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Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive,

effective, and FDA-approved brain stimulation method. However, rTMS parameter

selection remains largely unexplored, with great potential for optimization. In

this review, we highlight key studies underlying next generation rTMS therapies,

particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS

Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain

Stimulation Treatments.

Methods: We performed a targeted review of pre-clinical and clinical rTMS studies.

Results: Current evidence suggests that rTMS pattern, intensity, frequency, train

duration, intertrain interval, intersession interval, pulse and session number, pulse

width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like

facilitation, and clinical antidepressant response. Additionally, an emerging theme is

how endogenous brain state impacts rTMS response. Researchers have used resting

state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized

rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms

that preferentially respond to personalized stimulation frequencies, or in closed-loop

EEG, may be synchronized with endogenous oscillations and even phase to optimize

response. Lastly, neuroimaging and genotyping have identified individual predispositions

that may underlie rTMS efficacy.

Conclusions: We envision next generation rTMS will be delivered using optimized

stimulation parameters to rsfMRI-determined targets at intensities determined by energy

delivered to the cortex, and frequency personalized and synchronized to endogenous

alpha-rhythms. Further research is needed to define the dose-response curve of each

parameter on plasticity and clinical response at the group level, to determine how these

parameters interact, and to ultimately personalize these parameters.

Keywords: repetitive transcranial magnetic stimulation, theta burst stimulation, parameter optimization, resting

state fMRI, synchronized rTMS-EEG, synchronized TMS, inverted U-shaped curve, dose-response curve
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INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) is a
non-invasive, effective and FDA-approved brain stimulation
treatment for treatment resistant depression (TRD) (1), obsessive
compulsive disorder (OCD) (2), and smoking cessation (3).
While conventional once-daily rTMS elicits remission in ∼30%
of TRD patients in a naturalistic setting (4), parameter
selection remains largely unexplored, in part due to the infinite
combination of possibilities. In this narrative mini-review,
we highlight key studies demonstrating the potential impact
that parameter selection can have on brain plasticity and
clinical response, specifically focusing on: (1) rTMS Stimulation

Parameters (i.e., Pattern, Intensity, Frequency, Train Duration,
Intertrain and Intersession Intervals, Pulse and Session Number,
Pulse Width, and Pulse Shape); (2) rTMS Target Engagement;
(3) rTMS Interactions with Endogenous Brain Activity; and
(4) Heritable Predisposition to Brain Stimulation Treatments.
Theme 1 involves rTMS parameters and how they affect the
brain; in contrast, Themes 2–4 highlight how underlying brain
state affects stimulation efficacy. Understanding and applying
optimized rTMS parameters holds enormous potential to
improve next generation rTMS therapies across brain disorders,
particularly as multiple variables do not simply produce better
results with more or higher magnitude stimulation, but rather,
appear to follow an inverted U-shaped curve with peak efficacy
in the middle (Figure 1A).

Parameter Theme 1: How Do RTMS
Parameters Impact Brain Activity and
Therapeutic Response?
Pulse Pattern
The most notable and widely adopted parameter change to date
is pulse pattern. The only FDA-cleared form to date, intermittent
theta burst stimulation (iTBS), typically delivers 600 pulses of
rTMS in 5Hz triplet bursts of 50Hz pulses in sessions that take
∼3min. These parameters are based on traditional protocols
shown to induce long term potentiation (LTP)-like facilitation,
and are designed to emulate endogenous hippocampal activity (5)
(Figure 1B). While iTBS is clearly faster than conventional 10Hz
rTMS protocols, it is unclear whether iTBS has greater, similar,
or inferior efficacy compared to 10Hz with mixed findings to
date. In a motor evoked potential (MEP) study in healthy adults,
Di Lazzaro et al. (6) found that iTBS increased MEP amplitude
significantly more than 5Hz rTMS. Similarly, Zhao et al. (7)
found that iTBS produced significantly greater reductions in
negative schizophrenia symptoms than 10, 20Hz, or sham
stimulation. Other studies have found similar results between
theta burst and conventional rTMS protocols. In depression, a
large non-inferior clinical trial found that iTBS produced nearly
identical response rates as conventional 10Hz rTMS (8). Tsai
et al. (9) conducted a randomized controlled trial comparing 5Hz
rTMS and iTBS for post-stroke cognitive impairment, finding
that both were effective in treatment certain symptom clusters.

While iTBS is faster to administer and could have superior
or similar efficacy to conventional rTMS protocols, other studies

have found that conventional rTMS protocols produce superior
results, particularly in comorbid post-traumatic stress disorder
(PTSD) and major depressive disorder (MDD). Whereas, Philip
et al. (10) found that iTBS effectively treated PTSD acutely, and
with durable effects assessed out to 1 year post-treatment (11),
a retrospective chart review in patients with comorbid PTSD
and major depression revealed that 5Hz stimulation produced
superior reductions in PTSD and MDD symptoms than iTBS
(12). These data suggest that iTBS may not be the answer
in all cases, and may even work through a different cellular
mechanism, as 10Hz rTMS and iTBS produced opposing MEP
results in healthy controls when combined with NMDA receptor
agonists (13–16).

Train Duration
The most commonly used iTBS protocol is based on the seminal
findings by Huang et al. (5), who found that twenty 2 s trains (30
pulses per train) with an 8 s intertrain interval (ITI) produced
facilitation for 15min. It is worth noting that a single 2 s train
could produce facilitation for up to 15 s, but a 5 s train caused
inhibition at 10 s (7), suggesting that the optimal amount of
stimulation is consistent with an inverted U-shaped curve “sweet
spot” (Figure 1A).

The same principle appears to also apply to traditional rTMS,
as Jung et al. (17) found that 1.5 s trains of 10Hz rTMS produced
the canonical excitatory high-frequency effect, while 5 s trains
inhibited MEP amplitudes (Figure 1C). Interestingly, another
group used 8 s trains, also for 20min at 10Hz, and observed
increased facilitation (18). While increasing the train duration
also increases the overall number of pulses, it may hint at
a non-inverted U-shaped curve, at least within certain limits.
Despite these insightful studies, we still do not know where this
theoretical U-curve rises and falls, or where it peaks. Further
delineation promises to fine-tune current protocols.

Intertrain Interval
Intertrain interval (ITI) refers to the time between trains of rTMS,
and to date, has largely been based on safety considerations (19).
Naturalistic clinical data has found no meaningful differences
in therapeutic outcomes with ITI ranging from 11 to 26 s
(20), suggesting that treatment time could be reduced from
the conventional 37.5 to 18min without meaningful clinical
differences. In the motor system, ITI ranging between 3 and
17 s produced inhibitory motor effects from successive single
TMS pulses; however, a 1 s ITI, effectively becoming continuous
1Hz stimulation, lost the suppressive effect (21). In contrast,
ITIs of 4, 8, 16, and 32 s produced no difference in motor-
evoked potentials of healthy humans using patterned 20Hz
rTMS (Figure 1D), although shorter ITI produced a marked
disinhibition as measured by short intracortical inhibition (SICI)
(22). The meaning of these different findings requires further
exploration, but speculatively hints that different protocols may
theoretically channel different neuronal populations with their
corresponding symptoms or networks.
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FIGURE 1 | Key rTMS Parameters Guiding the Development of Next Generation rTMS Therapies. (A) Dose-Response Curve Model. Some parameters follow an

inverted U-shaped curve, with peak efficacy in the middle. (B) Pulse Pattern. Intermittent theta burst stimulation (iTBS) has been FDA-cleared as a clinically

non-inferior, but more efficient, form of rTMS compared to conventional 10Hz stimulation. (C) Train Duration. Trains of 1.5 s at 10Hz have produced the canonical

excitatory effect while 5 s trains at 10Hz produced an opposite inhibited effect. (D) Intertrain Interval (ITI). Decreased ITI has drastically reduced intracortical inhibition

without changing corticospinal excitability or clinical depression outcomes. (E) Pulse Number-10Hz. 6,800 pulses of 10Hz rTMS did not improve clinical outcomes

compared with conventional 3,000 pulse 10Hz rTMS. (F) Pulse Number- iTBS. Doubling pulse number (1,200) produced inhibitory effects, opposing the excitation

from the FDA-cleared 600 pulse protocol. (G) Sessions Per Day. Relative to conventional rTMS (top) “Accelerated rTMS” (applying more than one session per day,

bottom), may produce a more rapid and effective clinical response. (H) Pulse Width. Longer pulse widths may produce more efficient cortical activation. (I) Pulse

Shape. Full-sine (biphasic) waveforms appear to produce stronger stimulation than single or summated half-sine (monophasic) pulses. (J) Frequency. Despite

extensive clinical investigation, various stimulation frequencies (including 20, 18, 10, and 5Hz to the left DLPFC and 1Hz to the right DLPFC) have not revealed a

superior frequency at the group level.
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FIGURE 2 | Key Brain States and Predispositions To Consider in Next Generation rTMS Therapies. (A) Functional Neuroimaging Targeting (Resting State Functional

Connectivity; rsFC Targeting and concurrent TMS-fMRI). Target selection may become personalized based on functional connectivity and/or symptoms. Combining

single pulses of TMS and measuring the blood oxygen level dependent (BOLD) signal may further help to individualize stimulation targets and possibly predict

treatment course outcomes. (B) Electric Field (E-Field) Dosing. Intensity selection may utilize realistic head models and MRI-based E-field dosing to more precisely

estimate the stimulation delivered to the target, particularly outside of the motor cortex. (C) Matching Endogenous Alpha Frequency. Patients with endogenous alpha

rhythms closer to (or at) 10Hz (top) responded better to 10Hz rTMS than patients who were mismatched (middle). Most effective rTMS may involve stimulation at the

endogenous frequency (bottom). (D) Synchronization to Endogenous Alpha Rhythm. Through closed-loop EEG, synchronized delivery of each rTMS train with an

individualized endogenous alpha rhythm and aligning the timing of the TMS pulse with a specific phase of the waveform appears to further optimize rTMS effects.

Here we show synchronized rTMS-EEG in three phases. Out of Phase describes when pulses are delivered without regard to endogenous oscillations (e.g., 10Hz

stimulation delivered for someone with endogenous 8Hz oscillations). When rTMS is delivered In Phase, the pulses can be synchronized with the peak of each

oscillation (i.e., Positive Phase) or at the trough of each oscillation (i.e., Negative Phase). Importantly, synchronizing the endogenous alpha rhythm could occur at any

frequency, e.g., 8.5Hz. (E) Predisposition to rTMS—BDNF Gene Polymorphism. Genetic predispositions may influence individual response to rTMS, such as the Val

??Met single nucleotide polymorphism found in the brain derived neurotrophic factor (BDNF) gene which impairs the normal plasticity response to rTMS protocols.

Pulse Number
Pulse number also appears to be consistent with the inverted
U dose-response curve with further space for optimization
(Figure 1A). Huang et al.’s (5) original theta burst findings
that 600 pulses produced a more durable response than 300,
but that doubling the iTBS pulse number to 1,200 actually
produced inhibitory effects instead of the potentiating 600 pulses.
More recent studies have produced similarly paradoxical findings
that motor iTBS and cTBS at different pulse numbers produce
differing facilitatory or inhibitory effects. Notably, Gamboa et al.
(23) found that 1,200 iTBS pulses produced inhibitory motor
effects, whereas McCalley et al. (24) reported that amongst 600,
1,200, 1,800, and 3,600 pulses of iTBS or cTBS, only 3,600

cTBS pulses produced excitatory motor effects. It is unclear
whether these theta burst results in healthy adults over the motor
cortex would translate clinically as iTBS is typically applied over
multiple treatment sessions, at only 600 pulses per session, and
over the prefrontal cortex.

An increasingly popular approach that can be utilized to study
the effects of pulse number on brain response combines single
pulses of TMS with electroencephalography (EEG) recordings
with scalp electrodes, a method known as TMS-EEG (25).
Since TMS-EEG directly measures the brain’s response to TMS,
researchers can assess the cortical effects of TMS outside of
the motor system (e.g., in the prefrontal cortex) (26). Utilizing
this approach, Desforges et al. (27) used TMS-EEG measured
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before and after 600, 1,200, or 1,800 pulses of iTBS over the left
prefrontal cortex. The authors found that the number of pulses
did not alter the cortical response, but that individual responses
to different stimulation parameters varied widely. It is currently
unclear how these prefrontal dose-response findings for pulse
numbermight vary between single session studies compared with
many sessions over a typical clinical course of TMS. However,
there is preliminary evidence that a greater number of pulses
could matter clinically. In an open-label trial, Cole et al. (28)
showed that 1,800 pulses of iTBS elicited a remission rate of
90.5% (Figure 1F). However, due to this study altering other
variables, such as session number and total number of sessions,
it is difficult to draw definitive conclusions. While this study
cannot conclusively tell us that the increased pulse number alone
produced this strong antidepressant effect, it at least suggests
that this higher pulse number does not appear to block clinical
antidepressant efficacy.

Similarly, differing pulse number in conventional rTMS may
also produce different effects. Che et al. (29) found that pulse
number can cause divergent effects with 10Hz rTMS, as 1,500
pulses, but not 3,000 pulses, produced analgesic effects. On the
other hand, Fitzgerald et al. (30) tested the widely held clinical
belief that more pulses per session is more effective, and found
that 125 trains (5,625 pulses) vs. 50 (3,000 pulses) produced no
differences in an randomized trial with 300 depressed patients.
It is worth noting that pulse number has increased steadily from
the earlier trials to today’s clinical standard of 3,000 pulses (31),
broadly suggesting momentum toward applying more pulses per
session over time. As safety considerations also inform pulse
number, it is important to note that Hadley et al. gave 6,800
pulses per session of open-label 10Hz TMS to 19 depressed
patients with good efficacy and no serious adverse events (32)
(Figure 1E).

Session Number
TMS clinicians have anecdotally noticed that after a patient has
plateaued in clinical improvement, continued treatment sessions
could correspond with clinical worsening, again, consistent
with the inverted U-shaped dose-response curve (Figure 1A).
However, among non-responders from one clinical trial, 61%
eventually remitted with ongoing twice weekly treatments for
up to 16 weeks (33). These data suggest that the number of
treatments may be titrated to individual response. One way
to personalize session number might be through predictive
modeling based on early response (or lack thereof) to rTMS
treatment (34). Another intriguing approach used an adaptive
algorithm to determine the number of sessions it would take to
change the strength of resting state functional connectivity (rsFC)
between a cortical parietal target and the hippocampus (35).
Using this algorithm, Freedberg et al. (35) found that more than
4 sessions would be needed for 87.5% efficacy at changing rsFC
connectivity in the hippocampal-cortical network. However, the
exact number of sessions differed in each participant, again
pointing to the potential utility of personalizing session number
based on response. While repeated fMRI sessions to gauge or
predict response could be cost prohibitive, EEG may provide
an cheap and feasible alternative to establish desired network

engagement, such as recently reported in the first TMS study
to show changes in EEG microstates in TMS responders, but
not non-responders (36). Researchers have also previously shown
that the degree of iTBS-evoked EEG oscillations at baseline can
predict iTBS-associated plasticity in the alpha and beta bands
(37), providing a further use of EEG to predict rTMS response.

A parallel line of research has not only increased the overall
number of sessions but also the number of sessions per day,
known as “accelerated” TMS (aTMS). Interest in aTMS is based
on two observations: good efficacy and rapid response, such as
found in an early open label trial with 27 depressed patients (38).
Unfortunately, not all studies agree and the rates of efficacy and
response likely depend on the number of sessions per day, which
have varied between 2 and 10 thus far. One randomized trial
with 98 depression patients showed improved odds of remission
with two sessions per day (39), while two other RCTs with 115
and 208 depressed patients showed no difference in remission
or response rates, nor did they improve symptoms or speed of
response (40, 41). While these trials included 2 or 3 sessions per
day, Cole et al. (42) gave 29 depressed patients 10 daily sessions
for 5 days, finding that active aTMS produced a 50% symptom
reduction compared to just 11% for sham (Figure 1G). While
this study has justifiably garnered wide attention, we cannot
definitively state whether aTMS is solely responsible for this effect
given multiple variables changed, including personalized rsFC
targeting (see below).

Pulse Width
Altered pulse widthmay also have biologicallymeaningful effects.
Peterchev et al. (43) varied pulse width between 30, 60, and
90 µs, finding that increased pulse width decreased the motor
threshold (MT) by increasing pulse energy (Figure 1H). Casula
et al. (44) not only found the same negative correlation between
pulse width and MT, but also reported that wider pulse widths
produced higher local EEG field potentials. In one study, varying
pulse widths in 1Hz rTMS produced divergent effects, pointing
to the large impact that pulse widths can have; shorter pulse
widths of 40 and 80 µs elicited canonical inhibitory 1Hz effects
while 120 µs pulse width 1Hz was excitatory, possibly due
to differential membrane properties of preferentially activated
segment (45). Whether these findings reflect specificity of
neuronal activation due to different pulse widths, or are simply a
product of increased energy with wider pulse widths as suggested
by findings from Shirota et al. (46), remains to be determined.
While these findings are in healthy control subjects, perhaps
next generation rTMS protocols will utilize wider pulse widths to
improve efficacy, which may also produce less discomfort (47).
Emerging engineering projects hold promise to make control
over these variables more widely accessible (48).

Pulse Shape
Related to pulse width, pulse shape also clearly affects MEPs, but
is perhaps the furthest from clinical adaptation (in large part
due to most TMS machines not allowing the researcher to alter
this parameter). Several principles emerge. First, biphasic (full
sinusoidal) produces greater excitation than monophasic (half-
sine) (49) and even two summated monophasic waveforms (50).
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However, pulse shape is more complicated since biphasic waves
(widely used in clinical rTMS) stimulate neurons in both the
posterior-anterior (PA) direction and then the anterior-posterior
(AP) direction (Figure 1I). Each of these directions is thought
to activate a distinct group of neurons. Therefore, the biphasic
wave may be considered a summated activation of two neuronal
populations; PA is activated first and provides the more robust
excitatory effect, followed by a delayed and weaker AP activation
(49). That different neuronal mechanisms may underlie low-
frequency stimulation is suggested by the lack of effect on 1Hz
biphasic rTMS compared to robust inhibition with AP, PA, and
rectangular pulse shapes (bidirectional pulse) (51). Taking this
concept a step further, Jung et al. (52) applied quadri-pulse
(q) TBS (666Hz quadruplets with 1.5ms interpulse intervals)
and produced opposing motor plasticity effects when applied as
single- or double-sine-waves, and as PA and AP directionality is
applied. These interactions highlight the complexity of parameter
interactions, and the importance of getting it right.

Frequency
rTMS frequency is perhaps the best studied parameter in
depression trials, with common protocols including 20, 18, 10,
and 5Hz to the left DLPFC (53–57) as well as 1Hz to the
right DLPFC (Figure 1J) (58–60). However, recent evidence
suggests that individualized frequency, matched with a patient’s
endogenous rhythm, may improve clinical outcome (61). Such
personalized medicine is the focus of subsequent sections.

Parameter Theme 2: Does Personalized
Stimulation Target and Target Engagement
Influence Treatment Response?
Functional Neuroimaging for Individualized Targeting
To date, the most common therapeutic target of rTMS for
depression has been the left dorsolateral prefrontal cortex
(DLPFC). However, the optimal target and method to identify
that target within the left DLPFC remains an open discussion.
Current standard clinical practice typically identifies the optimal
prefrontal stimulation target using a set distance from the
motor cortex (i.e., the 5 cm rule) or a probabilistic method of
approximating the F3 EEG location (i.e., Beam F3). However,
personalizing the rTMS target using resting state functional
connectivity (rsFC) analyses may produce more clinically
impactful results (Figure 2A). Weigand et al. (62) found that
treatment response negatively correlated with rsFC strength
between the DLPFC and subgenual anterior cingulate cortex
(sgACC), two important nodes within the executive network.
Several other studies have corroborated these findings (28, 63–
66), and thus, it is possible that traditional targeting methods
based on scalp measurements or EEG coordinates may be
engaging the relevant networks only by chance and only at a
group level [see comparisons of common targeting approaches
in (64)]. In other words, using rsFC analyses to personalize
stimulation target may be fruitful as each individual’s optimal
rsFC stimulation target often differs from the group averaged
target location that may agree with the 5 cm or Beam F3
approaches. Moreover, standard targeting methods ignore the

heterogeneity of depression, and emerging evidence supports
the feasibility and importance of engaging depression subtypes
and even symptoms (67). We can expect that what has been
found with rTMS for depression could have relevance across
brain disorders.

Another promising tool for identifying individualized rTMS
targets involves combining single pulses of TMS and fMRI within
the MR scanner environment, a technique called interleaved
TMS-fMRI (68–70). By applying single pulses of TMS and
recording the resulting blood oxygen level dependent (BOLD)
signal, it is possible to directly and causally measure the brain’s
response to TMS (71). Notably, TMS-fMRI can record how single
pulses of TMS affect brain activity, not only at the cortical surface,
but also at distal regions of a brain network, such as the sgACC
in depression (72, 73). Moreover, baseline TMS-fMRI response
may be able to predict clinical outcome. In one study, depressed
patients with more negative TMS-fMRI baseline responses in
the sgACC corresponded with better symptom improvements
(74). Thus, future research and clinical practice might utilize
TMS-fMRI to determine optimal stimulation targets for rTMS
treatment, or to predict the patients for whom rTMS may be
most effective. Alternatively, less expensive and more accessible
functional near-infrared spectroscopy (fNIRS), or diffuse optical
tomography (DOT) could enable such targeting and even allow
real-time visualization of the effects of varied rTMS protocols.

Stimulation Intensity
Even when the correct target is identified, it would produce
no clinical benefits if the target were not adequately engaged
by stimulation, such as with suboptimal stimulation intensity.
In current practice, the stimulation intensity is derived from
the motor threshold (MT), which relies on the assumption
that cortical excitability in the motor cortex can accurately
inform stimulation intensities at other cortical targets such as
the prefrontal cortex. However, it remains unclear whether
sufficient motor cortex activation equates to adequate prefrontal
engagement, or how stimulating at a more optimized intensity
might affect response rate. Historically, early TMS researchers in
the 1990s proceeded with caution due to safety considerations,
first applying rTMS at just 80% MT (75). Incrementally, these
early researchers then incrementally increased rTMS intensities
to 100% MT and eventually, the now widely adopted 120% MT
based on evidence that greater scalp-to-cortex distance in older
patients appeared to prevent high response to rTMS therapy at
100% MT intensities (76, 77), but that this could be overcome by
individually adjusting for scalp-to-cortex distance (78).

A more recent tool is MRI-based electric field (E-field)
modeling, which uses structural MRI-based tissue segmentation
and varying tissue conductivities to more accurately estimate
the amount of stimulation that reaches the cortex (79–81)
and could be used to inform prospective dosing. Since E-
field modeling is not dependent on the dubious assumption
that motor cortical engagement can accurately estimate how
much stimulation reaches prefrontal stimulation targets, E-field
dosing could potentially inform higher fidelity, personalized
stimulation intensities specifically for the prefrontal cortex or
other rTMS targets. Thus, E-field dosing could prove particularly
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useful if the dose-response relationship between stimulation
intensity and clinical response follows the inverted U-curve
model with peak efficacy in themiddle (Figure 1A).While largely
untested, some extant dose-response experiments point to a
stimulation intensity sweet spot that neither under- nor over-
doses. Notably among these, Chung et al. (82) determined that
75% MT stimulation produced superior DLPFC TMS-evoked
EEG potentials, rather than 50 or 100% MT. Similarly, Lee
et al. (83) determined that subthreshold iTBS caused greater
reductions in depressive symptoms than suprathreshold iTBS,
again pointing to an optimal middle stimulation intensity. In
retrospective E-field analyses of clinical rTMS for depression and
smoking cessation, the prefrontal E-field magnitude from 120%
MT stimulation did not linearly correlate with the percentage
of symptom change (84, 85), possibly suggesting a non-linear
dose-response relationship and perhaps peak efficacy with an
optimized middle amount of stimulation. A remaining question
is whether there is an optimal E-field dosing intensity, which
itself could be prone to interindividual differences due to
varied distributions of particular neuron types or different
neurotransmitter concentrations between patients. To account
for these potential individual differences, Caulfield et al. (86)
have proposed to measure the E-field intensity at the MT
to first determine an individual neuronal activation threshold
by measuring a personalized MT and calculating the required
stimulation intensity to replicate this motor E-field over the
prefrontal stimulation target (Figure 2B). It remains to be seen
whether optimized E-field dosing would improve clinical efficacy.

Parameter Theme 3: How Does
Endogenous Brain Activity or Brain State
Affect RTMS Treatment Response?
Synchronization to Endogenous Brain Activity
Whereas conventional rTMS is applied with the same stimulation
frequency across patients, emerging neuroimaging research
could inform more personalized stimulation approaches.
Leuchter et al. (61) systematically determined the resonant
frequency of each subject by analyzing the effect of
various rTMS stimulation frequencies (from 3 to 17Hz) on
electroencephalography (EEG)-based power and connectivity
metrics. Intriguingly, those individuals with endogenous alpha
rhythms closest to 10Hz had the best treatment outcomes
from standard 10Hz rTMS for depression (87), hinting at the
utility of using individualized stimulation frequencies (e.g., 8Hz
rTMS for someone with a strong inherent resonant frequency
of 8Hz) (Figure 2C). Similarly, Kundu et al. (88) found that
the baseline beta band activity could predicted pulse-by-pulse
variations in the TMS-evoked EEG response, again suggesting
that endogenous brain activity impacts response to rTMS.

In a related but distinct effort, researchers have begun to
study how rTMS pulses interact with brain rhythms in real time
(i.e., synchronized TMS-EEG) (Figure 2D) (89). Research by
Ferreri et al. (90, 91) retrospectively examined the relationship
between ongoing EEG recordings and MEP amplitudes recorded
concurrent with EEG, finding that there was greater EEG
coupling on high MEP trials than low MEP trials. Keil et al.

(92) also found that EEG activity impacts MEP response, as
higher real-time beta-band EEG coherence with ongoing hand
electromyographic (EMG) recordings produced stronger MEP
amplitudes in a significant linear relationship. Putting these
concepts from single pulse TMS studies together, researchers
have begun to test the effects of real-time, closed-loop rTMS-
EEG synchronization and whether this causes meaningful neural
or behavioral changes compared to unsynchronized rTMS-
EEG. These cutting edge synchronized rTMS-EEG experiments
have found that personalizing and synchronizing rTMS and
iTBS pulse timing to endogenous EEG rhythms in the brain
circuit of interest can significantly increase prefrontal EEG
response (93) and MEP amplitudes (94) in comparison to
unsynchronized conditions.

Increasingly nuanced approaches also consider the
importance of EEG phase and whether the rTMS pulse is
delivered at the peak (positive phase) or trough (negative phase)
of brain rhythms (Figure 2D). In particular, Momi et al. (95)
have found that phase-locking rTMS pulses to the negative
phase of the pulse elicits stronger mu synchrony throughout the
sensorimotor network when compared to synchronizing pulses
to the positive phase of the EEG signal. In the first application
of these synchronized rTMS-EEG approaches in a clinical
population, Zrenner et al. (96) demonstrated the feasibility
and utility of synchronizing iTBS with alpha oscillations in the
prefrontal cortex of MDD patients. These researchers found that
alpha-synchronized iTBS caused significantly larger decreases in
resting state alpha activity at the left prefrontal target, suggesting
that synchronized rTMS-EEG could produce meaningful
clinical results if applied over an entire treatment course (96).
An ongoing clinical trial (NCT03421808) is attempting to
address the therapeutic effects of synchronizing rTMS-EEG for
depression over a treatment course.

Lastly, we would be remiss if we did not discuss a prior
large scale attempt to synchronize TMS with endogenous alpha
rhythm for depression using a technology known as low field
synchronized TMS (sTMS) (97). Low field sTMS applies weak
magnetic fields using midline rotating magnets that can match
the personalized, EEG-determined oscillatory frequency for each
depression patient.While the antidepressant effects of sTMSwere
initially promising (97), the pivotal trial showed no significant
differences between active and sham sTMS (98). However, it
is important to note that the mechanism of low field sTMS
is fundamentally different than patterned rTMS or iTBS, with
the maximum magnetic field change over time in low field
sTMS ∼1000x lower than conventional rTMS (97). Thus, this
emerging concept of matching or synchronizing rTMS or iTBS
with endogenous brain oscillations remains a promising area
of research.

Brain State
Consistent with principles from fundamental LTP studies,
the state of the brain at the time of stimulation may affect
treatment outcome. Isserles et al. (99) have demonstrated
what we have long assumed, that it matters what our brain
is doing during rTMS. They found that reading a script that
promoting positive cognitive-emotional activation leads to
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greater antidepressant effects than does negative or neutral
scripts. A further method of priming the brain for rTMS
could be concurrent aerobic exercise, which review articles
have proposed could complement the therapeutic effects or
rTMS due to aerobic exercise priming synaptic plasticity
(100, 101). Surprisingly, these approaches remain untested in
large scale clinical trials. Thus, along with personalized cognitive
engagement, next generation rTMS may include capitalizing on
brain state at the macroscale (i.e., cognitive engagement)
and microscale levels (i.e., synchronized with phase of
endogenous waveforms).

Parameter Theme 4: Are Some Brains
Naturally Receptive vs. Resistant to RTMS?
rsFC States and Genetic Predispositions
Lastly, inherent characteristics may portend individual response
to rTMS. In addition to individual baseline differences in
rsFC predicting degree of antidepressant rTMS effect, some
researchers have identified predispositions that portend the
likelihood of rTMS response. Notably, Drysdale et al. (102)
identified four distinct rsFC states that relate to different
symptom clusters (i.e., dysphoric or anxiosomatic), and
found that more anxious patients responded preferentially to
dorsomedial (DM) PFC rTMS compared to predominantly
dysphoric patients by nearly 4-fold. Perhaps baseline rsFC
analyses could predict ideal candidates for rTMS at a given
target, with non-ideal candidates provided with alternative
therapeutic options.

Genetic predispositions can also influence rTMS response.
Cheeran et al. (103) characterized how the heterozygous
Val66Met polymorphism, which is associated with lower
concentration of brain derived neurotrophic factor (BDNF),
has been associated with decreased rTMS plasticity over the
motor cortex compared to homozygous Val66Val individuals
(103) (Figure 2E). Subsequent research has confirmed this
seminal finding with the Val66Val genotype associated with
the highest TMS motor evoked response (104, 105), Met66Met
polymorphism associated with the lowest TMS motor evoked
response (106), and BDNF gene predicting up to 59% of between-
subject variability of MEP responses (107). These findings
in healthy adults over the motor system also hold clinical
validity, as the Val66Val genotype is most likely to respond
positively to rTMS in stroke (108). Just as genetics are gaining
traction as a predictor of pharmacologic response, we may

find a useful guide to stimulation type and parameters in our
genotypes. For instance, researchers have found that increasing
the number of days of motor training can overcome the
natural predisposition for Val to Met polymorphism to cause
lower cortical responses (109); in a similar vein, perhaps an
increased number of rTMS pulses or sessions could overcome
individual genetic predilections to respond/not respond to brain
stimulation treatments.

DISCUSSION

In this mini-review, we outlined four parameter themes guiding
the next generation of rTMS treatments. Implicit in many
of these studies is that cortical plasticity (i.e., MEPs) may
provide a surrogate for clinical response. Indeed, motor cortex
plasticity assessed by MEP response to a 10Hz protocol reliably
predicted whether depressed patients respond to rTMS (18).
We envision future rTMS will be delivered to rsFC-determined
targets at intensities determined by energy delivered to the
cortex, using optimized pulse number, train duration, intertrain
intervals, and pulse widths/shapes, with frequency personalized
to endogenous alpha-rhythms and even synchronized to coincide
with the timing and phase of the endogenous waveforms. Future
research is needed to define the “curve” of each parameter
on plasticity and clinical response at the group level, to
determine how these parameters interact, and to ultimately
personalize these parameters. A tiered approach may prove most
practical considering the cost-benefit ratio of these complex
fMRI and EEG-based techniques, with more advanced and
expensive techniques reserved for those not remitting with
traditional methods.
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