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Among a number of innate receptors, the nucleotide-binding domain leucine-rich repeat containing (NLR) nucleotide oligomer-
ization domain (NOD)-like receptor families are involved in the recognition of cytosolic pathogen- or danger-associated mole-
cules. Activation of these specific sets of receptors leads to the assembly of a multiprotein complex, the inflammasome, leading to 
the activation of caspase-1 and maturation of the cytokines interleukin (IL)-1β, IL-18, and IL-33. Among NLRs, NLR-related 
protein 3 (NLRP3) is one of the best-characterized receptors that activates the inflammasome. There is no doubt that NLRP3 in-
flammasome activation is important for host defense and effective pathogen clearance against fungal, bacterial, and viral infec-
tion. In addition, mounting evidence indicates that the NLRP3 inflammasome plays a role in a variety of inflammatory diseases, 
including gout, atherosclerosis, and type II diabetes, as well as under conditions of cellular stress or injury. Here, we review recent 
advances in our understanding of the role of the NLRP3 inflammasome in host defense and various inflammatory diseases.
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INTRODUCTION

The mammalian immunity has effective systems for fighting 
against pathogenic invasion, namely, the innate and adaptive 
immune systems. The innate immune system comprises mole-
cules, cells, and mechanisms that play important roles in fight-
ing bacterial and viral infection and act as the frontline of im-
mune defense. The activation of innate immunity can lead to 
the induction of the adaptive immune system through a process 
of antigen presentation [1]. Upon challenge by pathogens or 
other dangers, the innate immune system recognizes warning 
signals by sensing pathogen- or danger-associated molecular 
patterns (PAMPs or DAMPs, respectively) by way of innate re-
ceptors. Although it was thought for a long time that the innate 
immune system is non-specific to particular antigens, it is now 
understood that it can discriminate self from non-self through 
pattern recognition receptors (PRRs), which include membrane-
bound and cytosolic receptors [1,2]. The last several decades of 
study have enriched our knowledge of the innate receptors and 

how these receptors recognize and respond to pathogenic and 
modified self (i.e., danger) signals.
 The nucleotide-binding domain leucine-rich repeat (LRR) 
containing (NLR) family of cytosolic receptors plays an impor-
tant role in the formation of multiprotein complexes, i.e., inflam-
masomes, which are able to activate the cysteine protease cas-
pase-1 and induce the maturation of interleukin (IL)-1β and IL-
18. IL-1β is a cytokine that plays a crucial role in host defense 
and inflammation. The secretion of IL-1β is very tightly regu-
lated by an inflammasome that comprises NLR, an intracellular 
receptor, and apoptosis-associated speck-like protein contain-
ing a C-terminal caspase-recruitment domain (CARD) (ASC). 
The activation of this inflammasome can lead to biological acti-
vation of IL-1β from its inactive proform to active IL-1β by ca-
talysis of the enzyme caspase-1, which is itself activated by the 
inflammasome [3]. The NLRP3 inflammasome is the most in-
tensively studied of the inflammasomes, and it can be activated 
by a variety of microbial-, stress-, or danger-induced substances 
[4]. However, the ligands and exact activating mechanism(s) of 
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the NLRP3 inflammasome remain to be identified [4].
 Compelling evidence has shown that the inflammasome is 
important for pathogenesis and/or regulation of a variety of in-
flammatory diseases. Currently, therapeutic approaches involv-
ing anti-IL-1β strategies are known to be successful for the treat-
ment of auto-inflammatory (IL-1β activation disorders) and in-
flammatory diseases [5]. A better understanding of the specific 
nature of the NLRP3 inflammasome is important to reveal the 
molecular pathophysiology of various inflammatory diseases 
and to identify potential therapeutic modalities to control in-
flammasome activation. In this review, we summarize recent 
reports of the roles of the NLRP3 inflammasome in host defense 
and inflammatory disorders, including gout, atherosclerosis, 
and type II diabetes. Finally, we discuss the regulation of IL-1β 
secretion and NLRP3 inflammasome activation and highlight 
their therapeutic potential.

OVERVIEW OF NLRP3 INFLAMMASOME 
ACTIVATION 

NLRP3 (Nucleotide binding oligomerization domain [NOD/
NACHT], LRR, and PYD domains [PYDs] containing protein 
3; also known as NALP3, cryopyrin, or CIAS1), a member of 
the NLR family, interacts with the adaptor molecule ASC (also 
called PYD and CARD domain containing PYCARD) and cas-
pase-1 to form a large (>700 kDa) multiprotein complex called 
the NLRP3 inflammasome [3,4,6]. Activation via PAMPs or 
DAMPs enables the N-terminus of NLRP3, which contains a 
PYD, to mediate homotypic interactions with ASC via PYD-
PYD interactions, which in turn permits the subsequent recruit-
ment of pro-caspase-1 via an interaction between CARD-CARD 
and ASC [7], leading to the autocatalytic activation of caspase-1 
(Fig. 1).

PAMPs 
DAMPs 

PAMPs 
DAMPs 

PAMPs 
DAMPs 

NFκB 

TLRs 
PAMPs 

Pro-IL-1β 

Phagocytosis 

Lysosome 
rupture 

ATP 

Bacterial pore- 
forming toxin 

Caspase-1 

NLRP3 

ASC 

Pro-caspase-1 

IL-1β 

K+ efflux 

K+ efflux 
MyD88 

IκB p50 
p65 

p50 
p65 

Signal 1 

Signal 2 

Fig. 1 

Fig. 1. A schematic model for NLR-related protein 3 (NLRP3) inflammasome activation. The activation of NLRP3 leading to the se-
cretion of interleukin (IL)-1β and IL-18 is triggered by a number of stimuli. Diverse pathogen-associated molecular patterns (PAMP) 
and/or danger-associated molecular patterns (DAMP) stimulation potentiates two steps that activate the NLRP3 inflammasome. Sig-
nal 1 activation leads to the expression of the pro-IL-1β gene and production of the pro-IL-1β protein through the toll-like receptor 
(TLR)-MyD88-NFκB signaling pathway. Signal 2 is a critical step in inflammasome activation. These signals or agonists trigger the as-
sembly of a large macromolecular complex through the recruitment of the apoptosis-associated speck-like protein containing a C-ter-
minal caspase-recruitment domain (CARD) (ASC) adaptor protein and pro-caspase-1 to NLRP3. Several mechanisms have been sug-
gested for NLRP3 inflammasome activation, including pore formation through P2X7 receptor and K+ efflux, mitochondrial reactive 
oxygen species generation, phagocytic pathway activation by particulate or crystalline structures (e.g., monosodium urate crystals, al-
uminium potassium sulfate, or silica nanoparticles), and lysosome rupture, among others. The molecular mechanisms by which NLRP3 
inflammasome activation occurs are not yet fully understood. ATP, adenosine triphosphate.
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 The NLRP3 inflammasome activates caspase-1 by a two-step 
process. An initial priming step (signal 1) is required for subse-
quent NLRP3 inflammasome formation by an activating signal 
(signal 2) [8,9]. In the absence of NLR signals, PRRs (such as 
toll-like receptor 4/lipopolysaccharide [TLR4/LPS]), cytokine 
receptors, or other signaling factors (signal 1) lead to the upreg-
ulation of pro-IL-1β or pro-IL-18 transcription. In response to 
a variety of intracellular signals (signal 2), such as endogenous 
danger signals (for example, purinergic P2X7 receptor [P2X7R]/
adenosine triphosphate [ATP]) and bacterial ligands, NLRs are 
released from their auto-inhibited monomeric conformation, 
leading to the assembly of an inflammasome capable of activat-
ing caspase-1 [9-12]. Once activated, caspase-1 processes the 
precursor forms of IL-1β and IL-18 to generate the biologically 
active forms of these proinflammatory cytokines that are then 
released from the cell [7,8].
 The NLRP3 inflammasome assembles in response to a vari-
ety of exogenous and endogenous activators that include mi-
crobial signals from bacteria, fungi, or viruses that contain sin-
gle-stranded (ss) RNA or double-stranded (ds) RNA analogs, 
bacterial pore-forming toxins (e.g., nigericin), environmental 
irritants (e.g., asbestos, silica, alum, or ultraviolet light), endog-
enous danger signals (e.g., ATP, monosodium urate [MSU] 
crystals, β-amyloid, or hyaluronan), crystalline substances, and 
peptide aggregates [8,12-15], as well as extracellular ATP released 
from dying tumor cells [16]. However, the molecular interactions 
that engage the relatively non-specific NLRP3 inflammasome 
in response to such distinct stimuli are unclear at present. 
 There are a number of potential mechanisms for the assem-
bly of the NLRP3 inflammasome. According to one hypothesis, 
mitochondria are the principal source of reactive oxygen spe-
cies (ROS) required for inflammasome activation; several re-
cent studies have implicated ROS produced by mitochondria, 
rather than phagosomes, in NLRP3 activation [17,18]. A second 
mechanism involves the disruption of lysosomal membrane in-
tegrity by crystalline materials and peptide aggregates [19,20]. 
Upon uptake of such substances, lysosomal rupture leads to the 
leakage of lysosomal proteases, specifically cathepsins B and L, 
into the cytosol where they could possibly mediate NLRP3 in-
flammasome activation by an as-yet-undefined cleavage event. 
It is probable that both mechanisms are required for full activa-
tion of the NLRP3 inflammasome or that they operate co-de-
pendently. Cellular potassium efflux has also been shown to be 
a requirement for inflammasome activation [21]. Given the im-
portance of NLRP3 inflammasome activation for inflammation, 

complex activation mechanisms and elaborate regulatory pro-
cesses are expected.

THE NLRP3 INFLAMMASOME AND HOST 
DEFENSE

The products of NLRP3 inflammasome activation, IL-1β and 
IL-18, have been shown to be protective in a variety of infections 
[22,23]. We first discuss the involvement of the NLRP3 inflam-
masome in host defense against fungal, bacterial, and viral in-
fections.

Fungal Infection and the NLRP3 Inflammasome
In immunocompromised patients, some fungal infections, as 
opportunistic pathogens, are often fatal. It has not been shown 
that the NLRP3 inflammasome is involved in susceptibility to 
fungal infections in humans; however, studies using murine 
models have established its role in host defense and resistance 
to several fungal infections, including Candida albicans, Asper-
gillus fumigatus, and Saccharomyces cerevisiae [15,24-27]. Studies 
have also shown that the inflammasome adaptor protein, ASC, 
and sensor protein, NLRP3, are important for caspase-1 activa-
tion and IL-1β secretion in response to the conserved fungal 
components zymosan, mannan [7], and large particulate 
(1,3)-β-glucans [28]. Interestingly, the yeast-phase forms of A. 
fumigatus and C. albicans induce lower activation of the NLRP3 
inflammasome, reflecting the differential regulation of host de-
fense responses that depend on the morphological form of fun-
gi [24,25,27]. The Dectin-dependent Syk kinase signaling path-
ways are required for upregulation of pro-IL-1β at the transcrip-
tional level and inflammasome activation by C. albcans [15] or 
A. fumigatus [27], suggesting that Syk kinase signaling mediates 
NLRP3 inflammasome activation.

Bacterial Infection and the NLRP3 Inflammasome
The role of the NLRP3 inflammasome in infections with bacte-
rial pathogens has been widely studied. In infections with Gram-
positive strains, such as Staphylococcus aureus or Listeria mono-
cytogenes, IL-1β secretion is induced in macrophages through 
NLRP3 inflammasome activation [9,29]. In addition, Strepto-
coccus pyogenes activates the NLRP3 inflammasome through 
NF-κB and the virulence factor streptolysin O, but this activa-
tion does not require exogenous ATP or the P2X7R protein [30].
 The Gram-negative pathogens Vibrio vulnificus and V. chol-
era have been reported to trigger the activation of caspase-1 and 
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IL-1β secretion in macrophages via NLRP3 inflammasome ac-
tivation [31]. Salmonella typhimurium, a Gram-negative flagel-
lated bacterium, induces the activation of the NLRC4/IPAF in-
flammasome [14,32]. S. typhimurium can also induce NLRP3 
inflammasome activation via Salmonella pathogenicity island 
(SPI)-2-dependent mechanisms. Moreover, both NLRs, NLRP3 
and NLRC4, are necessary for recruitment of ASC and caspase-1 
and activation of pro-IL-1β processing. Consistently, mice har-
boring both Nlrc4 and Nlrp3 genetic defects are more suscepti-
ble to Salmonella infection [33]. Recent studies have document-
ed the protective roles of NLRP3 and NLRC4 in infections with 
Burkholderia pseudomallei, a gram-negative bacterium that 
causes melioidosis [34]. Although mice deficient in NLRP3 and 
NLRC4 are susceptible to infection with B. pseudomallei, the 
NLRP3 and NLRC4 inflammasomes have non-redundant roles 
in melioidosis [34]. NLRC4 is essential for pyroptosis, while 
NLRP3 regulates the production of protective IL-18 in infec-
tions with B. pseudomallei [34]. 
 Neisseria gonorrhoeae, the pathogen that causes the sexually 
transmitted disease gonorrhea, can induce IL-1β production 
via NLRP3 inflammasome activation and pyronecrosis, which 
are dependent on the virulence factor lipooligosaccharide [35]. 
In this case, the activation of NLRP3-induced inflammatory re-
sponses and host cell death contribute to the pathogenesis of N. 
gonorrhoeae [35]. During infection with another sexually trans-
mitted infectious pathogen, Chlamydia trachomatis, IL-1 may 
be involved in the development of oviduct pathology, because 
the presence of an IL-1β antagonist prevents C. trachomatis-me-
diated cytotoxicity and tissue destruction in a fallopian tube or-
gan culture model [36].
 It is evident that inflammasome activation is differentially 
modulated in specific cell types and/or different species. For ex-
ample, Francisella tularensis infection leads to absent in mela-
noma 2 (AIM2) inflammasome activation in an exclusive man-
ner [37]. However, recent studies have shown that Francisella 
can activate the NLRP3 inflammasome in human cells through 
ROS, cathepsin B, and potassium efflux pathways [38]. In mu-
rine macrophages, Mycobacterium tuberculosis prevents inflam-
masome activation and IL-1β maturation through the myco-
bacterial gene zmp1, which encodes a putative Zn(2+) metallo-
protease [39]. However, in human macrophages, the M. tubercu-
losis ESAT-6 protein can potently activate the NLRP3/ASC in-
flammasome [40]. Recent studies have shown that the NLRP3 
inflammasome activated by M. tuberculosis does not directly 
promote host defense responses [41] or susceptibility to active 

tuberculosis [42], but is involved in necrotic cell death during 
mycobacterial infection [43]. Among numerous atypical myco-
bacteria, M. abscessus can activate the NLRP3 inflammasome 
through Dectin-1-Syk-dependent signaling pathways [44]. The 
activation of the NLRP3 inflammasome plays an essential role 
in antimicrobial responses against M. abscessus in human mac-
rophages [44]. However, in pathogenic M. marinum infection, 
the Esx-1 (type VII) secretion system promotes the activation 
of the NLRP3 inflammasome, which exacerbates disease and 
plays a host-detrimental role during infection [45]. A better un-
derstanding of the functions of the NLRP3 inflammasome dur-
ing bacterial infection is required to clarify the contribution of 
this essential protein complex to host-pathogen responses, par-
ticularly in the context of innate and pathophysiologic respons-
es during infection.

Viral Infection and the NLRP3 Inflammasome
The NLRP3 inflammasome is required for recognition of sev-
eral RNA viruses, including influenza and encephalomyocardi-
tis viruses (EMCV), whereas the retinoic acid-inducible gene I 
(RIG-I) inflammasome plays a role in detection of vesicular 
stomatitis virus (VSV) [8,46,47]. Besides viral dsRNA and its 
analog poly (I:C), Sendai virus and influenza virus infections 
are known to activate the NLRP3 inflammasome and the pro-
duction of active IL-1β and IL-18 in macrophages [8]. Recently, 
it was found that IL-1β production during respiratory syncytial 
virus infection is caspase-1-dependent, and that NLRP3 inflam-
masome activation is required for IL-1β release in virus-infect-
ed cells [48]. Another recent report showed that EMCV and 
VSV can induce NLRP3 inflammasome activation through 
melanoma-differentiation-associated gene 5- or retinolic acid 
inducible protein I-independent mechanisms [46]. In that study, 
there was no significant difference in susceptibility to viral in-
fections between wild-type and caspase-1-deficient mice, sug-
gesting that the NLRP3 inflammasome is not critically involved 
in host defense against these viral pathogens [46]. In human 
hepatoma cells, hepatitis C virus infection induces the assembly 
of the NLRP3 inflammasome complex and activation of IL-1β 
through ROS-dependent mechanisms [49]. 
 The AIM2 protein is an important sensor for cytosolic DNA 
that is in a complex with ASC [50]. However, certain DNA vi-
ruses have been shown to activate the NLRP3 inflammasome 
in vitro and in vivo. Varicella-zoster virus (VZV), an alphaher-
pes DNA virus that is the causative agent of varicella and herpes 
zoster, can induce formation of the NLRP3 inflammasome [51]. 
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The VZV-induced activation of the NLRP3 inflammasome does 
not require ROS or AIM2 expression [51]. Modified vaccinia 
virus Ankara, an attenuated dsDNA poxvirus, activates NLRP3 
inflammasome pathways for expression and processing of IL-
1β [52]. Although these data indicate that the NLRP3 inflam-
masome is activated upon detection of a variety of RNA viruses 
and certain DNA viruses, its precise roles in host defense or pa-
thology remain to be determined. Interestingly, recent reports 
have shown that 3’-untranslated region NLRP3 polymorphisms 
are linked to susceptibility to human immunodeficiency virus-1 
infection, although functional analysis has not been performed 
[53]. It is necessary to determine whether certain viral infections 
are associated with NLRP3 or ASC genetic polymorphisms to 
clarify the role(s) of the NLRP3 inflammasome during patho-
genic infections.

THE NLRP3 INFLAMMASOME AND HUMAN 
INFLAMMATORY DISEASES

NLPR3 was originally identified as the disease-responsible gene 
in patients with cryopyrinopathies, a group of rare autoinflam-
matory diseases that includes autosomal-dominant periodic fe-
ver syndromes, familial cold autoinflammatory syndrome 
(FCAS), Muckle-Wells syndrome, and chronic infantile neuro-
logical cutaneous and articular syndrome, which are collective-
ly referred to as the cryopyrin/NLPR3-assocatied periodic syn-
dromes (CAPS) [54,55]. Patients with gain-of-function muta-
tions in and/or around the NLPR3 NACHT domain have pri-
mary symptoms, such as urticarial skin rashes and fever, in the 
absence of apparent infection [54,55]. The clinical manifesta-
tions of CAPS patients are caused by spontaneous secretion of 
IL-1β and IL-18, resulting from the constitutively active form of 
NLRP3 and continuous caspase-1 and NF-ĸB activation [6,56]. 
A variety of endogenous danger molecules have been reported 
in NLRP3-dependent molecular mechanisms of inflammatory 
disease pathogenesis. In this chapter, we discuss the roles of the 
NLRP3 inflammasome in inflammatory diseases, including 
gout, atherosclerosis, and type II diabetes (Fig. 2).

Gout and the Inflammasome
Gout is an autoimmune disorder with inflammatory arthritis 
caused by hyperuricemia that results in the deposition of MSU 
crystals in joints and soft tissues [57]. Martinon et al. [10] 
showed that MSU and calcium pyrophosphate dihydrate (CPPD) 
crystals activate the NLRP3 inflammasome, resulting in the 

production of active IL-1β and IL-18. Mice deficient in inflam-
masome components or the IL-1Rβ receptor have impaired 
neutrophil influx in an in vivo model of crystal-induced perito-
nitis. Recent studies of murine gout models [58,59] as well as 
clinical studies [60,61] have shown that IL-1β is involved in 
gout pathogenesis as a key proinflammatory cytokine that causes 
increased neutrophil influx into the synovium and joint fluid. 
In addition, in bleomycin-induced lung injury models, pulmo-
nary accumulation of uric acid released from injured cells acti-
vates the NLRP3 inflammasome, leading to IL-1β production, 
in lung injury leading to pulmonary inflammation and fibrosis 
[62]. 

Atherosclerosis and the NLRP3 Inflammasome
Atherosclerosis is a progressive inflammatory disease and an 
underlying cause of cardiovascular disease, which is linked to 
certain risk factors, including dyslipidemia and hypertension 
[63,64]. Arterial wall injury is thought to be the results of an in-
flammatory process, based on the cell injury and apoptosis in-
duced by cholesterol crystals deposited in the necrotic core of 
atherosclerotic plaque lesions [65,66]. During the vicious devel-
opmental cycle of atherosclerosis, macrophage inflammatory 
signals and accumulation of extracellular lipids lead to intimal 
injury [65,66]. Previous studies have shown that Chlamydia 
pneumonia, a pathogen associated with several chronic inflam-
matory conditions including atherosclerosis, can activate the 
release of IL-1β in unprimed bone marrow-derived macrophages 
and that the NLRP3/ASC complex is required for caspase-1 ac-
tivation and maturation of IL-1β by this pathogen [67]. More-
over, IL-1R-deficient mice are more susceptible to C. pneumo-
nia-induced pneumonia, suggesting a role for IL-1 in host de-
fense against acute bacterial pneumonia caused by C. pneumo-
nia [67].
 Cholesterol crystals, common constituents of atherosclerotic 
lesions, activate the NLRP3 inflammasome by mechanisms in-
volving potassium efflux and phago-lysosomal damage [68,69]. 
Thus, NLRP3 inflammasome-mediated IL-1β release may con-
tribute to inflammatory processes during atherosclerosis and 
cell injury, driving disease progression. Future studies modulat-
ing IL-1β secretion and NLRP3 inflammasome activation will 
inform new strategies for controlling the potential initiation and 
progression of inflammation in atherosclerotic lesions. 

Type II Diabetes and the NLRP3 Inflammasome
Type II diabetes (T2D) is characterized by a combination of in-
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sulin resistance and pancreatic β-cell dysfunction [70]. Numer-
ous reports have indicated that obesity and T2D are associated 
with an increased systemic, proinflammatory milieu. Notably, 
IL-1β [71] and IL-18 [72] have been shown to risk factors for 
T2D. Particularly, IL-1β has profound cytotoxic effects on pan-
creatic β-cells and inhibitory functions on islets [73]. High glu-
cose or free fatty acids, which are elevated in T2D, can directly 
induce inflammatory responses and increased IL-1β production 
[74]. Macrophage-derived IL-1β production in insulin-sensitive 
organs leads to progression of inflammation and induction of 

insulin resistance in obesity [75]. Many studies in animals and 
humans have reported that IL-1β-targeted therapy can be use-
ful as an immunomodulatory strategy for T2D treatment with 
improved glycemia, β-cell functional mass, and insulin sensitiv-
ity, and can reduce inflammatory responses [76,77].
 Islets of T2D patients have amyloid deposition and increased 
production of proinflammatory cytokines and chemokines. This 
unique, primary component of islet amyloid deposits is the islet 
amyloid polypeptide (IAPP; also known as amylin) [78]. Recent 
reports have shown that IAPP can directly induce the generation 

Fig. 2. The NLR-related protein 3 (NLRP3) inflammasome in various inflammatory diseases. The NLPR3 inflammasome is involved 
in the pathogenesis of a variety of inflammatory diseases, including gout, type II diabetes (T2D), and atherosclerosis. In gout, crystal-
line or particulate NLRP3 activators such as monosodium urate (MSU) crystals are engulfed and then recognized by toll-like recep-
tors (TLRs) (i.e., TLR2 or TLR4), leading to the release of pro-interleukin (IL)-1β. These activators can also be phagocytosed by mac-
rophages, leading to lysosome rupture and NLRP3 inflammasome activation (see details in Fig. 1). Such NLRP3 activation causes the 
release of IL-1β. IL-1β released from macrophages activates IL-1 receptors on epithelial cells and resident macrophages, resulting in 
signal transduction and leading to the release of pro-inflammatory cytokines and chemokines. These cytokines/chemokines in turn 
recruit and activate leukocytes, amplifying the inflammatory positive-feedback loop. This inflammatory cascade may be the major 
cause of gout. In atherosclerosis, cholesterol crystals in atherosclerotic lesions activate the NLRP3 inflammasome in macrophages, 
leading to inflammation and cell infiltration. This amplified inflammatory cascade leads to the accumulation of extracellular lipids, 
resulting in cell injury and/or death and increased atherosclerosis progression. In T2D, hyperglycemia or fatty acids directly activate 
the NLRP3 inflammasome, causing the release of inflammatory cytokines and IL-1β. Prolonged hyperglycemia in pancreatic islets 
leads to reactive oxygen species (ROS) production and endoplasmic reticulum (ER) stress. Increased ROS levels trigger NLRP3 in-
flammasome activation through a thioredoxin-interacting protein (TXNIP)-dependent pathway. The elevated ER stress in β-cells also 
activates the NLRP3 inflammasome, but the reason and mechanism for this remain unknown. Islet amyloid polypeptide (IAPP) acti-
vates the NLRP3 inflammasome in pancreatic macrophages and results in the secretion of pro-inflammatory cytokines and IL-1β. 
The elevated levels of IL-1β from pancreatic macrophages and β-cells result in increased β-cell death and insulin tolerance, leading to 
reduced insulin production.
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of IL-1β in macrophages through NLRP3 inflammasome acti-
vation [79]. In addition, human (h) IAPP, but not nonamy-
loidogenic rodent IAPP, induces islet chemokine secretion and 
production of a variety of proinflammatory cytokines from 
macrophages [80]. Treatment with the IL-1R antagonist (IL-
1Ra) anakinra greatly improves glucose tolerance in non-obese 
diabetic/severe combined immunodeficient recipients of islet 
grafts from hIAPP-expressing transgenic mice, suggesting that 
amyloid-induced IL-1β secretion and inflammasome activation 
contributed to the β-cell dysfunction of islet transplantation 
[80]. 
 The NLRP3 inflammasome is increasingly recognized as a 
metabolic sensor of metabolic dysregulation, such as T2D 
pathogenic status [13]. Triggering of inflammasome activation 
causes thioredoxin-interacting protein (TXNIP) to associate 
with NLRP3 in an ROS-dependent manner, leading to the sub-
sequent secretion of IL-1β and insulin resistance [13,81]. In ad-
dition, Txnip(-/-) or Nlrp3(-/-) mice show improved glucose 
tolerance and insulin sensitivity [81]. However, another study 
showed that there is no difference in IL-1β secretion between 
wild-type and TXNIP-deficient macrophages in response to 
NLRP3 stimulation [79]. Although this discrepancy has not 
been fully clarified, one recent study has shown that glucose, 
but not fatty acids, induce islet β-cell expression of proapoptotic 
TXNIP [82]. This study also revealed that TXNIP deficiency ef-
ficiently protects against staurosporine- or glucose-induced β-cell 
toxicity; however, it is not as protective against endoplasmic re-
ticulum (ER) stress- or fatty acid-mediated lipoapoptosis [82]. 
Future studies should clarify the exact role of TXNIP in terms 
of ROS-dependent inflammasome regulation, including addi-
tional investigation in different experimental settings.
 T2D patients have an increased ER stress responses, which is 
often involved in the pathology of chronic inflammatory diseas-
es [83]. Recent studies have shown that ER stress can activate 
the NLRP3 inflammasome, resulting in the subsequent release 
of IL-1β [84]. Interestingly, ER stress-induced NLRP3 inflam-
masome activation depends on ROS generation and potassium 
efflux, but not the classic unfolded protein response [84]. Fur-
ther studies should reveal the underlying mechanism(s) by which 
the ER stress response contributes to chronic inflammatory dis-
ease through inflammasome activation.

Clinical Trials Testing Modulation of inflammasomes
Inflammasomes and IL-1β are increasingly recognized as drug 
targets for a variety of inflammatory disorders. Substantial ad-

vances in our understanding of the molecular mechanisms of 
inflammasome activation have resulted in clinical trials that have 
tested therapeutic strategies targeting IL-1 production. It is well 
known that IL-1 blockade with either the human IL-1β neutral-
izing monoclonal antibody canakinumab (Ilaris, Novartis Phar-
maceuticals Co., Basel, Switzerland) or the IL-1 receptor antag-
onist (IL-1Ra) anakinra (Kineret, Amgen, Thousand Oaks, CA, 
USA) potently inhibit inflammatory effects and joint damage in 
rheumatoid arthritis [85] and have remarkable therapeutic ef-
fects on patients with Muckle-Wells syndrome [86]. IL-1Ra also 
ameliorates the clinical symptoms and hematological features 
of patients with familial cold autoinflammatory syndrome 
(FCAS), a disease with genetically defective NLRP3 [87]. In ad-
dition, rilonacept (Arcalyst, Regeneron Pharmaceuticals Inc., 
Tarrytown, NY, USA), a fusion protein of the ligand-binding 
domains of human IL-1R and IL-1R accessory protein (IL-
1RAcP) with the Fc portion of human immunoglobulin G1, 
may improve the clinical symptoms and signs of patients with 
CAPS [88]. These findings seem to be promising and support 
the development of a new IL-1β-targeted therapy for more 
common inflammatory diseases.
 Colchicine has been used for treatment of acute gouty attack 
[89]. Uric acid crystal-induced NLRP3 inflammasome protein 
complex assembly is inhibited by colchicines through microtu-
bule inhibition [10], thus explaining its role upon activation of 
the NLRP3 inflammasome in gout pathogenesis. Clinical stud-
ies of the IL-1 inhibitors rilonacept (IL-1 Trap) [90], canakinum-
ab (monoclonal anti-IL-1β antibody) [91] and anakinra [92] have 
shown therapeutic benefit for patients with acute and chronic 
gout. In addition, an oral caspase-1 inhibitor, VX-765 (Vertex 
Pharmaceuticals Inc., Cambridge, MA, USA), inhibits IL-1β 
secretion from LPS-stimulated peripheral blood mononuclear 
cells [93]. In contrast to IL-1β-targeted therapy, caspase-1 in-
hibitors are not as efficient, despite their good efficacy shown in 
experimental models [94]. Developing new agents may be im-
portant for patients with chronic, refractory, inflammatory 
conditions. 

CONCLUDING REMARKS

Much progress has been made in understanding the molecular 
mechanisms of activation and roles of the NLRP3 inflamma-
some. However, numerous questions remain, including the 
molecular basis for NLRP3 recognition by unidentified ligands, 
its distinct role in the context of various physiological condi-
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tions, and the regulatory pathways governing NLRP3 inflam-
masome activation. Although the NLRP3 inflammasome has 
been identified as a critical immune defense platform in a vari-
ety of bacterial, fungal, and viral infections, the precise mecha-
nisms by which it induces host immune activation have not been 
fully clarified. Moreover, many pathogens, especially those that 
invade the cytosolic environment, can escape, dysregulate, re-
sist, or even co-opt use of the NLRP3 inflammasome complex. 
Because of their key roles in inflammatory disease, IL-1 and in-
flammasomes have been targets of recent clinical trials for in-
flammatory disease. As NLRP3 inflammasome activation also 
provides significant host defense functions, caution is needed 
with regard to the over-inhibition of IL-1 when therapeutically 
modifying host immunity to pathogenic infection. As the NLRP3 
inflammasome is important not only in host defense but also in 
inflammatory disease pathogenesis, challenges remain for the 
development of novel targets and appropriate situation-depen-
dent adjustments for the treatment of infectious and inflamma-
tory disorders.
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