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a b s t r a c t 

Simulations of neural networks can be used to study the direct effect of internal or external changes on 

brain dynamics. However, some changes are not immediate but occur on the timescale of weeks, months, 

or years. Examples include effects of strokes, surgical tissue removal, or traumatic brain injury but also 

gradual changes during brain development. Simulating network activity over a long time, even for a small 

number of nodes, is a computational challenge. Here, we model a coupled network of human brain re- 

gions with a modified Wilson-Cowan model representing dynamics for each region and with synaptic 

plasticity adjusting connection weights within and between regions. Using strategies ranging from differ- 

ent models for plasticity, vectorization and a different differential equation solver setup, we achieved one 

second runtime for one second biological time. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The use of computer simulations in the study of the brain is

becoming increasingly popular. Still, the focus of most computa-

tional studies has been to increase the number of modeled neu-

rons and not the simulation time [1] . Thus, some recent studies

[2] have managed to simulate as many as 1.73 billion neurons us-

ing supercomputers (K computer with 88,128 nodes [3] ) but the bi-

ological time simulated remains very short ( < 1 s). For our research

we followed the opposite approach using simplified brain models

in order to model brain activity for as long a time as possible. 

For disease processes, such as glioma growth [4] , changes after

stroke [5] , or the emergence of epileptic seizures after a traumatic

brain injury [6] , effects occur over weeks, months, or years. One

possibility would be to describe these events as states and tran-

sitions between states at a lower temporal resolution of only few

events for each timeline. However, such an abstraction misses bio-
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ogical processes and interactions that can occur at shorter time-

cales such as long-term plasticity. Long-term plasticity includes

oth synaptic plasticity (LTP and LTD) and structural plasticity. The

ffects of synaptic plasticity can be observed over minutes or hours

7 , 8] while structural plasticity [9 , 10] takes place over long peri-

ds of time (days or months). Thus, the computational modeling of

ong-term plasticity requires the development of a framework that

ould allow for efficient simulations of brain activity over long pe-

iods of time and with a higher temporal resolution. 

Unfortunately, simulating the human brain at both high tempo-

al and high spatial resolution, i.e. representing all neurons of the

uman brain, is currently impossible for longer time-scales due to

he massive computational and memory requirements of such an

ndertaking [11] . Any model that represents single neurons, would

equire at least one differential equation (usually 2 or 3) to de-

cribe the dynamics of each neuron [1 , 12] . Additionally, given that

ny neuron can have tens or even hundreds of synapses whose

nput needs to be calculated on each computational step, the

omplexity and memory requirements [13] of neuronal network

imulations rapidly increases as a function of the network’s size
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Outline of a node (brain region) in our model consisting of three neuron 

populations: excitatory ( E ), divisive inhibitory ( I d ), and subtractive inhibitory ( I s ). 

Blue arrows indicate excitatory connections while the red and green arrows indicate 

subtractive and divisive inhibitory connections, respectively. 

Fig. 2. The network between brain regions that we used in our model, shown for 

one of the 40 subjects. The color of connections indicates the initial connection 

strength, as given by the logarithm of the relative number of streamlines from dif- 

fusion tensor imaging multiplied by 0.1. 
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nd temporal resolution. The use of parallelization [14] and simpli-

ed neuron models [12] , has led to significantly faster simulations

ut not to the extent that whole brain simulation over long time

urations would require. 

One way to overcome this problem, at least until computers ca-

able of dealing with the computational and memory requirements

f detailed simulations become available, is to simulate at higher

emporal resolution by using the lower spatial resolution level of

opulation models. Such models, although lacking the precision of

piking networks, which track the activity of each individual neu-

on, can still give a meaningful picture of whole brain activity [15] ,

specially for longer time periods. As a proof of principle, we de-

cribe the development and implementation of a model that al-

owed us to simulate whole brain dynamics for 24 h of biological

ime, using 30 h of computational time and a temporal resolution

step-size) of 1 ms. Our study used structural connectivity between

egions to develop a model of the whole brain in order to study

he different effects of external stimulation on healthy and tem-

oral lobe epileptic patients. Despite the high-level nature of our

odel, our simulations managed to capture differences between

he two populations (the clinical details are beyond the scope of

his study), suggesting that the framework we developed can be

sed for models of processing in healthy brains or in other species.

In addition to presenting the model we developed, we discuss

arious computational approaches we considered that would allow

he model to simulate even longer periods of brain activity. Finally,

e discuss two different options for brain simulation that could

otentially be more effective and accurate than the one we used

or our study. 

. Materials and methods 

.1. Structural connectivity 

.1.1. Connectivity between regions 

We model whole brain activity in humans for a period of 24 h

y representing the brain as a network of interacting regions. Our

odel is based on temporal lobe epilepsy patient neuroimaging

ata (MRI and diffusion tensor imaging, DTI). Specifically, the neu-

oimaging data was used to divide the brain in 82 cortical and

ubcortical regions and determine the connections between them.

he strength of those connections (in our model these were repre-

ented as connections between the excitatory neuron populations

f the connecting regions) was initialized by the use of streamline

ractography, which provided a matrix S of streamline counts be-

ween regions. The connectivity matrix was then initialized as: 

 i j = 

{
0 . 1 · log 

(
S i j 

)
, S i j > 0 

0 , S i j = 0 

here W ij the weight of the connection between regions i and j . 

Moreover, the delay times between regions were calculated as

he fiber trajectory length connecting two regions divided by the

ctivity propagation speed. For the calculation of the delays we as-

umed the propagation of activity between regions is 7 m/s. The

rocess of biological data collection and their manipulation is de-

cribed in detail in [16] 

.1.2. Connectivity and dynamics within regions 

The model we developed consists of 82 coupled modified

ilson–Cowan oscillators [17] , each representing a brain region

 Fig. 1 ). Each oscillator is described by the following delayed dif-

erential equations (DDE’S): 

1. τe 
∂ E i (t) 

∂t 
= −E i (t) + ( k e − E i (t) ) · F e ( w 1 · E i (t) + 

82 ∑ 

j =1 , j � = i 
W i j ·

E j ( t − de l i j ) + P e , w 2 · Is i (t) , w 3 · I d i (t)) 
2. τi 
∂ I s i (t) 

∂t 
= −I s i (t) + ( k i − I s i (t) ) · F i ( w 4 · E i (t) + P s , 0 , 0 ) 

3. τi 
∂ I d i (t) 

∂t 
= −I d i (t) + ( k i − I d i (t) ) · F i ( w 5 · E i (t) + P d , w 6 ·

I s i (t) + w 7 · I d i (t) , 0) 

here E i ( t ), Is i ( t ) and Id i ( t ) are the activities of the neuron pop-

lations of node i (excitatory, subtractive inhibitory and divisive

nhibitory) at time t, τ is the timescale of the response of each

opulation, del ij is the time delay between regions i and j, W ij , w k 

re the weights of the external and the internal connections re-

pectively and P e , P s , P d are the external inputs of each population

 Fig. 2 ). 

The additional inhibitory population was included in order for

he model to take into account the effects of divisive inhibition,

hich is presumed to have a gain control effect in neural popula-

ions [18] . The model we present here was developed in [19] where

he effects of this additional population on the dynamics of the

odel are described in detail. 
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The input- output function F k , k ∈ { e, i } is given as a modified

version of the logistic function with three-variables, representing

the driver, the subtractive modulator and the divisive modulator

respectively: 

F j ( x, θ, a ) = 

1 

1 + exp 

[
− a j 

1+ a 
(
x −

(
θ j + θ

))] − 1 

1 + exp 

[ 
a j θ j 

1+ a 

] 

Thus, in this model subtractive inhibition is represented as a

displacement of the function to higher inputs and divisive mod-

ulation is represented as a decrease in the slope and maximum

output of the input–output function. 

The constant k j , j ∈ { e, i }, capturing the refractory dynamics of

each population, is given by: 

k j = lim 

x →∞ 

F j ( x, θ, a ) = 

exp 

[ 
a j θ j 

1+ a 

] 

1 + exp 

[ 
a j θ j 

1+ a 

] , j ∈ { e, i } 

All other constants including the constants of the sigmoid func-

tions and the external inputs are initialized according to the re-

quirements of the simulation. The aim of our study was to examine

long-term changes in brain connectivity, thus we examined several

ways to implement plasticity in our model. In the different sce-

narios presented in the supplementary material we detail different

learning rules and different combinations of internal plasticity (be-

tween the subpopulations of a region) and external plasticity (be-

tween regions) we examined during the optimization process. 

2.2. Implementation 

The aim of the simulation is: (1) to calculate solutions for the

resulting system of DDE’s for as long a period of time as possible;

(2) to capture snapshots of the weight matrices and the activity

of each node in regular intervals (in our study snapshots of activ-

ity were taken every 50 s of biological time). This is in order to

examine the evolution of the system’s connectivity. 

After the end of the simulation, data are analyzed to determine

long-term trends in the activity of selected regions as well as the

overall connectivity of the brain. 

In our study, the system is solved by Matlab’s inbuilt dde23

delayed differential equation solver [20] using a time step of 1

millisecond. The dde23 solver uses the explicit Runge–Kutta (2,3)

method (Bogacki–Shampine method, order 3 with four stages) for

integration and is based on the ODE solver ode23 (single step

solver). In order to run multiple simulations in parallel we used

the Newcastle University Rocket HPC service ( https://services.ncl.

ac.uk/itservice/research/hpc/hardware/ ), which allowed us to simu-

late the brain activity of 40 subjects (each represented by a net-

work of 82 nodes) for 24 h of biological time within a timeframe

of 30 h of running time. 

3. Results 

3.1. Optimization 

In this section we will briefly present the optimization tech-

niques we used to speed up the simulation. A more detailed

description of each simulation scenario and a detailed compari-

son along with pseudocode can be found in the supplementary

material 

In order to increase the efficiency of our code we implemented

various optimization techniques and modifications to our model

that lead to a significant reduction in the running time. 

Our first modification that lead to a considerable reduction in

the running time was to use a simplified plasticity rule that cap-
ured the essential changes induced by plasticity. Specifically, in-

tead of representing each connection between regions by a differ-

ntial equation implementing Oja’s learning rule [21] , we used a

implified Hebbian learning rule given as: 

W i j ( t ) = c · E i 
(
t − de l i j 

)
·
(
E j ( t ) − E j ( t − 1 ) 

)
ith subsequent normalization [8] at every update according to: 

 i j ← 

W i j ∑ 82 
i =1 W i j 

Due to the faster speed resulting from this change, we were

lso able to model changes on the internal weights of the connec-

ions between populations of each node, which were updated ac-

ording to a modified version of the rule we used for the external

onnections with subsequent normalization after every update. 

w k k 
( i ) = c · P re ( t ) · ( P ost ( t ) − P ost ( t − 1 ) ) 

here Pre ( t ), Post ( t ) are the activities of the presynaptic and the

ostsynaptic populations, respectively. 

The update was initially implemented at each step and in the

nal versions every 10 steps, a decision that reduced the models

omplexity and also better represented the timescale of plasticity

n actual biological networks [22] . 

Another important concern with the initial model was the way

emory was allocated, specifically, initializing the DDE solver once

nd letting it perform the entire simulation was extraordinarily

emory consuming since all the intermediate values where saved

n memory until the end of the simulation. Since we were inter-

sted only in long term changes and thus only needed to record

ctivity very sparsely throughout the simulation, we changed the

ay the DDE solver was called. Specifically, the solver is called

or 10 time steps and then re-initialized with the final values the

ast iteration produced, given only the last n (here n = 10; n vary-

ng according to the simulation’s needs) steps of the simulation as

emory input using an external function. These last n-values were

aved in a circular buffer architecture which overrides earlier val-

es when new ones are added. 

This step reduced the running time as well as the memory

onsumption of the algorithm, which, with this change, depends

nly on the amount of data we are recording (how often we save

he values of each region). In our experiments, the recording was

parse enough to not cause concern but in the case of larger mod-

ls or more frequent recording, an external disk can be used to

tore earlier recordings in order to save space from the working

emory as in [23] . 

As a final optimization step, we changed the way that the input

o each region is calculated by implementing a vectorized version

f the initial algorithm. This final step also led to an important re-

uction in the running time. This version was considered effective

iven the available processing hardware. However, further speed-

p with different hardware architectures is possible as outlined in

he discussion section. 

.2. Complexity 

To give an overview, Table 1 and Fig. 3 show the time it takes

o simulate 50 s of biological time, using our final model, on net-

orks of various sizes, with and without weight updates (internal

nd external). 

The networks of different sizes are created by each region con-

isting of a modified Wilson-Cowan oscillator as described before

 Section 2.1 ). In our original model, connections between regions

re established with a probability of 0.2, reflecting the percent-

ge of actual inter-region connections in the brain (about 20% of

ll possible connections). Here we also give the running time for

https://services.ncl.ac.uk/itservice/research/hpc/hardware/
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Table 1 

Running time [sec] for simulating 50 s of biological time under the final (and fastest) version of the model. 

Number of 

brain regions 

(nodes) 

Number of internal and 

external connections (edges) 

Runtime without plasticity 

[seconds] (internal and external) 

Runtime with plasticity [seconds] 

(internal and external) 

Runtime with plasticity [seconds] 

and number of edges under full 

connectivity 

2 14 16.76 16.80 16.80/14 

10 90 18.10 18.28 18.93/150 

25 300 22.64 23.03 23.45/750 

50 840 29.28 30.92 31.23/2750 

100 2680 55.48 57.89 59.67/10,500 

150 5520 96.15 100.94 103.34/23,250 

250 14,200 225.43 237.24 253.56/63,750 

350 26,880 416.87 436.66 498.35/124,250 

As we can see, the implementation of plasticity is not particularly time consuming, since it requires about 5% of the total running time in networks with more than 50 nodes 

for the original case of 0.2 connectivity (less time for smaller networks). Even in the fully connected networks (with approximately 5 times more connections that need to 

be updated) the required time does not increase dramatically. 

Fig. 3. The running time required for simulating 50 s of biological time on networks of different sizes with and without plasticity for biologically realistic connectivity 

( p = 0.2) and full connectivity ( p = 1). 
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 fully connected network (all possible inter-node connections are

ctive) in order to give a more accurate picture of the model. 

The overall complexity of the model is O ( n 2 ) (for n brain re-

ions) due to the calculation of the external input for each equa-

ion ( n regions receive input potentially from n regions, thus n 2 

omputational steps). 

Moreover, depending on the size of the network, different fac-

ors influence the running time ( Fig. 4 ). While in all networks the

olution of the DDE system is the most time consuming task, in

arger networks calculating the input for each node also requires

ignificant amounts of time. 

.3. Model accuracy and limitations 

Our model was used to study the long-term changes in the

nter-region connectivity in healthy and epileptic subjects. Due to

he lack of detailed experimental data about such changes on a

rain wide scale, the parameters of the model were chosen so that

he activity of each node matches the cumulative activity (aver-

ge of spikes) of spiking networks simulated using the VERTEX

24] simulator. Still, despite the model being able to display realis-

ic population dynamics, the model presented here and population

odels in general are appropriate only for specific tasks. 
Specifically, our model cannot capture any spatial features of

he activity within regions, e.g. between different cortical layers,

r any aspect of the networks behavior that depend on the behav-

or of individual neuron types (other than the average firing rate

f each population). Thus, models at this level of abstraction can

nly be used to study high-level aspects of network behavior (such

s approximating global connectivity changes on a timescale of

ours) that are dependent only on the average activity of neuronal

opulations. 

. Discussion 

Our model can simulate brain dynamics and synaptic plasticity

ver several hours of biological time with a high temporal reso-

ution of 1 ms. We achieved 1.26 s running time for each second

f biological time through several simulation specifics: (1) using a

impler rule for weight updates, (2) not updating zero-weight con-

ections, (3) using the DDE solver every 10 steps with the last 10

teps of data (ring memory) as input, and (4) using vectorization

or repeated calculations. 

Still, if we want to investigate brain activity for a period of

eeks or months, the current version of the model will need

o be updated in order to allow for a shorter simulation time.

n this section we present several options for speeding up the
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Fig. 4. The relative proportion of algorithm runtime spent on different tasks depending on the number of brain regions. Tasks include saving and accessing data, calculating 

input for each region, using the delayed differential equation (DDE) solver, and updating the connection weights within and between regions (plasticity). All results are for 

calculations of scenario 4. 
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implementation of our model as well as some alternatives for sim-

ulating brain activity that could potentially be more effective. 

4.1. Model improvement: algorithm changes 

The most straightforward way to reduce the implementation

speed would be to increase the time step. Of course such a mea-

sure would result in reduced accuracy but given that for every

snapshot of activity that is taken, 50,0 0 0 time steps of simula-

tion are required, it may be worth considering an increased time

step as a speed up option. Another possibility we considered was

to use single precision floating point numbers instead of the stan-

dard double precision. This option was abandoned because the re-

duced accuracy could not capture the weight updates in some of

the internal connections. Still, in a model with a different learning

rule that does not require such great accuracy, this option is worth

considering. 

Another option for reducing the required amount of computa-

tions would be to use different accuracy for different nodes, i.e.

to use lower accuracy for nodes representing regions whose con-

nectivity makes significant changes unlikely. This option would be

more viable in studies that focus on particular brain areas. 

In addition to changing the time step, the simplification of

some calculations (especially the calculation of the input from

other nodes during each time step) could significantly reduce the

implementation speed for larger networks. Unfortunately, all ef-

forts to do this up to this point have been unsuccessful. Using

approximation methods for some of this calculation would signifi-

cantly reduce the running time but the cost would be a great loss

of accuracy. 

Other than making modifications in the model, some other op-

tions could be considered that could result in a much faster simu-

lation. Given that most of the running time is spent on solving the

large system of DDE’s, any computing technique that could speed

up the dde23 equation solver would result in a reduction of the

implementation time. 

Given the objective of long-term brain simulation, we should

also examine models that may perform better than the one we

used. Neural mass models like the Wilson Cowan model have been
idely used to give representations of the average activity of large

euronal populations. Still, the simulation of long-term brain dy-

amics using such models is computationally costly. For this rea-

on, especially in cases where only one aspect of brain activity

s studied (connectivity), the use of even simpler models that re-

uire less computational power should be considered. An example

f such an approach would be the model described in [25] which

ses a simple set of differential equations that map pre-synaptic

ring rates to post-synaptic activity in order to study changes in

onnectivity between populations of neurons. This model, by fo-

using on a specific aspect of brain behavior (connectivity changes)

llows for much more detailed representations of connectivity than

he model we used, without increasing the amount of compu-

ations that are needed for long simulations. Similar specialized

odels focusing on one aspect of brain dynamics can be used to

chieve both increased accuracy and better implementation time

or long simulations. 

.2. Model improvement: multi-core computing 

An option we initially considered and later abandoned was

he use of GPU computing. Although Matlab has a framework for

he implementation of GPU computing, the differential equation

olvers do not provide GPU support. If Matlab were to provide a

PU option for running the dde23 solver, the system would be

olved much more efficiently. 

Another option for using GPU computing would be to imple-

ent the program in another language that does provide a GPU

ramework for the solution of differential equations. Specifically

he C ++ library Odeint [26] does exactly that. Of course the tran-

cription of hundreds of lines of Matlab code to C ++ would be

 significant undertaking. Moreover, given that Odeint is not ex-

licitly designed to solve delayed differential equations as is the

de23 solver, the system will have to be adapted to account for

his lack in the Odeint system, a process which may require signif-

cant changes in the way the model works. Still, given the overall

dvantages of GPU computing in general and of C ++ in particular

hen handling big data [27] , this is an option worth considering. 
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Finally an option we also considered was using Xeon Phi pro-

essors [28] . A successful biological simulation with the use of

uch processors is described in [29] . Although some effort s have

een made to run Matlab’s libraries on Xeon Phi processors, we

ere unable to run the dde23 solver on this system. If such an op-

ion were available in a later Matlab version, it could be used to

peed up the simulation significantly. As with the GPU option, the

mplementation of the model in a language that is more compati-

le with Xeon Phi processors (FORTRAN, C, and C ++ ) is an option

orth considering. 

.3. Model improvement: neuromorphic computing 

A promising option for long simulations with high temporal

nd also spatial accuracy would be the use of neuromorphic com-

uting. Specifically, we considered the SpiNNaker system [30 , 31]

hich can model up to a billion neurons in biological time. The

nique capabilities of this system could allow us to simulate ac-

ual networks with individual neurons instead of relying on neural

ass models. 

For a simulation similar to the one we presented, each node in

he network could be represented as a small neural network of a

ew hundred neurons (more neurons increasing accuracy but also

unning time and resources required) with a ratio of 4:1 between

he excitatory and the inhibitory neurons. The difference between

ubtractive and divisive inhibitory neurons could be modeled by

ifferentiating inhibitory neurons according to the site (soma or

endrites) that they deliver inhibition. In this scenario, if we were

till interested only in population dynamics, the activity of each

opulation could be studied as the average activity of each neuron

roup. 

In that way, other than being able to run a simulation in a

horter time period (a SpiNNaker machine is about 20 0–30 0 times

aster than a conventional PC (Pentium 3.2 GHz PC with 1GB RAM)

ccording to [32] ), we would also be able to investigate dynamics

f the brain that cannot be modeled with neural mass models. The

recision and performance of SpiNNaker simulations is described

n detail in [33 , 34] . Following the methodology presented in those

apers, we estimated that the implementation of such a network

sing SpiNNaker would run 20 −50 times faster (for 100–250 neu-

ons per region, with firing rates from 10 to 60 Hz) than our cur-

ent neural mass model implemented in Matlab. 

. Conclusion 

We have developed a model capable of simulating plasticity-

elated changes in neural connectivity, both within and between

egions. In order to capture long term changes in large-scale net-

orks we have described a number of approaches for increas-

ng the efficiency of our model. We optimized our model in sev-

ral ways, which included: (1) the development of a more effi-

ient model for plasticity; (2) using a different setup for the dde23

olver which significantly reduced the required memory; and (3)

he use of vectorization techniques. Our efforts in optimizing the

odel led to a 200 times speedup. This model can now, therefore,

rovide a computationally viable platform for modeling plasticity-

elated changes in the brain over significant periods of time, partic-

larly relevant for investigating long-term disease related changes. 
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