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ABSTRACT
Background: Fusobacterium nucleatum (F. nucleatum) is an anaerobic oral commensal and 
the major coaggregation bridge organism linking early and late colonisers. In recent years, a 
large number of studies suggest that F. nucleatum is closely related to the development of 
various systemic diseases, such as cardiovascular diseases, adverse pregnancy outcomes, 
inflammatory bowel diseases, cancer, Alzheimer's disease, respiratory infection, rheumatoid 
arthritis, etc.
Objective: To review the effect of F. nucleatum on systemic diseases and its possible 
pathogenesis and to open new avenues for prevention and treatment of F. nucleatum- 
associated systemic diseases.
Design: The research included every article published up to July 2022 featuring the keywords 
'Systemic diseases' OR 'Atherosclerotic cardiovascular diseases' OR 'Atherosclerosis' OR 
'Adverse pregnancy outcomes' OR 'Inflammatory bowel disease' OR 'Ulcerative colitis' OR 
'Crohn’s disease' OR 'Cancers' OR 'Oral squamous cell carcinomas' OR 'Gastrointestinal cancers' 
OR 'Colorectal cancer' OR 'Breast cancer' OR 'Genitourinary cancers' OR 'Alzheimer’s disease ' 
OR 'Rheumatoid arthritis' OR 'Respiratory diseases' AND 'Fusobacterium nucleatum' OR 
'Periodontal pathogen' OR 'Oral microbiota' OR 'Porphyromonas gingivalis' and was conducted 
in the major medical databases.
Results: F. nucleatum can induce immune response and inflammation in the body through 
direct or indirect pathways, and thus affect the occurrence and development of systemic 
diseases. Only by continuing to investigate the pathogenic lifestyles of F. nucleatum will we 
discover the divergent pathways that may be leveraged for diagnostic, preventive and 
therapeutic purposes.
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Introduction

Periodontal disease (PD), one of the most common 
inflammatory diseases in adults, comprises a wide 
range of inflammatory conditions that jeopardize the 
supporting structures of the teeth (the gingiva, bone 
and periodontal ligament). PD is initiated by bacterial 
biofilm, which interacts with the host immune defense 
system, further aggravating the inflammatory response 
[1]. Recently, mounting evidence has supported PD as 
a potential risk factor for multiple systemic diseases [2– 
6]. These diseases include cardiovascular diseases, 
adverse pregnancy outcomes, gastrointestinal and color-
ectal cancer, Alzheimer’s disease, respiratory infection, 
rheumatoid arthritis, etc. In addition, studies show that 
periodontal pathogens can spread to different parts of the 
body through direct dissemination, blood transmission, 
immunization and other ways, causing systemic or local 
infection, thus exerting influence on the occurrence and 

development of systemic diseases [7–9]. F. nucleatum, 
a Gram-negative anaerobe, is one of the most abundant 
species in the oral cavity for both diseased and healthy 
individuals [6]. It is a coaggregation bridge organism, 
which links primary and late colonisers by coaggrega-
tion-mediated mechanisms and by promoting growth of 
other anaerobes [10,11]. Its virulence mechanism 
involves colonization, invasion, as well as induction of 
aberrant inflammation and tumorigenesis [12]. In the 
past decade, F. nucleatum has become a hot research 
topic because of its increasingly revealed associations 
with extraoral diseases. The surface adhesin FadA 
expressed by F. nucleatum could increase permeability 
and promote F. nucleatum penetration of endothelial 
cells by binding to vascular endothelial cadherin (VE- 
cadherin) [13–15]. This phenomenon also supported the 
opinion that hematogenous transmission might be one 
route used by bacteria to spread from the oral cavity to 
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deeper organs with crossing of the endothelial barrier as 
a key step in the process [16]. In this review, we delve into 
recent discoveries and prospects of F. nucleatum-related 
researches, including our evolving understanding of its 
mechanistic role in promoting systemic diseases and the 
challenges of developing diagnostic and therapeutic 
methods for F. nucleatum-associated systemic diseases.

Association between F. nucleatum and 
systemic diseases

Atherosclerotic cardiovascular diseases (ACVDs)

ACVDs, including coronary artery disease and 
stroke, are one of the most common causes of 
death in the elderly [17]. Atherosclerosis (AS) is the 
pathological basis of ACVDs, and the widely recog-
nized risk factors of AS include hyperlipidemia, 
hypertension, smoking, diabetes, obesity, immune 
damage and genetic factors. However, studies have 
shown that up to half of AS patients may not be 
under those risks [18]. In recent years, researchers 
have found that oral bacteria play a role in the 
occurrence and development of AS. Oral bacterial 
DNA was initially detected in human atherosclerotic 
plaques by Haraszthy et al. [19], as well as in cor-
onary artery biopsies from patients with coronary 
artery disease and endarterectomy specimens from 
patients undergoing surgical treatment for athero-
sclerosis by Ford et al. [20,21]. Some of these bacteria 
are well-known periodontal pathogens, such as 
Aggregatibacter actinomycetecomitans 
(A. actinomycetecomitans), Porphyromonas gingivalis 
(P. gingivalis), Tannerella forsythia (T. forsythia), 
Prevotella intermedia (P. intermedia), F. nucleatum, 
Campylobacter rectus, and Treponema denticola 
(T. denticola) [19–21], suggesting that PD may be 
associated with AS. Recent meta-analyses also high-
lighted the close correlation between PD and AS 
[22,23]. Moreover, the treatment of PD was also 
proved to have a certain inhibitory effect on progres-
sion of ACVDs independent of traditional ACVDs 
risk factor management [24].

F. nucleatum is one of the oral bacteria detected in 
the atherosclerotic plaques [21,25,26] and the fre-
quency of detected F. nucleatum in atherosclerotic 
plaques and blood vessels is directly related to the 
severity of PD [27]. In 31 carotid arterectomy speci-
mens, the detection rate of F. nucleatum was 34% [21]. 
Subsequent animal experiments proved that infection 
of F. nucleatum alone did not promote AS [28], but in 
the multi-bacterial infection model, F. nucleatum 
would act synergistically with other organisms in the 
development of AS [29,30]. There are several etiologi-
cal hypotheses for AS, all of which can be attributed to 
the ‘injury response’ [31]. During the formation of AS, 
serum lipoprotein concentration, endothelial 

permeability, and binding of lipoprotein to intima 
are considered to be three important pathogenic fac-
tors [32]. Permeability of endothelial cells is a key 
factor in the pathogenesis of ACVDs, because the 
formation of AS requires not only monocytes and 
lipoprotein to penetrate the endothelium, but also 
lipoprotein to accumulate in intima [33].

Firstly, F. nucleatum can promote the progression 
of AS by affecting endothelial cell permeability 
through various mechanisms. F. nucleatum pos-
sesses a best-characterized surface adhesion called 
FadA [34]. FadA has two forms: one is an unda-
maged pre-FadA consisting of 129 amino acids and 
the other is a secreted mature FadA (mFadA) con-
sisting of 111 aa residues [14]. Pre-FadA and mFadA 
form a high molecular weight complex, FadAc, 
which can bind to VE-cadherin on endothelial 
cells, causing the latter to migrate from cell–cell 
junctions to intracellular compartments [15]. This 
results in an endothelium so permeable that even 
passage of bacteria is allowed, a likely reason why 
F. nucleatum is often found in mixed infections at 
extra-oral sites. In addition, F. nucleatum challenge 
markedly impaired cell proliferation and apoptosis 
in endothelial cells, destroying the original equili-
brium state and leading to endothelial damage [35]. 
F. nucleatum infection was also observed to affect 
the expression of endothelial cell surface markers 
and modulate receptors for VEGF on endothelial 
cells, resulting in impaired tissue vascularization 
during inflammation [36]. On the whole, after enter-
ing the bloodstream, F. nucleatum further impairs 
vascular endothelial integrity by inhibiting endothe-
lial cell proliferation, destroying endothelial cell 
structure and function, and inhibiting the vascular-
ization of damaged tissues during inflammation, 
thus paving the way for the invasion of other bac-
teria [34–36].

Secondly, many studies have reported that human 
heat shock proteins (hHSPs) are closely related to AS. 
Antibodies directed against bacterial GroEL cross-react 
with hHSP60 on endothelial cells may result in 
endothelial dysfunction and the subsequent develop-
ment of AS [37]. Lee et al. proved that the heat-shock 
protein GroEL of F. nucleatum stimulated atherosclero-
tic risk factors through several mechanisms [38]. 
F. nucleatum GroEL upregulated the expression of che-
mokines, such as interleukin-8 (IL-8) and monocyte 
chemoattractant protein-1 (MCP-1), and cell adhesion 
molecules, such as vascular cell adhesion molecule-1 
(VCAM-1), intercellular adhesion molecule-1 (ICAM- 
1), and E-selectin. This is an important step in the 
pathogenesis of endothelial dysfunction. In addition, 
GroEL could increase procoagulant activity by upregu-
lating tissue factor (TF) and downregulating TF path-
way inhibitor (TFPI) in endothelial cells. This 
prothrombotic response may be associated with plaque 
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progression and instability. GroEL also induced mono-
cyte adhesion to and transmigration through endothe-
lial cells in concert with increased uptake of lipids in 
atherosclerotic lesions, and promoted monocyte differ-
entiation into pro-inflammatory macrophages and, 
eventually, foam cells.

Thirdly, chronic oral infection with F. nucleatum 
as monoinfection alone does not promote the 
induction of AS, but may conversely inhibit plaque 
formation [28]. In this research, 24-week 
F. nucleatum-infected mice developed minimal aor-
tic plaque, which was significantly smaller than 
sham-infected mice, and fewer F4/80+ macrophages 
were detected in the intimal layer of 24-week- 
infected mice than 12-week-infected mice. 
Additionally, there was no increase in macrophage 
infiltration or T-cell infiltration into the inner and 
outer membrane layers in infected mice at 24 weeks, 
suggesting that chronic F. nucleatum infection 
reduces inflammation in the aorta, which may in 
part explain the minimal development of athero-
sclerotic plaques. Although all lipid fractions were 
statistically elevated in F. nucleatum-infected mice, 
serum NO was not altered. Consistent with the 
minimal plaque observed in 24-week-infected 
mice, the result demonstrated no vascular endothe-
lial dysfunction in animal model.

Some scholars used the multi-bacterial infection 
models to show that the inclusion of F. nucleatum 
promoted the endothelial dysfunction and AS plaque 

progression by upregulating expression of different 
aortic Toll-like receptors (TLRs) and inflammasome 
signal transduction [29,30]. Subsequent studies 
further demonstrated that F. nucleatum up-regulated 
pro-inflammatory factors such as IL-1α, IL-6 and 
TNF-α through activation of TLR-MyD88-NF -κB 
in endothelial cells, resulting in the upregulation of 
ICAM, VCAM and MCP-1 [35].

Due to the interdependence (physical, meta-
bolic, and nutritional) of periodontal bacteria, no 
single periodontal bacterial species is effective in 
inducing aortic disease pathology, for which 
a multimicrobial consortium is responsible. In 
summary, more researches are needed to confirm 
these arguments that F. nucleatum may not be 
involved in AS alone, but rather act synergistically 
with other organisms, in particular by disrupting 
cell–cell junctions, breaking down endothelial 
integrity and leading to invasion [28–31].

Furthermore, we found that both P. gingivalis 
and F. nucleatum in vitro can induce the expression 
of fatty acid-binding protein 4 (FABP4) mRNA and 
protein depending on the JNK/AP-1 pathway, caus-
ing an increase of lipid uptake and foam cell trans-
formation in macrophages [39]. Human studies 
showed that serum levels of antibodies against 
P. gingivalis correlated with serum levels of FABP4 
in humans, whereas no association occurred 
between F. nucleatum antibody titers and FABP4 
levels, which might indicate that P. gingivalis is 

Figure 1. The possible mechanisms by which F. nucleatum contributes to atherosclerosis. HSP60, heat shock protein-60; ICAM-1, 
intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; LDL, low-density lipoprotein; ROS, reactive oxygen 
species; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α.
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superior to F. nucleatum in inducing FABP4 in 
humans. Further study is needed to define the rea-
son underlying the difference in cell-based models 
and human studies. The mechanisms between 
F. nucleatum and AS are summarized in Figure 1.

Adverse pregnancy outcomes (APOs)

APO is a broad term including preterm labor, chor-
ioamnionitis, preterm premature rupture of mem-
branes, preeclampsia, miscarriage, intrauterine 
growth retardation, low birth weight, stillbirth, neo-
natal sepsis, etc.

F. nucleatum is one of the most prevalent species 
and by far the most prevalent oral species implicated 
in APOs and has been found to be significantly 
enriched in a wide variety of placental and fetal 
tissues including amniotic fluid, fetal membranes, 
cord blood, neonatal gastric aspirates, fetal lung and 
stomach, associated with preterm birth, preterm pre-
mature rupture of membranes, chorioamnionitis, 
early-onset neonatal sepsis, stillbirth and preeclamp-
sia, either as the sole infectious agent or in mixed 
infections [40].

The strains of F. nucleatum identified in amniotic 
fluid and placenta appear to match those from the 
maternal or the partner subgingival sites, providing 
the human evidences that the bacteria originated 
from the mother’s subgingival plaque and translo-
cated to the placenta and fetus, causing acute inflam-
mation that eventually leads to APOs [41]. Animal 
studies also show that injecting saliva or subgingival 
plaque samples into mice leads to infection of the 
murine placenta with oral commensal species, includ-
ing F. nucleatum, demonstrating that the oral bacteria 
are capable of translocation to the fetal-placental unit 
[16]. Concurrent detection of F. nucleatum in amnio-
tic fluid and cord blood associated with preterm birth 
indicates its ability to spread to different placental 
and fetal compartments [16].

It has been assumed that F. nucleatum translocates 
from the maternal oral cavity to the intrauterine 
cavity via hematogenous transmission [42–44]. This 
hypothesis is supported by results from animal stu-
dies [45,46]. In a pregnant mouse model, 
F. nucleatum was injected into the tail vein of preg-
nant mice to mimic dental bacteremia, which led to 
bacterial colonization in the decidua of the mouse 
placenta, followed by spread to the fetal membranes, 
mimicking chorioamnionitis in humans [45]. 
A recent case-cohort design based on placental speci-
mens from 320 subjects showed that the human pla-
centa harbors a low abundant microbiome closely 
mimicking the human oral microbiome, further sup-
porting the hypothesis of blood-borne transmis-
sion [47].

Periodontal pathogens can cause adverse preg-
nancy outcomes through two major mechanisms 
identified in the consensus report from the joint 
European Federation of Periodontology/American 
Academy of Periodontology workshop on periodon-
titis and systematic diseases: one is that periodontal 
pathogens directly enter the blood circulation system, 
or an ascending route via the genitourinary tract, thus 
invading the fetal-placenta unit; the other is that pro- 
inflammatory cytokines, such as IL-6, IL-8, and TNF- 
α, which are locally produced in periodontal tissues, 
enter the circulatory system, directly exerting nega-
tive influence on the fetal-placenta unit, or circulate 
to the liver and increase the systemic inflammatory 
state through the acute phase of protein reactions, 
which in turn affects the fetal placental unit [48,49]. 
In both ways, periodontal pathogens may cause 
inflammation in the placental tissues of pregnant 
women, increase levels of prostaglandin E2 and 
TNF-α in the amniotic fluid, and contribute to the 
onset of APOs [50].

Several adhesin molecules, including Fap2 and 
FadA, have been identified for colonization of the 
F. nucleatum in the placenta of mice [13,51–53]. 
Among them, FadA is the best characterized and 
plays a critical role in the murine model of infection 
[15]. Binding of F. nucleatum FadA to VE-cadherin 
not only increases the endothelial permeability, but 
also allows F. nucleatum and other oral bacteria to 
disseminate into and from the circulation. This may 
explain why F. nucleatum is frequently detected con-
currently with other oral species in intrauterine infec-
tions in humans [6]. In vivo, an F. nucleatum mutant 
without FadA is significantly defective in placental 
colonization, while its complement clone restores 
the colonization [45,54].

More studies reported that colonization of 
F. nucleatum in the mouse placenta led to preterm 
and/or term fetal death, occurring 2–3 days following 
bacterial injection, accompanied by placental neutro-
phil infiltration, similar to that observed in humans 
[45]. Although F. nucleatum activates both TLR2 and 
TLR4 in vitro and in murine placentas, it induces 
inflammatory responses via TLR4, accompanied by 
neutrophil infiltration into the decidua [46]. In mice 
lacking TLR4, or in wild-type mice treated with 
a TLR4 antagonist, F. nucleatum colonizes the pla-
centa to a similar extent as in untreated wild-type 
mice without eliciting inflammatory responses, 
resulting in a reduced fetal death rate, which suggests 
that inflammation rather than the bacteria per se is 
the cause of fetal demise. In contrast, the effect of 
TLR2 is insignificant because there is no change in 
fetal loss or inflammatory response in TLR2- 
knockout mice compared to wild-type mice.

Scholars have confirmed that inflammatory bio-
markers in the maternal serum may include IL-6, 
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C-X-C motif chemokine 8 (CXCL8) and CC chemo-
kine ligand 2 (CCL2) [55–59]. Receptor-interacting 
protein kinase 2 (Ripk2) may contribute to 
F. nucleatum-induced production of IL-6 by activat-
ing NF-κB signaling in murine macrophages and 
human decidual stromal cells (hDSCs) [60]. Ripk2 
also contributed to inducible nitric oxide synthase 
(iNOS) gene expression and NO production in 
macrophages and promoted the production of 
CXCL8 and CCL2, which was reduced by Ripk2 
inhibitors. These results suggested that F. nucleatum 
infection results in APOs by inducing aberrant pro-
duction of cytokines and chemokines through 
NOD1/NOD2-Ripk2-mediated signaling. In conclu-
sion, although it would be beneficial to regulate Ripk2 
signaling to prevent APOs caused by bacterial infec-
tions, further studies using animal models are needed 
to elucidate whether Ripk2 is involved in 
F. nucleatum-induced APOs and Ripk2 inhibitors 
are beneficial to prevent the occurrence of APOs.

Inflammatory bowel disease (IBD)

IBD, a heterogeneous set of inflammatory disorders 
of the gastrointestinal (GI) tract and a global public 
health issue of increasing importance, presents as two 
major clinical phenotypes: ulcerative colitis (UC) and 
Crohn’s disease (CD). UC is a continuous inflamma-
tion of the colonic mucosa and submucosa, usually 
involving the rectum initially, then gradually spread-
ing to the whole colon, whereas CD is usually trans-
mural and can affect any area of the gastrointestinal 
tract, which is a discontinuous full-layer inflamma-
tion, most commonly involving the terminal ileum, 
colon, and perianal [61]. The etiology of IBD is still 
not completely understood. Yet, several studies have 
supported the hypothesis that its onset is due to 
a convergence of host genetic factors and environ-
mental triggers resulting in changes of the host 
immune response to intestinal microbes [62,63]. 
Therefore, the role of intestinal microbiota alteration 
is repeatedly discussed in literatures [64].

Back in 2011, Strauss et al. have reported that 
F. nucleatum isolated from inflamed biopsy tissue 
from IBD patients is significantly more common 
and invasive than from healthy controls [65]. It has 
been reported that F. nucleatum is obviously enriched 
in feces of IBD patients and its abundance has 
a positive correlation with patients’ disease activity, 
and administration of F. nucleatum markedly exacer-
bates colitis in DSS mice model [66]. This confirms 
the findings of previous clinical studies [67–69]. In 
addition, scholars found that patients with IBD have 
a significantly increased risk of PD, and exhibit more 
severe periodontal symptoms when oral hygiene con-
ditions are similar [70–72]. Recent studies also have 
suggested a bidirectional association between IBD 

and PD based on statistics of the prevalence and 
clinical manifestations of both diseases, whereas the 
microbial etiological correlation and common risk 
factors of the two diseases remained unclear [72–74].

Kitamoto et al. discussed that the mode of the 
relocation of oral bacteria from the oral cavity to 
the gut mucosa may include hematogenous route, 
enteral route and other possible factors [75]. First, 
oral mechanical injuries and dental procedures enable 
oral bacteria to spread into the systemic circulation 
hematogenously, and inflammatory conditions of the 
oral cavity, namely periodontitis, may facilitate bac-
teremia [76,77]. In addition, oral bacteria are known 
to invade and survive inside immune cells, such as 
dendritic cells and macrophages, indicating that oral 
bacteria may hijack host immune cells to serve as 
Trojan horses for dissemination from oral mucosa 
to gut mucosa [50]. Second, enteral spreading is 
a plausible route worth paying attention to. The colo-
nization resistance by the gut resident microbiota is 
considered to be the major barrier that prevents the 
gut colonization of swallowed oral bacteria [75,78]. 
Meanwhile, the majority of oral resident bacteria are 
so sensitive to the gastric acid that ingested oral 
bacteria will be sharply reduced when they are pas-
sing the stomach [75,79,80]. Therefore, when dys-
function of gastric barrier or/and disruption of gut 
colonization resistance happens, there will be 
a significant increase in the ectopic gut colonization 
by oral bacteria. Other possible factors include 
immune depression and poor oral health [81,82]. 
Yet further studies are needed to clarify the transmis-
sion methods to the gut mucosa by oral bacteria.

In this review, we only discuss the possible patho-
genesis of F. nucleatum in IBD. Firstly, F. nucleatum 
could damage the epithelial barrier integrity and 
increase permeability by downregulating the expres-
sion of the tight junction proteins zonula occludens-1 
(ZO-1) and occludin, which are markers of intestinal 
mucosal barrier function [66]. Additionally, 
F. nucleatum-mediated mucosal barrier damage 
could be promoted by targeting caspase activation 
and recruitment domain 3 (CARD3) which in term 
activated the endoplasmic reticulum stress (ERS) 
pathway [83]. Secondly, F. nucleatum could regulate 
M1 macrophage skewing to induce colitis [84]. Liu 
et al. also reported that F. nucleatum could exacerbate 
intestinal inflammation through upregulating cyto-
kine secretion, such as IL-1β, IL-6, and IL-17, activat-
ing STAT3 signaling pathway, enhancing 
proliferation of CD4+ T cell and differentiation to 
Th1 and Th17 [66]. Li et al. found that the presence 
of F. nucleatum and FadA gene increased in UC 
patients, especially in patients with severe colitis and 
pancolitis, suggesting that FadA may play 
a significant role in the pathogenesis of UC [85]. 
Nevertheless, the exact mechanism of this association 
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is not fully understood, more studies are required to 
better elucidate the role of F. nucleatum and FadA 
gene in UC.

Using ApoE−/− mice model, Yan et al. reported 
that non-surgical periodontal treatment triggered 
modulation of gut microbiota, facilitating recovery 
to a healthy microbiome situation [86]. It also 
strengthened the intestinal mucosal barrier which 
was impaired by periodontitis, resulting in 
a stronger nonspecific immune function. Based on 
this paper and the above relationship between 
F. nucleatum and IBD, we reasonably assume that 
F. nucleatum abundance maybe indicative of devel-
opment of IBD. Moreover, targeting F. nucleatum 
may be effective to shorten disease course and pre-
vent the development of IBD. Since there is no expli-
cit cure for IBD, understanding the intrinsic 
mechanism of F. nucleatum may provide a new 
insight in optimizing current therapeutic strategies.

In addition, IBD has been recognized as a risk 
factor for colorectal cancer (CRC), the infection of 
F. nucleatum in intestinal tract may be the common 
pathogenesis of these two diseases [87]. The connec-
tion between F. nucleatum and CRC will be discussed 
in detail later.

Cancers

Oral squamous cell carcinomas (OSCC)
OSCC is a malignant tumor occurring in the oral 
epithelium, which is the main type of head and neck 
squamous cell carcinoma (HNSCC). Al-Hebshi,et al. 
firstly showed that F. nucleatum is associated with 
OSCC from an epidemiological perspective [88]. 
Subsequently, scholars used 16S rRNA to analyze the 
microbiome within healthy normal and tumorous (pri-
mary and metastatic) human tissues from the oral cav-
ity, larynx-pharynx, and lymph nodes [89]. The 
microbiota associated with tumors supported altered 
abundances in the phyla Fusobacteria, Firmicutes, 
Actinobacteria and Proteobacteria. Most notably, 
a significant reduction in the abundance of 
Streptococcus species and an increase in the abundance 
of Fusobacterium species were observed in both pri-
mary and metastatic samples. Resphera Insight applied 
to saliva samples from HNSCC patients and healthy 
controls led to the first discovery that F. nucleatum 
enriched in a subset of saliva samples from HNSCC 
patients, when compared with controls [90]. 
Additionally, many species of anaerobic bacteria have 
been proposed to be involved in carcinogenesis [91]. 
Nagy et al. detected significantly larger quantities of 
Porphyromonas and Fusobacterium species in OSCC 
tissue samples compared to samples from healthy 
mucosa [92]. F. nucleatum is closely associated with 
the development of oral cancer by several mechanisms.

Firstly, when F. nucleatum invades gingival epithe-
lial cells, NF-κB and NOD-like receptor 3 (NLRP3) 
are simultaneously activated [93]. NF-κB would sub-
sequently translocate to the nucleus where it stimu-
lates expression of pro-IL-1β gene. NLRP3 
inflammasome would induce autocatalytic activation 
of caspase 1, resulting in release of IL-1β, one of the 
most important proinflammatory cytokines asso-
ciated with cancer pathogenesis [94]. Furthermore, 
once caspase 1 is activated, other danger-associated 
molecular patterns (DAMPs) (also known as danger 
signals) will be released, such as highmobility group 
box 1 protein (HMGB1) and apoptosis-associated 
speck-like protein (ASC), which further amplify 
immune response [93]. The inflammasome/IL-1β 
pathway has been reported to be involved in 
HNSCC progression [94,95]. Aral et al. further ver-
ified that F. nucleatum could promote IL-1β by 
increasing AIM2 and downregulating POP1 in 
HNSCC in vitro [96]. P. gingivalis and adenosine 
triphosphate (ATP) with or without F. nucleatum 
upregulated NLRP3, IL-1β by downregulating POP1. 
Moreover, P. gingivalis and F. nucleatum can initiate 
the overexpressed NLRP3, activate upstream signal 
molecules of ataxia-telangiectasia and Rad3 related 
(ATR)-checkpoint kinase 1 (CHK1), promoting the 
growth and proliferation of oral cancers [97].

Secondly, F. nucleatum induces activation of pro-
tein kinase p38 in infected cells, promoting the secre-
tion of matrix metalloproteinase-13 (MMP-13) and 
MMP-9, which contributes to tumor invasive-
ness [98].

Thirdly, DNA damage plays a significant role in 
the development and progression of oral cancer. It 
has been reported that the Ku70/p53 signaling path-
way may be involved in the excessive proliferation of 
F. nucleatum-infected OSCC cells due to DNA 
damage [99]. If Ku70 protein levels are too low to 
repair severely damaged DNA, OSCC cells will pro-
liferate abnormally [100,101]. Nevertheless, the inter-
play between F. nucleatum and Ku70 is yet to be 
explained.

In addition, the levels of tumor suppressor protein 
p27, a member of the cyclin-dependent kinase inhi-
bitor (CDK) family, would be downregulated in 
F. nucleatum-infected cells, which leads to cell-cycle 
arrest in the S phase and to increased cell prolifera-
tion [100]. This process is correlated with adverse 
cancer prognosis.

Moreover, infection of oral epithelial cells with 
F. nucleatum was found to contribute to the induc-
tion of epithelial–mesenchymal transition (EMT) 
through lncRNA MIR4435-2HG/miR-296-5p/Akt2/ 
SNAI1 pathway [102]. EMT is an important biologi-
cal process through which epithelial-derived malig-
nant tumor cells acquire the ability to migrate and 
invade [103].
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Gastrointestinal (GI) cancers
GI cancers are in the forefront of all malignant 
tumor in morbidity and mortality, including eso-
phageal, gastric, colorectal, liver, and pancreatic 
cancer. A case-control study examined the salivary 
microbiota in patients with GI cancers and evalu-
ated their differential distribution based on the 
cancer sites, suggesting the bacterial diversity and 
composition of saliva are related to GI can-
cers [104].

It was reported that F. nucleatum can not only 
promote the progression of GI tumor, but also con-
tribute to the chemo-resistance of GI cancer [105]. 
We have summarized recent progress in the patho-
genesis of F. nucleatum-related GI cancers.

Colorectal cancer (CRC). CRC is one of the most 
common malignant tumors. Its morbidity and mor-
tality rank among the top three cancers in the world, 
and are increasing in recent years [106]. Recent stu-
dies have revealed an enrichment of Fusobacterium 
species in human CRCs and adenomas compared 
with adjacent normal tissue [87,107–110], and the 
most abundant species is F. nucleatum, suggesting 
that F. nucleatum is involved in the development of 
CRC. Castellarin et al. verified overabundance of 
F. nucleatum in colorectal tumor specimens versus 
matched normal control tissue by quantitative PCR 
analysis and observed that F. nucleatum was posi-
tively associated with lymph node metastasis [87]. 
Subsequent studies implied that F. nucleatum can be 
used as a risk biomarker of CRC [111–114]. Increased 
levels of F. nucleatum correlated with the genetic and 
epigenetic aberrancies in CRC, such as the CpG 
island methylator phenotype (CIMP), microsatellite 
instability (MSI), and MLH1 methylation [108,115, 
116–118].

F. nucleatum can alter the composition of the 
residual microbiota, with a consortium of inflamma-
tory responses, virulence factors and impaired epithe-
lial signaling in the context of a polymicrobial oral 
biofilm with synergistic properties, resulting in intest-
inal dysbiosis, contributing to the initiation and pro-
gression of CRC [118].

In respect to association between F. nucleatum and 
CRC oncogenesis, two pathways must be mentioned. 
One of the pathways is the virulence factor FadA of 
F. nucleatum which would activate the β-catenin sig-
naling pathway when present on the VE-cadherin, 
initiating inflammatory responses, thus boosting the 
genes of the transcription factors NF-κB, pro- 
inflammatory cytokines such as IL-6, IL-8, and IL- 
18, Wnt7a, Wnt7b, Wnt9a, transcription factors lym-
phoid enhancer factor (LEF) /T cell factor (TCF), 
Myc, and Cyclin D1, and the parts of the Wnt path-
way [119]. F. nucleatum also can activate β-catenin 

signaling through TLR4/P-PAK1 cascade [120]. In 
pathway two, the Fap2 of F. nucleatum mediated its 
enrichment in CRC by binding to tumor- 
overexpressed Gal-GalNAc, further intensifying the 
inflammatory response [121]. In pathway three, 
F. nucleatum lipopolysaccharide (LPS) could activate 
TLR4/MyD88/NF-κB, inducing high expression of 
miR21; the elevated miR21 could reduce levels of 
RASA1, while the RASA1 could active MAPK path-
way [122. Meanwhile, F. nucleatum was found to 
inhibit the expression of miR-18* and miR-4802 
through TLR4/MyD88 immune signals [123]. The 
loss of these miRs avoided chemotherapy-induced 
apoptosis by activating autophagy in CRC cells. In 
addition, when F. nucleatum invades into CRC cells, 
reactive oxygen species (ROS) could be induced, 
which subsequently lead to DNA damage [124,125].

The above findings bring us to the next question: 
how F. nucleatum modulates tumor immune micro-
environment in CRC? On the one hand, F. nucleatum 
could selectively recruit tumor-infiltrating myeloid 
cells and promotes tumor progression [126]. On the 
other hand, Fap2 of F. nucleatum could interact with 
TIGIT, an immunoregulatory signaling receptor on 
NK and T cells, and this Fap2-TIGIT interaction 
could reduce killing of tumor cells by NK and tumor- 
infiltrating lymphocytes and inducing lymphocyte 
apoptosis [127–129].

Due to the biological characteristics of 
F. nucleatum and its relationship with CRC, studies 
on F. nucleatum are increasing gradually, but our 
understanding of F. nucleatum is still insufficient at 
present. Further researches are needed on how 
F. nucleatum can be a therapeutic target to reduce 
the risk of CRC. The researchers found that detection 
of fecal abundance of F. nucleatum can be used as 
a rapid and non-invasive diagnostic technique for 
CRC screening [112]. Combined with fecal occult 
blood test, the positive rate and accuracy of CRC 
diagnosis can be improved. In addition, serum IgA 
or IgG antibodies against F. nucleatum also have 
potential diagnostic value [130]. Scholars found that 
a ‘robust’ diet rich in whole grains and fiber could 
effectively reduce the individual’s risk of developing 
F. nucleatum-associated CRC, but the risk of CRC did 
not seem to change in patients lacking F. nucleatum 
[131]. Moreover, metronidazole treatment can signif-
icantly reduce tumor volume in a xenograft model of 
CRC enriched with F. nucleatum [132]. However, 
metronidazole broadly targets anaerobic bacteria. 
Therefore, it is important to search for narrow- 
spectrum antibiotics that are specific to 
F. nucleatum and only targeted at tumor tissue.

Other gastrointestinal (GI) cancers. Yamamura et al. 
reported that F. nucleatum enrichment was associated 
with a worse prognosis in esophageal cancer by 
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activating chemokines, such as CCL20 [133]. In 
a study by Mitsuhashi et al., the detection rate of 
Fusobacterium spp. in pancreatic cancer tissue speci-
mens was 8.8% [134], while F. nucleatum was not 
detected in pancreatic cancer tissue in another study 
by Yamamura et al. [135]. Castan˜o-Rodrı´guez et al. 
found that several bacterial groups, including 
Lactococcus, Veilonella, Fusobacterium, and 
Leptotrichia species were enriched in gastric cancer 
[136]. Heish et al. implied that Clostridium colicanis 
and F. nucleatum could be used as diagnosis biomar-
kers of gastric cancer [137]. Abed et al. found that 
Gal-GalNAC antigen was highly expressed in gastric 
cancer and esophageal cancer tissues, suggesting that 
gastric cancer and esophageal cancer could enrich 
F. nucleatum chemotaxis and affect disease progres-
sion [138].

Breast cancer (BC)
BC is the leading cause of cancer mortality in women 
and a type of cancer with different presentations 
among women [139]. F. nucleatum has recently 
been detected in human BC tissues and was shown 
to promote BC progression in a murine model 
[140,141]. Parhi et al. reported that F. nucleatum 
colonizes not only CRC, but also BC through recog-
nition of Gal-GalNAc by Fap2 [140]. Also, metroni-
dazole treatment can inhibit F. nucleatum-induced 
tumor exacerbation. Van der Merwe et al. have sug-
gested that F. nucleatum may promote CRC and BC 
progression by activating the TLR4/ MyD88 pathway, 
and F. nucleatum also exhibits immunomodulatory 
effects [142]. These observations provide valuable 
therapeutic insights into CRC and BC: Gal/GalNAc 
antagonists or Fap2 antibodies could be used to inhi-
bit the binding of F. nucleatum to tumours [121,140]; 
autophagy inhibitors, including chloroquine and 
hydroxychloroquine, have the potential to weaken 
the drug resistance of F. nucleatum [123,143]; PD- 
L1 and CD-47 antagonists would be beneficial for 
boosting the immune system in cancer patients 
[143–146].

Genitourinary (GU) cancers
Shuai Yuan et al. have summarized epidemiological 
studies exploring the association between PD and GU 
cancers, and indicated that the presence of an oral- 
genitourinary axis and oral microbiota may be 
involved in the pathogenesis of GU cancers 
[147,148]. Bučević Popović et al. are the first to report 
that there exists possible association of Fusobacterium 
spp. with urothelial carcinomas, at least in some 
bladder cancer patients [48]. They showed that 
F. nucleatum is indeed present in approximately one 
quarter of the tested samples by PCR-based analysis, 
and indicated the bacteria may play a key role in the 

exacerbation of the bladder cancer based on the 16S 
rDNA gene sequence approach. Nevertheless, more 
epidemiological studies and animal experiments are 
needed to elucidate the exact role of F. nucleatum in 
bladder cancer formation and progression. Alluri 
et al. have identified the periodontal pathogen 
F. nucleatum in prostate glands diagnosed with ade-
nocarcinoma, but they have no evidence of whether 
the F. nucleatum found in the prostatic tissue of the 
individual originated from the oral cavity [149]. 
Meanwhile, the role of F. nucleatum in pathological 
prostate changes is unclear yet. Huang et al. found 
that there was a distinct observation of higher levels 
of F. nucleatum in cervical cancer, especially for 
recurrent tissues [150]. Patients with high burdens 
of F. nucleatum intratumoral infiltration exhibited 
correspondingly poor rates of both overall survival 
and progression-free survival, suggesting that 
F. nucleatum might be one potential cervical cancer 
diagnostic and prognostic biomarker.

Alzheimer’s disease (AD)

AD is the most common form of dementia in older 
adults and refers to a central nervous system disease 
characterized by progressive cognitive dysfunction 
and memory loss [151]. In the past decade, studies 
have identified a relationship between periodontitis 
and AD, suggesting that the pathogens of periodon-
titis have significant implications on the development 
of AD [152–155].

Several putative mechanisms that could explain 
how periodontitis affects the central nervous system 
(CNS) homeostasis have been described [156], 
including: (i) Bacterial diffusion into the blood-
stream, and once in the cerebral vessels, the inflam-
matory response associated with cerebrovascular 
atherosclerosis may induce rupture of the blood– 
brain barrier (BBB); (ii) Oral bacteria would migrate 
through the peripheral terminations of the trigeminal 
nerve to the trigeminal ganglion and then to the 
brain; (iii) Bacteria could migrate by the lymphatic 
circulation. While these three theories explain the 
possible route by which oral bacteria migrate to the 
brain, it has not yet been demonstrated which con-
tributed most to the onset of AD.

With the increase of age, the permeability of the 
BBB increases in elderly patients. Therefore, patho-
genic microorganisms could easily cross the BBB 
and enter the brain tissue, directly act on neurons, 
activate the inflammatory cascade reaction, and 
cause direct damage to the CNS. The bacteria enter-
ing brain tissue and their secreted virulence factors 
could activate a classic immune response similar in 
some aspects to that observed in AD, through TLR2 
and TLR4 pathway, and turn inactive microglia into 
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active ones [157,158] When activated, they could 
produce several inflammatory mediators such as 
TNF-α, IL-1β, IL-6, iNOS, and reactive oxygen spe-
cies (ROS) that trigger necrosis and apoptosis of 
dopaminergic neurons in the CNS [159]. 
Additionally, oral microbial populations indirectly 
affect AD by secreting bacterial toxins, outer mem-
brane vesicles (OMVs) and proinflammatory factors 
that flow into the brain with blood [160–163]

Earlier studies have reported that antibodies to 
F. nucleatum can be detected in the serum of 
patients with AD or cognitive impairment [164]. 
Scholars also found that the oral microbial load of 
F. nucleatum were significantly more abundant in 
the AD group than controls [165,166]. Recently, 
in vitro and animal experiments were conducted 
to preliminarily explore the pathogenesis of AD 
exacerbated by F. nucleatum [167]. Scholars 
reported that F. nucleatum LPS promoted the pro-
liferation of microglia, which promoted the 
enhancement of inflammatory immune function, 
leading to changes in cell morphology and 
increased expression of inflammatory genes. 
F. nucleatum LPS could increase permeability of 
the BBB, and then affect the onset and develop-
ment of AD. Previous studies have shown that local 
inflammation in the central nervous system could 
lead to cognitive impairment [168]. This report 
showed the elevations of TNF-α and IL-1β message 
in the brain tissue of 5XFAD mice after infection 
with F. nucleatum. In addition, in the presence of 
F. nucleatum infection, the expression of P38 pro-
tein in mouse brain tissue was significantly upre-
gulated, as was phosphorylated P38 protein. 
Likewise, MyD88 protein was upregulated. 
F. nucleatum also stimulated the JNK pathway; 
the expression levels of phosphorylated JNK and 
JNK proteins were raised. Moreover, quantitative 
proteomics analyses were performed to detect the 
proteins in the brain tissues of 5XFAD mice with 
or without F. nucleatum infection [168]. The result 
showed that 31 proteins were obviously differen-
tially expressed by the two groups of mice [168]. 
Further studies are needed to validate and explore 
the results of quantitative proteomics in order to 
find key proteins that play a significant role in 
signaling pathways. Furthermore, how other viru-
lence factors of F. nucleatum affect the progression 
of AD remains unkonwn. On the whole, more 
efforts are required to elucidate the mechanism of 
F. nucleatum actions in AD in future studies.

Other organ inflammation and abscesses

Han et al. have suggested that F. nucleatum is 
associated with brain, lung, liver, and splenic 
abscesses [34]. Recent studies also indicated that 

F. nucleatum was involved in rheumatoid arthritis 
(RA) and acute appendicitis [164,166,169–171]. 
Ebbers et al. firstly reported that a triple oral 
inoculation of pathobionts (P. gingivalis, 
F. nucleatum, and A. actinomycetemcomintans) 
combined with collagen could induce arthritis in 
the mouse, and oral inoculation with either 
F. nucleatum or A. actinomycetemcomintans 
alone could accelerate subsequent arthritis onset 
and progression [171]. Several scholars have 
found that P. gingivalis, F. nucleatum and 
A. actinomycetecomitans inhaled into respiratory 
tract could promote the invasion of Pseudomonas 
aeruginosa into respiratory epithelial cells and 
induce cytokine production and cell apoptosis 
[172]. F. nucleatum is one of the most common 
causative agents of Lemierre’s syndrome, a rare 
form of upper airways infection with a life- 
threatening secondary septic thrombophlebitis of 
internal or external jugular veins [173].

Conclusions

F. nucleatum has been considered as an opportunistic 
pathogen that interacts with other microorganisms 
and plays a crucial role in many infectious diseases. 
With the development of omics technology, the 
occurrence and development of many diseases are 
closely related to the infection of F. nucleatum. The 
latest trend has been to focus on exploring possible 
direct and indirect links between F. nucleatum and 
certain systemic diseases, especially ACVDs and 
CRC, and an increasing amount of evidence has 
been accumulated. F. nucleatum not only promotes 
inflammation, but also binds to or invades multiple 
cell types, including oral, colon and placental epithe-
lial cells, T cells, keratinocytes, and macrophages 
[174]. The answer to the question why F. nucleatum 
can invade the human body and influence general 
health lies in several key virulence mechanisms 
which can be broadly classified into three groups 
(Figure 2): (i) Colonization and invasion: 
F. nucleatum can enter the circulation and cause 
transient bacteremia following daily life activities, 
such as toothbrushing, chewing, and flossing, and 
after dental treatment procedures. Frequent circula-
tion enables bacteria to access organs around the 
body and take part in local pathogenesis [175]. In 
addition, F. nucleatum can colonize intestinal mucosa 
through digestive tract [75]. (ii) Induction of host 
responses: F. nucleatum is a potent stimulator of 
inflammatory cytokines. Persistent local infection 
caused by F. nucleatum induces the upregulation of 
inflammatory cascades [38,48–50]. Chronic inflam-
mation is believed to be the root cause of systemic 
disorders and is one of the leading causes of long- 
term health problems. Furthermore, F. nucleatum 
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promotes the progression of various systemic diseases 
by upregulating expression of different TLRs 
[29,121,141], promoting macrophage M1 polarization 
[84], and enhancing proliferation of CD4+ T cell and 
differentiation to Th1 and Th17 [66]. (iii) Specific 
toxins of F. nucleatum, especially FadA, Fap2 and 
LPS, play a significant role in the induction of local 
diseases [15,84,114,140].

In this article, we not only summarize the adverse 
effects of F. nucleatum on multiple systemic diseases, 
but also discuss the impact of targeting F. nucleatum on 
the treatment of related systemic diseases. However, 
many of the epidemiological studies only show the 
correlation but not necessarily causation between 
F. nucleatum and specific diseases. Precise pathogeni-
city of F. nucleatum-related systemic diseases has yet to 
be uncovered, and a few conclusions are controversial. 
Only by continuing to investigate mechanisms involved 
in transformation of this oral commensal organism into 
systemic pathogens will we discover possible strategies 
for diagnostic, preventive and therapeutic purposes. 
Based on current research, some recommendations 
can be given. Firstly, it must be emphasized that oral 
health should be maintained as an indispensable part of 

a healthy lifestyle to reduce risk of bacteremia, especially 
for immune-compromised patients. Secondly, by inves-
tigating into the epidemiological background of 
F. nucleatum infection, high-risk groups for various 
related diseases can be effectively revealed, facilitating 
early detection and prevention among the population. 
Thirdly, it is of great significance for F. nucleatum- 
associated cancer patients with poor prognosis or che-
motherapy-resistance to apply multi-drug combination 
therapy against F. nucleatum and employ drug admin-
istration methods similar to Helicobacter pylori triple 
therapy.
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