges have to be overcome to realize these goals,
which are firstly of a technical nature. TRM generation cannot
be monitored in peripheral blood and therefore requires the
taking of biopsies from target organs, which might not always
be easily performed. Further, suitable vaccination vectors need
to be designed that allow the efficient local induction of specific
TRM and that do not result in unwanted side effects such as
bystander-induced self-reactive TRM. Until now, most research
studies have focused on the overwhelmingly positive role of
TRM acting against infected or tumorous cells, however we still
lack an appropriate understanding of the possible physiological
consequences of TRM persistence. Further research efforts are
warranted to better understand the role of TRM in chronic

inflammatory diseases in order to identify the risks in amplifying
TRM numbers or function. So far, we are lacking appropriate
mouse models allowing specific genetic targeting of TRM and
are not able to completely deplete already-established TRM. It
is therefore instrumental to perform detailed preclinical and
clinical studies to gain more insight into TRM biology and
its adaptation during different experimental regimens and in
different tissues to allow for a safe and efficient therapeutic tissue
targeting of TRM.
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