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Abstract: Insufficient dietary intake, micronutrient deficiencies, and infection may result in
malnutrition. In Zambia, an estimated 14% of women are vitamin A-deficient, ~50% are anemic, 10%
are underweight, and 23% are overweight/obese. A cross-sectional survey determined food and
nutrient intakes of randomly selected Zambian women (n = 530) of reproductive age (15–49 years).
Dietary intake data were collected using interactive multiple-pass 24-h recalls. Carbohydrate, fat,
protein, and selected micronutrient intakes were estimated. Prevalence of adequate intakes were
determined using the estimated average requirement (EAR) cut-point method and comparisons
between lactating and non-lactating women were made by two-sample t-tests. The response rate
was 98.7%. Overweight/obesity occurred in 20.7% (95% confidence interval (CI: 17.2, 24.5)). Almost
all micronutrient intakes were inadequate, with values between 22.3% and 99.9%. Mean iron intake
was >EAR, and 8.2% of women tested (12/146, 95% CI: 4.1, 13.0) were anemic (hemoglobin <115 g/L).
Calcium intake was higher in lactating than non-lactating women (p = 0.004), but all intakes need
improvement. Vitamin intakes in rural Zambian women are inadequate, suggesting a need for
health promotion messages to encourage intake of locally available micronutrient-dense foods as well
as supplementation, fortification, and biofortification initiatives. Nutritional support is important
because maternal nutrition directly impacts child health.
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1. Introduction

Insufficient dietary intakes coupled with infection and exacerbated by poor healthcare result in
malnutrition, which is a complex condition that encompasses severe undernutrition, micronutrient
deficiencies, overweight, and obesity [1]. Maternal stunting and low body mass index (BMI) increase
the risk for fetal growth restriction, obstructed labor, and maternal and neonatal death [1]. In 2016,
about 40% and 15% of adult women world-wide were estimated to be overweight and obese,
respectively [2]. Vitamin A, iodine, iron, and/or zinc deficiency affect about 2 billion people [3,4].
Although anemia prevalence has decreased, it is still high and considered a public health problem
according to the World Health Organization (WHO) [5]. At the World Health Assembly, United Nations
Member States committed to prevention of all forms of malnutrition in the Vision 2030 document [6].

In Zambia, about 14% of women of reproductive age are classified as vitamin A-deficient [7]
(serum retinol concentrations <0.7 µmol/L [8]), 53% are anemic (hemoglobin < 115 g/L) [9], 10% are
underweight (BMI < 18.5 kg/m2), and 23% are overweight or obese (BMI > 25 kg/m2) [10]. Overweight
and obesity are increasing and leading to a double burden of malnutrition in the country [10].
Furthermore, concern has shifted from deficiency risk to high intake of some micronutrients beyond
requirements due to overlapping multiple interventions, especially for vitamin A in some areas [11].

According to the Micronutrient and Food Consumption Survey conducted in two Zambian
provinces, 64% and 79% of households consumed adequate dietary quality and quantity,
respectively [12]. Furthermore, women of reproductive age in eastern Zambia were unlikely to meet
their metabolic demands for some amino acids (i.e., lysine and tryptophan), and mean iron and calcium
intakes in adolescents were reported to be inadequate [13]. Increased quantity of nutrient-dense foods
that are accessible and consumed by target groups is critical. Consumption of food items from five or
more food groups per day is desirable at the population level, but does not guarantee micronutrient
adequacy, especially when only small amounts of micronutrient-dense foods are consumed. In order
to improve the diets of women of reproductive age, a number of interventions are implemented.
These include promotion of a diverse diet for pregnant and lactating women, iron and folic acid
supplementation, and messages on the importance of consuming animal-source foods [14–16].

Monotonous diets full of starchy staples, low quantities of fruits and vegetables, and scant
animal-source foods result in malnutrition among low-income people [13,15,16]. Deficits in dietary
quantity, quality, diversity, and nutrient content encompass food insecurity [17]. Malnutrition is
exacerbated by disease and inadequate healthcare. Higher intakes of vegetables and fruits [18,19],
whole grains, dairy, legumes and nuts, and lower intakes of red meat, sugar-sweetened beverages,
and refined grains are characteristics of healthy eating patterns [20]. However, this recommendation is
valid only for households and individuals consuming excess meat. In many low- and middle-income
countries, increased animal-sourced food consumption would likely improve nutrition [21].

The main objective of this study was to determine the dietary patterns among Zambian women
with emphasis on nutrient intake, BMI, and the Minimum Dietary Diversity for Women of Reproductive
Age (MDD-W) indicator [22], as well as other predictive variables of nutritional status [23]. We further
explored differences in nutrient intakes between lactating and non-lactating women.

2. Materials and Methods

2.1. Ethics

The study was designed in consideration of ethical issues [24]. All women were literate and
written informed consent was obtained from all participants. Study approval and authority to conduct
the study was granted by the Biomedical Ethical Research Board of the University of Zambia and the
National Research Authority, respectively.

2.2. Study Design and Target Population

The study design was a cross-sectional, representative survey of dietary intake and nutritional
status of women of reproductive age from two villages in rural Rufunsa District located in the
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eastern part of Zambia. The study site was selected by targeting an area where an intervention
on “strengthening food and nutrition security through family poultry and crop integration,” was
conducted by the Ministry of Fisheries and Livestock in collaboration with the Ministry of Health [25].
The current study assessed nutrient intakes and nutritional status of the women in association with
nutrition-sensitive agriculture interventions.

The estimated district population was 45,000 with approximately 9900 women of child-bearing age.
The district had 18 health centers that provided counseling and testing for Human Immunodeficiency
Virus (HIV), body weight measurements during pregnancy, and counseling on general nutrition for
pregnancy and lactation. Iron and folate supplements, deworming tablets, malaria treatment, syphilis
testing, and vitamin A supplementation within two months of delivery were provided. The target
population comprised all women in the reproductive age group with or without children aged 0 to
59 months, who were permanent residents of Bundabunda Ward. Selection of participants commenced
with updating the census that was conducted by the former project. Five hundred and nine participants
from two villages were randomly selected using a stratified sampling proportional to size before the
final sample size of 530 was achieved. Listing before the study resulted in 749 and 611 lactating and
non-lactating women, respectively, in the two targeted villages. The target proportions from each
village were calculated to be 55% and 45%, respectively. Thus, 292 and 238 participants were enrolled
from each village, respectively. Lactating and non-lactating women willing to participate in the study
were selected. The final sample was realized based on consent to participate. Assent was sought
when mothers were <18 years old but willing to participate. A pregnancy test was used for rapid
confirmation, and those with fever or obvious illness were excluded.

Because vitamin A status was a driving consideration in this study, a total evaluative sample of
530 participants was determined by assuming that the actual deficiency estimate is unknown, putting
the margin of error at 10%, and using the formula:

n1 = z2 pq/d2. (1)

The proportion of vitamin A deficiency was set at 50%. For drawing blood, a sub-sample of 140
lactating women was determined using the following formula:

N = 4σ2(Zcrit + Zpwr)2/D2 (2)

where N is the total sample size; σ is the assumed standard deviation (SD) of each group (18); Zcrit value
is 1.960 at the 95% confidence interval (CI); Zpwr is the desired statistical power of 0.90 (value of 1.282),
and D is the minimum expected difference (10% for this study).

2.3. Data Collection and Management

Ten local research assistants from the same district were identified and trained in all data collection
methods. The protocol and tools for gathering background and food consumption data were piloted
by pre-testing in a different community from the study areas and modified. The data were collected
between September 2016 and February 2017. Selected participants provided information on age, parity,
marital status, health/morbidities, education, and occupation. Mothers were trained the day before
actual data collection to ensure that they took note of all foods and drinks consumed, including quantity
and ingredients. Research assistants collected dietary data using an interactive 24-h multiple-pass
recall [26]. This involved recalling and describing foods and drinks consumed in the past 24 h and how
they were prepared; estimating the portion size of each food or mixed dish; and reviewing the recall
data with the respondent to ensure accuracy. The use of picture charts consisting of all foods eaten in
the area helped mothers to recall and indicate what was consumed. Anthropometric measurements
of weight, height, and mid-upper arm circumference were taken in duplicate after completion of
the dietary intake data. Women were weighed using a Seca 876 digital floor scale (SECA, Hamburg,
Germany) to the nearest 0.1 kg. Heights were measured to the nearest 0.1 cm using a Seca 213 portable
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stadiometer. Measurements with large differences and those flagged by the software were re-measured.
Nutritional status was defined using BMI categories: malnourished (BMI <18.5 kg/m2); normal (BMI
between 18.5 and 24.9 kg/m2); and overweight/obese (BMI ≥25 kg/m2) [27]. Tools were checked
daily for quality maintenance.

2.4. Dietary Intake Analysis

The number of meals per day defined as such by the family, and consumed at specific times
(i.e., breakfast, lunch, or dinner) by the family, were determined and the adequacy of various nutrients
was estimated and compared with the appropriate dietary reference intake (DRI) for the population.
The DRI for energy for adult women increases by an additional 500 kcal during lactation [28].
The vitamin A estimated average requirement (EAR) is 500 µg retinol activity equivalents (RAE)/day
for women, which increases to 900 µg/day during lactation to account for losses in breastmilk.
The Institute of Medicine definitions for RAE were used for analysis, which estimate 1 µg preformed
retinol, 12 µg all-trans-β-carotene, and 24 µg α-carotene or β-cryptoxanthin as being equivalent to
1 µg RAE [29].

Data were entered into MicroSoft Excel version 2007 (Microsoft Corporation, Redmond,
Washington, United States) and exported to SPSS Version 20.0 (International Business Machines
Corporation, Armonk, New York, United States) for Windows. Descriptive data were tabulated and
results expressed in percentage. All the portion sizes of foods eaten and drinks consumed, estimated
either by playdough, size photographs, or volume, were converted to weight equivalents using
gram-weight conversion factors [30,31]. Local food items for which nutrient composition data were
not identified were imputed directly from foods of a similar description derived from the primary or
secondary nutrient composition sources as described for Uganda [31]. The main primary source of
information for this Ugandan food composition table is the United States Department of Agriculture
(USDA) National Nutrient Database for Standard Reference, Release 21 [32]. Other data sources
included the Zambian Food Composition Tables [33]; Composition of South African Foods [34];
the Association of Southeast Asian Nations (ASEAN) Food Composition Tables [35]; the Philippine
Food Composition Tables [36]; the Food Dietary Assessment System [37]; the Composition of Foods
commonly eaten in East Africa [38]; and USDA National Nutrient Database for Standard Reference,
Release 19 [39]. Finally, the following nutrients were estimated: vitamin A, thiamin, riboflavin, niacin,
vitamin B6, folate, vitamin B12, vitamin C, calcium, iron, and zinc. Single-day dietary recalls result
in inflated prevalence estimates of dietary inadequacy of micronutrients due to large variance [40].
In order to limit within-person variation, published ratios of between- to within-person variation of
individual micronutrient intakes for adult women [41] with the method of estimating usual intake
distributions proposed by Dodd [42] were used to adjust intake values. The use of variance estimations
across studies reduces within-person variation in single-day recalls [40]. We estimated the proportion of
inadequacy for micronutrients from the adjusted intakes using the EAR cut-point method, which uses
probability density to convey the intake distribution among the women [43]. Because iron requirements
are not normally distributed among women of reproductive age, prevalence of inadequacy was
estimated using a manual probability approach recommended by the Institute of Medicine [29].
For nutrients where needs are different for adolescent and adult women, probability was assessed for
each group with the respective EAR or probability table for iron, and then the data were combined
by weighted averages to obtain overall inadequacy prevalence. The difference in observed intake
between lactating and non-lactating women was determined using two-sample t-tests. The proportion
of lactating and non-lactating women consuming adequate micronutrients was compared using
two-tailed proportion z-score tests. p < 0.05 was considered significant.

The MDD-W, a dichotomous indicator of whether or not women 15–49 years of age have consumed
at least five out of ten defined food groups the previous day or night, was determined using ten
food groups consisting of (1) grains, white roots and tubers, and plantains; (2) pulses (beans, peas,
and lentils); (3) nuts and seeds; (4) dairy; (5) meat, poultry and fish; (6) eggs; (7) dark green leafy
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vegetables; (8) other vitamin A-rich fruits and vegetables; (9) other vegetables; and (10) other fruits [22].
The proportion of women 15–49 years of age who reach the five-food group minimum in a population
can be used as a proxy indicator for higher micronutrient adequacy, one important dimension of diet
quality. Consumption of less than five food groups was considered inadequate whereas five or more
was considered adequate.

3. Results

3.1. Subject Characteristics

The response rate was 98.7% (Figure 1). Reasons for non-participation were positive test for
pregnancy and change of location between enrollment and measurements.
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Figure 1. Subject flow through the study and reasons for withdrawal or loss to follow-up.

The highest level of education (Table 1) attained by the participants was primary. Crop production
was the main occupation for the participants. Most of the women were in the age range 20 to 29 years
(27.6 ± 8.7 years) and married. The overall mean BMI was 23 ± 3.2 kg/m2. Most of the women were
in the normal BMI range, of which 74.7% were in the age range of 20 to 29 years.

Table 1. Household characteristics and nutritional status of women of child-bearing age in
rural Zambia.

Frequency Mean ± SD or % 95% Confidence Interval

Household characteristics
(n = 523)

Level of education attained
Never attended school 79 15.1 12.4, 18.4

Primary 305 58.3 54.1, 62.1
Secondary 127 24.3 20.9, 27.9

Post-secondary 12 2.3 1.1, 3.4

Main occupational status
Crop production 295 56.4 51.8, 60.8

Other jobs 228 43.6 39.4, 47.8

Own a mosquito net
No 166 31.7 27.7, 35.5
Yes 357 68.3 64.5, 72.3

Characteristics of women
Age, years (n = 523; 27.6 ± 8.7 years)

15–19 109 20.8 17.6, 24.5
20–29 217 41.5 37.1, 45.9
30–39 136 26.0 22.2, 30.0
40–49 61 11.7 9.2, 14.4

Marital status (n = 523)
Married/living with a man 368 70.4 66.5, 74.4

Not in union 155 29.6 25.6, 33.5
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Table 1. Cont.

Frequency Mean ± SD or % 95% Confidence Interval

Body mass index, kg/m2 (n = 522) 1 23.0 ± 3.2 22.8, 23.3
Underweight (<18.4) 18 3.4 1.9, 5.0
Normal (18.5–24.9) 396 75.9 71.8, 79.9

Overweight/obese (≥ 25) 108 20.7 17.2, 24.5
Iron status (n = 146)

Hemoglobin, g/L

<115 12 8.2 4.1, 13.0
≥115 134 91.8 87.0, 95.9

Women dietary diversity score (mean ± SD; n = 523) 3.75 ± 1.11
Women dietary diversity score

≥ 5 122 23.3 19.7, 27.0
< 5 401 76.7 73.0, 80.3

1 Height was mis-recorded for one subject; therefore, body mass index (BMI) was calculated for one less woman.

3.2. Minimum Dietary Diversity for Women of Reproductive Age (MDD-W)

About one-quarter of the women achieved the MDD-W, and these women were more likely
to have higher micronutrient intakes than those who did not. The median MDD-W was 4.0 food
groups with a minimum of one food group to a maximum of eight food groups. The majority of
the participants had MDD-W < 5 (Table 1). The consumption of the grains, white roots and tubers,
and plantains group was high among the participants. This was followed by the “other” vegetables
food group mainly in the form of cabbage, tomato, green beans, cucumber, okra, and onion. The next
highest food group consumed was dark green vegetables in the form of cassava leaves, rape, sweet
potato leaves, and pumpkin leaves. This was followed by the meat, poultry, and fish group. The food
group least consumed in this community was dairy (Table 2). Common vitamin A-rich fruits consumed
were ripe mangoes and papaya.

Table 2. Dietary diversity scores (DDS) and percentage of women.

Parameter DDSs

Median 3.75
Mean 4

Minimum 1
Maximum 8

Percentiles
25 3
75 4

Item consumed % of women
Grains, white roots and tubers, and plantains 99.4

Pulses (beans, peas, and lentils) 23.5
Nuts and seeds 11.3

Dairy 3.1
Meat, poultry and fish 36.7

Eggs 10.7
Dark green leafy vegetables 70.0

Other vitamin A-rich fruits and vegetables 17.2
Other vegetables 84.9

Other fruits 11.9

(n = 523) consuming each of 10 food groups.

3.3. Dietary Intake

The median intake for energy among the participants was 1706 kilocalories (Table 3). The mean
contribution to the diet energy content was 12.4% from protein, 30.2% from fat, and 60.0% from
carbohydrate and did not differ between lactating and non-lactating women (p > 0.05 for all). Food
from grains, mainly in the form of stiff maize porridge locally called nshima, was the main source of
energy. The other sources of energy were munkoyo (traditional root and maize beverage), rice, sweet
porridge, fritters, white potatoes, samp (coarse porridge), cassava roots, and sweet potatoes.
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Table 3. Energy and micronutrient intakes of lactating and non-lactating Zambian women from 24-h dietary recall records.

Lactating Non-Lactating

p 3n = 180 n = 343
Age Range 15–47 Years Age Range 15–49 Years

Nutrient EAR 1 Mean SD Median Percent
Inadequate 2 EAR 1 Mean SD Median Percent

Inadequate 2

Energy (kcal) - 1845 880 1697 - - 1903 753 1919 - -
Vitamin A 4 (µg) 900 337 348 239 99.9 500 322 319 210 91.0 <0.001

Thiamin (mg) 1.2 0.73 0.45 0.57 97.1 0.9 0.71 0.44 0.58 77.6 <0.003
Riboflavin (mg) 1.3 0.65 0.43 0.54 98.7 0.9 0.69 0.58 0.55 73.8 <0.003
Niacin 5 (mg) 13 23.2 32.9 13.5 28.0 11 24.6 33.5 14.8 22.3 NS 6

Vitamin B6 (mg) 1.7 1.19 0.83 0.94 90.1 1.1 1.22 0.82 1.00 36.4 <0.001
Folate 7 (µg) 450 257 288 116 91.0 320 231 269 121 74.6 NS

Vitamin B12 (µg) 2.4 3.51 10.5 0.00 37.7 2.0 2.82 7.43 0.00 37.1 NS
Vitamin C (mg) 100 90.9 152 51.0 54.9 60 69.2 111 43.8 51.3 <0.001
Calcium (mg) 800 231 172 178 99.9 800 190 145 146 99.9 NS

Iron (mg) 8 6.5 12.4 7.48 9.52 36.9 8.1 12.0 7.42 7.39 37.1 NS
Zinc (mg) 10.4 7.88 4.55 6.38 86.1 6.8 7.82 3.94 6.93 33.6 <0.001

1 Estimated average requirement (EAR) shown for lactating and non-lactating women 19 to 50 years, EAR for 14 to 18 years accounted for in calculations when appropriate. 2 Established
by EAR cut-point method [43] with adjusted data. 3 Proportion z-score test between adjusted rates of inadequacy. 4 As retinol activity equivalents (RAEs); 1 RAE = 1 µg retinol, 12 µg
β-carotene, 24 µg α-carotene, or 24 µg β-cryptoxanthin. 5 As estimated niacin equivalents (NE); 60 mg of tryptophan = 1 mg of niacin, tryptophan estimated to be 1% of protein [44].
6 NS: non-significant. 7 As dietary folate equivalents (DFE); 1 DFE = 1 µg food folate = 0.6 µg of folic acid from fortified food. 8 Prevalence of inadequate intake determined by Institute of
Medicine (IOM) probability equations assuming 18% bioavailability [29].
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Overall, intakes were low for all minerals. According to t-tests, only calcium intake differed
between lactating and non-lactating women (p = 0.004), but the proportion of inadequacy did not
(p > 0.05) (Table 3). Almost all women were inadequate in calcium at the level of 99.9%, which is
illustrated in Figure 2A with reference to the EAR. In this study, the highest intake in reference to the
EAR was for iron despite 37.0 ± 0.1% having inadequate intake, and the prevalence of inadequate
iron intake did not differ between groups (p > 0.05). The mean iron intake did not differ (p > 0.05) and
was well above the EAR for both groups (Figure 2B). Zinc intake was identical between lactating and
non-lactating women (p > 0.05), indicating that women did not increase their intake during lactation
in reference to the EAR (Figure 2C). This is further supported by the difference in proportion of
inadequacy observed (p < 0.001).Nutrients 2019, 10, x FOR PEER REVIEW  2 of 16 
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(solid curved line) women assessed by 24-h dietary recall for minerals with estimated average
requirements (EARs). Vertical lines represent EARs for minerals for lactating women (dashed line)
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lactation in the case of calcium. Two-sample t-tests were used to compare mean intake differences for
each mineral: (A) calcium (p = 0.004), (B) iron (p = 0.54), and (C) zinc (p = 0.89).
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Vitamin intakes did not differ between lactating and non-lactating women (Figure 3) with the
exception of vitamin C, which tended to be higher in lactating women (p = 0.06) and mean intakes
were close to the EAR (Figure 3E). Thus women were not increasing their intakes during lactation as
recommended. With the exception of vitamin B12, folate, and niacin, the proportion of inadequacy
was significantly different for all vitamins between lactating and non-lactating women (p ≤ 0.003).
This was clear for vitamin A where almost all women were not consuming the extra 400 µg RAE to
support breastmilk content. The mean intakes were estimated to be above the EAR for niacin, vitamin
B6, and vitamin B12 for non-lactating women, despite high prevalence of inadequate intakes of 22.3%,
36.4%, and 37.1%, respectively. About 28.0% and 37.7% of lactating women had inadequate niacin and
vitamin B12 intakes. Neither group’s mean intake achieved the EAR for thiamin, riboflavin, and folate,
and all intakes were ≥73.0% inadequate (Table 3).Nutrients 2019, 10, x FOR PEER REVIEW  10 of 16 
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Figure 3. Overlaid vitamin intake distributions from lactating (n = 180, dashed curved line) and
non-lactating (n = 342; solid curved line) women assessed by 24-h dietary recall for vitamins of interest
in comparison with the estimated average requirements (EARs). Two-sample t-tests were used to
compare mean intake differences for each vitamin: (A) vitamin A (p = 0.62), (B) thiamin (p = 0.69),
(C) riboflavin (p = 0.42), (D) niacin (p = 0.65), (E) vitamin C (p = 0.06), (F) vitamin B6 (p = 0.65), (G) folate
(p = 0.29), and (H) vitamin B12 (p = 0.38). Vertical lines represent EARs for vitamins for lactating women
(dashed line) and non-lactating women (solid line).
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4. Discussion

This study found that these Zambian women had low dietary diversity and micronutrient
intakes, and had a high prevalence of nutrient inadequacy. For nearly all nutrients, lactating women
consumed the same amount as non-lactating women, and thus have an even greater prevalence of
inadequate intake.

The nutritional quality of a dietary pattern can be determined by assessing the nutrient content
of its constituent foods and beverages and comparing these characteristics to age- and sex-specific
nutrient requirements and standards for nutrient adequacy. Although diet diversity indicators do
not always report the same information as 24-h recalls [45], we used the MDD-W because studies
in different age groups have revealed that a rise in individual dietary diversity score is associated
with improved nutrient adequacy. Dietary diversity scores were validated for several age/sex groups
as proxy measures for macro- and/or micronutrient adequacy. Scores were positively correlated
with adequate micronutrient density of the diet for children [46], adolescents [47], and adults [48].
In our study, dietary diversity showed that after grains, white roots and tubers, and plantains, the
women consumed vegetables that are not necessarily good sources of vitamin A, but likely contributed
significantly to their vitamin C intake, such as cabbage and okra. Dairy was the least consumed food
group in these rural women. Milk, yogurt, and cheese are expensive and require refrigeration for
long-term storage. Most households in this area grow staple crops but do not maintain goats and cattle.

Assessing the women’s nutrient intake showed inadequacy for many nutrients, including iron
(~37% inadequacy). This finding is similar to previous reports, which reflected 35 to 55% inadequate
intakes [12]. However, anemia was only present in 8% of the subgroup of women tested, which is low
considering the global burden of anemia [5]. The low of prevalence of anemia may be a reflection of
the positive effects of the supplementation program among these women. On the other hand, calcium
intakes were very low. However, it should be noted that people in this area of Zambia consume many
fish whole and other animal bones are chewed after meals or used to make broth. For example, a small
serving of bone-in sardines (55 g) in tomato sauce has 200 mg of calcium [49], which was the mean
intake in these women. To our knowledge, the varieties of dried fish sold in the studied area have not
been analyzed for calcium. Furthermore, maize and vegetables are boiled in water in Zambia, which
adds to calcium intake not captured by dietary assessment programs. Similarly, inadequate calcium
intake in 39 to 52% of women of childbearing age was reported in two provinces in Zambia [12,13].
Therefore, Zambia should consider assessing the amount of calcium in local foods as consumed to
determine if the true degree of inadequacy is as high as determined in this cohort. Furthermore,
increasing women’s knowledge about the benefits of locally available sources of calcium, such as
ground eggshells, may improve calcium intakes [50].

Vitamin intakes were variable with regards to the EAR. Mean vitamin A intake did not differ
among lactating and non-lactating women. Almost all of the lactating women were determined
to have inadequate intake by the EAR cut-point method, which is identical to the 99% previously
reported in Zambian women [12]. The EAR is much higher during lactation than the non-lactating
period because of the amount secreted into breastmilk. The database used to analyze the nutrient
intake does not capture the vitamin A that is available from fortified sugar in Zambia, although
many women in this survey did not have access to or chose not to consume fortified sugar (76.5%,
n = 400). The measured amount of vitamin A in sugar varies greatly with values of 0.5 to 54.9 mg/kg
reported [30]. About 23.5% (n = 123) consumed vitamin A-fortified sugar and their mean consumption
was estimated at 35 g sugar. A study conducted by HarvestPlus revealed that vitamin A-fortified
sugar had a median concentration of 8.8 µg/g [30], which would add approximately 300 µg vitamin
A to their intakes. Furthermore, the values for vitamin A are expressed in RAE where β-carotene
equivalents are expected to be 12 µg to 1 µg retinol. Some countries are choosing to use FAO/WHO
bioefficacy factors where estimated β-carotene equivalents are 6 µg to 1 µg retinol [51]. Considering
that green leafy vegetables are widely consumed and bioconversion of provitamin A carotenoids is
related to vitamin A status [52], it is likely the mean intakes would shift to higher values in this cohort.
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In fact, 70% of the women reported eating green leafy vegetables during their 24-h recall. Generally,
small dried fish are consumed whole, which includes the liver and eyes. A fish of this type had a
measured vitamin A value of 460 ± 120 µg RAE/100 g, almost exclusively in the preformed retinyl
ester form in the liver [53]. Liver is a naturally high source of vitamin A. One of the limitations in this
study is that, the database used currently does not have an equivalent entry for small-dried fish, locally
called kapenta. There are many varieties of these fish available and they have not been systematically
analyzed for vitamin A (or calcium). The nutrient content of food items included in databases may
differ from those available in the geographical regions for which dietary intakes are assessed, due to
differences in varieties and in some cases, growing conditions.

Analysis of the 24-h dietary recalls indicated that women in this study had high prevalence of
inadequate intakes for all B-vitamins. In earlier evaluations among children from eastern Zambia, 24-h
food recall data [54,55] suggested risk for B-vitamin deficiencies due to high prevalence of inadequate
intakes [56]. These evaluations were conducted on 3–5 year old children in 2010 [54] and 5–7 year
old children in 2012 [55], allowing B-vitamin intake comparisons over time. Intake had increased
overtime, but percent adequate intake never surpassed 40% [56]. The low intakes of B-vitamins in
Zambian women and children are a concern. The Food Fortification Initiative indicates that there are
no food fortification programs for B-vitamins for commonly consumed foods in the country [57]. While
no disease of extreme deficiency of a B-vitamin was endemic in this population, it is disconcerting
that intake did not differ for any B-vitamin between lactating and non-lactating women. Breastfed
children of mothers with inadequate B-vitamin intakes are at risk for deficiencies of thiamin, riboflavin,
vitamin B6, vitamin B12, and choline due to the reduction of breastmilk concentrations from a poor
diet [58]. It is important to note that B-vitamin inadequacy that causes deficiency diseases, such as
beriberi, pellagra, and ariboflavinosis, are from prolonged extreme deficiency whereas functional or
asymptomatic deficiency can be present with less severe inadequate intake. The impacts of functional
deficiencies of B-vitamins are not fully understood, but have been linked to adverse health effects,
such as stunted growth [58,59] and cognitive impairment [59] in children. Nationally representative
micronutrient malnutrition surveys in Zambia indicate that rates of anemia and deficiencies of iron,
folate, and vitamins A and B12 are prevalent in children and women, especially pregnant women [12,60].
However, other micronutrients were either not reported or adequate.

Another B vitamin of key importance in women of child-bearing age to prevent neural tube
defects during early pregnancy is folate. About 74–91% of women in this study were not meeting
their folate needs. Other vitamins of interest were close to the EAR for non-lactating women, but the
additional amount needed to support lactation was not being consumed. Educational materials are
needed for women who are lactating so that they can appreciate what foods would help them support
nutrient gaps.

This study used single 24-h recalls predominantly during the rainy season, which are adequate
for assessing energy and macronutrient intakes. Thus, within person variation was not controlled for
across seasons, which may skew the inadequacy rates for some micronutrients, especially vitamin A.
Vitamin A intake is often seasonal, such as during mango season, or is missed in single 24-h recalls.
A high coefficient of variation for vitamin A (291 ± 36.5%) was demonstrated among four groups
of Zambian children administered 24-h recalls on Mondays for Sunday intakes [55]. Given the poor
intake of B-vitamins in children [56] and reproductive age women in this study, a survey should be
conducted to assess markers of B-vitamin deficiencies. Deficient vitamin B6 serum concentrations
were determined in the prior study in Zambian children [61]. Combining dietary assessment and
biochemical evaluations of all B vitamins at the population level in Zambia would yield useful
information for policy makers to develop educational messages or implement appropriate fortification
and biofortification strategies. This will also help in the development of harmonized and feasible
nutrition-sensitive agricultural programs.
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5. Conclusions

This study evaluated nutrient intake of women from rural Zambia and determined that they did
not have higher intakes of macro- and micronutrients during lactation. Adequate maternal nutrition is
important to support lactation for their nursing children. Methods to increase intake in women during
the reproductive years need to be evaluated and implemented, especially to support increased needs
during lactation.
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12. Alaofė, H.; Kohler, L.; Taren, D.; Mofu, M.; Chileshe, J.; Kalungwana, N. Zambia Food Consumption and
Micronutrient Status Survey Report; National Food and Nutrition Commission: Lusaka, Zambia, 2014.

13. Grech, A.M.; Alders, R.; Darton-Hill, I.; Bagnol, B.; Hikeezi, D.; O’Leary, F.M. Nutrition knowledge, attitudes
and dietary intake of women of reproductive age in women in Bundabunda Ward, Zambia. Clin. J. Nutr. Diet.
2018, 1, 1–12.

14. de Bruyn, J.; Bagnol, B.; Darnton-Hill, I.; Maulaga, W.; Thomson, P.; Alders, R. Characterising infant and
young child feeding practices and the consumption of poultry products in rural Tanzania: A mixed methods
approach. Matern. Child Nutr. 2017, 14, e12550. [CrossRef]

15. de Bruyn, J.; Wong, J.; Bagnol, B.; Pengelly, B.; Alders, R. Family poultry and food and nutrition security.
CAB Rev. 2015, 10, 1–9. [CrossRef]

16. Wong, J.T.; de Bruyn, J.; Bagnol, B.; Grieve, H.; Li, M.; Pym, R.; Alders, R.G. Small-scale poultry in
resource-poor settings: A review. Glob. Food Secur. 2017, 15, 43–52. [CrossRef]

17. Tanumihardjo, S.A.; Anderson, C.; Kaufer-Horwitz, M.; Bode, L.; Emenaker, N.J.; Haqq, A.M.; Satia, J.A.;
Silver, H.J.; Stadler, D.D. Poverty, obesity and malnutrition: An international perspective recognizing the
paradox. J. Am. Diet. Assoc. 2007, 107, 1966–1972. [CrossRef]

18. Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S.
[CrossRef]

19. Turati, F.; Rossi, M.; Pelucchi, C.; Levi, F.; La Vecchia, C. Fruit and vegetables and cancer risk: A review of
southern European studies. Br. J. Nutr. 2015, 113 (Suppl. 2), S102–S110. [CrossRef]

20. George, S.M.; Ballard-Barbash, R.; Manson, J.E.; Reedy, J.; Shikany, J.M.; Subar, A.F.; Tinker, L.F.; Vitolins, M.;
Neuhouser, M.L. Comparing indices of diet quality with chronic disease mortality risk in postmenopausal
women in the Women’s Health Initiative Observational Study: Evidence to inform national dietary guidance.
Am. J. Epidemiol. 2014, 180, 616–625. [CrossRef]

21. Grace, D.; Dominguez-Salas, P.; Alonso, S.; Lannerstad, M.; Muunda, E.; Ngwili, N.; Omar, A.; Khan, M.;
Otobo, E. The Influence of Livestock-Derived Foods on Nutrition During the First 1000 Days of Life; ILRI Research
Report 44; ILRI: Nairobi, Kenya, 2018.

22. FAO and FHI 360. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016.
23. Andy, F. Discovering Statistics using IBM SPSS Statistics, 4th ed.; Sage Publications: Washington, DC,

USA, 2013.
24. Brandt, A.M. Racism and research: The case of the Tuskegee Syphilis Study. Hastings Cent. Rep. 1978, 8,

21–29. [CrossRef] [PubMed]
25. Alders, R.; Aongola, A.; Bagnol, B.; de Bruyn, J.; Kimboka, S.; Kock, R.; Li, M.; Maulaga, W.; McConchie, R.;

Mor, S.; et al. Using a One Health approach to promote food and nutrition security in Tanzania and Zambia.
Planet@Risk (Special Issue on One Health) 2014, 2, 187–190.

26. Gibson, R.S.; Ferguson, E.L. An Interactive 24-Hour Recall for Assessing the Adequacy of Iron and Zinc Intakes in
Developing Countries; HarvestPlus: Washington, DC, USA, 2008.

27. World Health Organization (WHO). Training Course on Child Growth Assessment; WHO: Geneva,
Switzerland, 2008.

28. Eidelman, A.I.; Schanler, R.J. American Academy of Pediatrics Policy Statement: Breastfeeding and the use
of human milk. Pediatrics 2012, 129, e827–e841.

29. Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper,
Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: A Report of the Panel on Micronutrients;
National Academy Press: Washington, DC, USA, 2001.

30. Hotz, C.; Chileshe, J.; Siamusantu, W.; Palaniappan, U.; Kafwembe, E. Vitamin A intake and infection are
associated with plasma retinol among pre-school children in rural Zambia. Public Health Nutr. 2012, 15,
1688–1696. [CrossRef] [PubMed]

31. Hotz, C.; Lubowa, A.; Sison, C.; Moursi, M.; Loechl, C. A Food Composition Table for Central and Eastern
Uganda; HarvestPlus and International Food Policy Research Institute and International Center for Tropical
Agriculture: Cali, DC, USA, 2012.

32. U.S. Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory. USDA
National Nutrient Database for Standard Reference, Release 21; USDA: Beltsville, MD, USA, 2008.

33. National Food and Nutrition Commission. The 3rd Edition of Zambian Food Composition Tables; National Food
and Nutrition Commission: Lusaka, Zambia, 2007.

http://dx.doi.org/10.1111/mcn.12550
http://dx.doi.org/10.1079/PAVSNNR201510013
http://dx.doi.org/10.1016/j.gfs.2017.04.003
http://dx.doi.org/10.1016/j.jada.2007.08.007
http://dx.doi.org/10.3945/an.112.003517
http://dx.doi.org/10.1017/S0007114515000148
http://dx.doi.org/10.1093/aje/kwu173
http://dx.doi.org/10.2307/3561468
http://www.ncbi.nlm.nih.gov/pubmed/721302
http://dx.doi.org/10.1017/S1368980012000924
http://www.ncbi.nlm.nih.gov/pubmed/22443986


Nutrients 2019, 11, 288 14 of 15

34. Kruger, M.; Hertzmark, E.; Mlingi, N.; Assey, V.; Ndossi, G.; Fawzi, W. Tanzania Food Composition Tables,
1st ed.; MUHAS-TFNC, HSPH: Dar es Salaam, Tanzania, 2008.

35. Puwastien, P.; Burlingame, B.; Raroengwichit, M.; Sungpuag, P. ASEAN Food Composition Tables,
1st ed.; Institute of Nutrition, Mahidol University, and INFOODS Regional Database Centre: Bangkok,
Thailand, 2000.

36. Portugal, T.; Apilado, R.; Ardeña, J.; Avena, E.; Matibag, P.; Reyes, G.; Castillo, E.; Aguinaldo, A.; Abdon, I.;
Lontoc, A. The Philippine Food Composition Tables; Food and Nutrition Research Institute, Department of
Science and Technology: Manila, Philippines, 1997.

37. Bunch, S.; Murphy, S.P. User’s Guide to the Operation of the World: Food Dietary Assessment System, Version 2.0;
Office of Technology Licensing, University of California: Berkeley, CA, USA, 1997.

38. West, C.E.; Pepping, F.; Temalilwa, C.R. The Composition of Foods Commonly Eaten in East Africa; Wageningen
Agricultural University: Wageningen, The Netherlands, 1998.

39. U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard
Reference, Release 19; USDA: Beltsville, MD, USA, 2006.

40. Jahns, L.; Arab, L.; Carriquiry, A.; Popkin, B.M. The use of external within-person variance estimates to
adjust nutrient intake distributions over time and across populations. Public Health Nutr. 2005, 8, 69–76.
[CrossRef] [PubMed]

41. Nelson, M.; Black, A.E.; Morris, J.A.; Cole, T.J. Between- and within-subject variation in nutrient intake from
infancy to old age: Estimating the number of days required to rank dietary intakes with desired precision.
Am. J. Clin. Nutr. 1989, 50, 155–167. [CrossRef]

42. Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.;
Krebs-Smith, S.M. Statistical methods for estimating usual intake of nutrients and foods: A review of
the theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [CrossRef]

43. Institute of Medicine. Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press:
Washington, DC, USA, 2000.

44. World Health Organization. Pellagra and Its Prevention and Control in Major Emergencies; WHO: Geneva,
Switzerland, 2000.

45. Martin-Prevel, Y.; Becquey, E.; Arimond, M. Food group diversity indicators derived from qualitative
list-based questionnaire misreported some foods compared to same indicators derived from quantitative
24-hour recall in urban Burkina Faso. J. Nutr. 2010, 140, 2086S–2093S. [CrossRef]

46. Moursi, M.M.; Arimond, M.; Dewey, K.G.; Trèche, S.; Ruel, M.T.; Delpeuch, F. Dietary diversity is a good
predictor of the micronutrient density of the diet of 6- to 23-month-old children in Madagascar. J. Nutr. 2008,
138, 2448–2453. [CrossRef] [PubMed]

47. Mirmiran, P.; Azadbakht, L.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score in adolescents—A good
indicator of the nutritional adequacy of diets: Tehran lipid and glucose study. Asia Pac. J. Clin. Nutr. 2004,
13, 56–60.

48. Hop le, T., Jr.; Son, T.H.; Ogle, B. Improvement of nutrition knowledge and practices among reproductive-aged
women through participatory communication in two communes of Yenthe district in Bacgiang province,
Vietnam. Malays. J. Nutr. 2007, 13, 121–129.

49. U.S. Department of Agriculture Agricultural Research Service. USDA Food Composition Databases.
Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 10 October 2018).

50. Bartter, J.; Diffey, H.; Yeung, Y.H.; O’Leary, F.; Häsler, B.; Maulaga, W.; Alders, R. Use of chicken eggshell to
improve dietary calcium intake in rural sub-Saharan Africa. Matern. Child Nutr. 2018, 14, e12649. [CrossRef]

51. World Health Organization and Food and Agriculture Organization of the United Nations. Vitamin and
Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, Switzerland, 2004; pp. 17–44.

52. Tanumihardjo, S.A. Food-based approaches for ensuring adequate vitamin A nutrition. Compr. Rev. Food Sci.
Food Saf. 2008, 7, 373–381.

53. Tanumihardjo, S.A.; Gannon, B.M.; Kaliwile, C.; Chileshe, J. Hypercarotenodermia in Zambia: Which
children turned orange during mango season? Eur. J. Clin. Nutr. 2015, 69, 1346–1349. [CrossRef]

54. Nuss, E.T.; Arscott, S.A.; Bresnahan, K.; Pixley, K.V.; Rocheford, T.; Hotz, C.; Siamusantu, W.; Chileshe, J.;
Tanumihardjo, S.A. Comparative intake of white- versus orange-colored maize by Zambian children in the
context of promotion of biofortified maize. Food Nutr. Bull. 2012, 33, 63–71. [CrossRef] [PubMed]

http://dx.doi.org/10.1079/PHN2005671
http://www.ncbi.nlm.nih.gov/pubmed/15705247
http://dx.doi.org/10.1093/ajcn/50.1.155
http://dx.doi.org/10.1016/j.jada.2006.07.011
http://dx.doi.org/10.3945/jn.110.123380
http://dx.doi.org/10.3945/jn.108.093971
http://www.ncbi.nlm.nih.gov/pubmed/19022971
https://ndb.nal.usda.gov/ndb/search/list
http://dx.doi.org/10.1111/mcn.12649
http://dx.doi.org/10.1038/ejcn.2015.143
http://dx.doi.org/10.1177/156482651203300106
http://www.ncbi.nlm.nih.gov/pubmed/22624299


Nutrients 2019, 11, 288 15 of 15

55. Schmaelzle, S.; Kaliwile, C.; Arscott, S.A.; Gannon, BM.; Masi, C.; Tanumihardjo, S.A. Nutrient and
nontraditional food intakes by Zambian children in a controlled feeding trial. Food Nutr. Bull. 2014,
35, 60–67. [CrossRef]

56. Titcomb, T.J.; Schmaelzle, S.T.; Nuss, E.T.; Gregory, J.F., III; Tanumihardjo, S.A. Suboptimal vitamin B intakes
of Zambian preschool children: Evaluation of 24-hour dietary recalls. Food Nutr. Bull. 2018, 39, 281–289.
[CrossRef] [PubMed]

57. Food Fortification Initiative. Country Profile—Zambia. Available online: http://www.ffinetwork.org/
country_profiles/country.php?record=251 (accessed on 27 November 2018).

58. Allen, L.H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on
infant status and function. Adv. Nutr. 2012, 3, 362–369. [CrossRef] [PubMed]

59. Black, M.M. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr. Bull.
2008, 29 (Suppl. 2), S126–S131. [CrossRef] [PubMed]

60. Harris, J.; Haddad, L.; Grütz, S.S. Turning Rapid Growth into Meaningful Growth: Sustaining the Commitment to
Nutrition in Zambia; Institute of Development Studies: Brighton, UK, 2014.

61. Mondloch, S.; Gannon, B.M.; Davis, C.R.; Chileshe, J.; Kaliwile, C.; Masi, C.; Rios-Avila, L.; Gregory, J.F., III;
Tanumihardjo, S.A. High provitamin A carotenoid serum concentrations, elevated retinyl esters, and
saturated retinol-binding protein in Zambian preschool children are consistent with the presence of high
liver vitamin A stores. Am. J. Clin. Nutr. 2015, 102, 497–504. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/156482651403500108
http://dx.doi.org/10.1177/0379572118760373
http://www.ncbi.nlm.nih.gov/pubmed/29528727
http://www.ffinetwork.org/country_profiles/country.php?record=251
http://www.ffinetwork.org/country_profiles/country.php?record=251
http://dx.doi.org/10.3945/an.111.001172
http://www.ncbi.nlm.nih.gov/pubmed/22585913
http://dx.doi.org/10.1177/15648265080292S117
http://www.ncbi.nlm.nih.gov/pubmed/18709887
http://dx.doi.org/10.3945/ajcn.115.112383
http://www.ncbi.nlm.nih.gov/pubmed/26178727
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Ethics 
	Study Design and Target Population 
	Data Collection and Management 
	Dietary Intake Analysis 

	Results 
	Subject Characteristics 
	Minimum Dietary Diversity for Women of Reproductive Age (MDD-W) 
	Dietary Intake 

	Discussion 
	Conclusions 
	References

