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ABSTRACT
A majority of SARS-CoV-2 recoverees develop only mild-to-moderate symptoms, while some 
remain completely asymptomatic. Although viruses, including SARS-CoV-2, may evade host 
immune responses by epigenetic mechanisms including DNA methylation, little is known 
about whether these modifications are important in defence against and healthy recovery 
from COVID-19 in the host. To this end, epigenome-wide DNA methylation patterns from 
COVID-19 convalescents were compared to uninfected controls from before and after the 
pandemic. Peripheral blood mononuclear cell (PBMC) DNA was extracted from uninfected 
controls, COVID-19 convalescents, and symptom-free individuals with SARS-CoV-2-specific 
T cell-responses, as well as from PBMCs stimulated in vitro with SARS-CoV-2. Subsequently, 
the Illumina MethylationEPIC 850K array was performed, and statistical/bioinformatic analyses 
comprised differential DNA methylation, pathway over-representation, and module identifica-
tion analyses. Differential DNA methylation patterns distinguished COVID-19 convalescents 
from uninfected controls, with similar results in an experimental SARS-CoV-2 infection 
model. A SARS-CoV-2-induced module was identified in vivo, comprising 66 genes of which 
six (TP53, INS, HSPA4, SP1, ESR1, and FAS) were present in corresponding in vitro analyses. 
Over-representation analyses revealed involvement in Wnt, muscarinic acetylcholine receptor 
signalling, and gonadotropin-releasing hormone receptor pathways. Furthermore, numerous 
differentially methylated and network genes from both settings interacted with the SARS-CoV 
-2 interactome. Altered DNA methylation patterns of COVID-19 convalescents suggest recovery 
from mild-to-moderate SARS-CoV-2 infection leaves longstanding epigenetic traces. Both 
in vitro and in vivo exposure caused epigenetic modulation of pathways thataffect odour 
perception. Future studies should determine whether this reflects host-induced protective 
antiviral defense or targeted viral hijacking to evade host defence.
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Introduction

Since the end of 2019, the Corona virus disease 19 
(COVID-19) pandemic has claimed lives of mil-
lions world-wide, highlighting the global chal-
lenges in detecting, monitoring, and treating 
novel viral infections. While efficacious vaccines 
are available at present, still a lot remains to be 
uncovered regarding the underlying mechanisms 
of the interaction between the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) virus 
and its host.

SARS-CoV-2 is a single stranded enveloped 
RNA virus belonging to the Coronaviridae family 
[1], which similarly to other viruses hijacks host 
functions for its own advantage [2–5]. Evidence 
suggest that epigenetic mechanisms, i.e., processes 
regulating transcriptional accessibility of genomes 
without altering the nucleic acid sequence, are 
involved in the hijacking process [6,7], also in 
SARS-CoV-2 infection. DNA methylation 
(DNAm) of CpG sites is considered to be the 
most stable epigenetic modification, as it ensures 
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heritability throughout cell division, although it is 
at the same time highly dynamic in response to 
environmental stimuli[8]. The malleability and 
flexibility of the DNA methylome decreases with 
increasing age [9], and environmental factors such 
as smoking and nutrition may alter DNAm pat-
terning in various cell types, including different 
immune cells [10,11]. This could have important 
implications in the course of COVID-19, as e.g., 
smoking status, BMI, sex, and age affect suscept-
ibility to become severely ill if contracting SARS- 
CoV-2 [12–14]. Furthermore, DNAm patterns 
may also become altered upon microbial [15] or 
viral infection [16–18]. In line with this, we have 
previously observed that immune cells of asymp-
tomatic, tuberculosis-exposed individuals carry 
a lasting DNAm signature that is linked to protec-
tion against mycobacterial infection [19–21].

A majority (40–80%) of individuals infected 
with SARS-CoV-2 show no or mild symptoms of 
COVID-19 and proceed into convalescence there-
after, while a smaller, but non-negligible, propor-
tion of individuals show severe or life-threatening 
manifestations [22,23]. Tolerant immune 
responses have been observed in transcriptomic 
and immune profiling comparisons of asympto-
matic and symptomatic COVID-19 patients[24]. 
Furthermore, as studies have shown the presence 
of SARS-CoV-2-specific T cell responses in mildly 
ill COVID-19 subjects [25], and epigenetic 
mechanisms regulate differentiation of e.g., 
T cells [8], it is conceivable that epigenetic 
mechanisms may be implicated in combating 
SARS-CoV-2 infection [26]. However, few studies 
have thus far addressed whether and how the 
epigenome is altered in subjects with a recent 
mild-to-moderate SARS-CoV-2 infection. In this 
study, we set out to examine epigenome-wide 
DNAm patterns in convalescent COVID-19 
(CC19) subjects, after a mild-to-moderate disease 
course. Understanding how convalescent indivi-
duals have mounted an epigenetic response against 
new viruses such as SARS-CoV-2, for which no 
pre-existent immunity was present, may reveal 
how a functional defense strategy towards the 
virus is prepared, and guide the development of 
novel diagnostic and preventive measures. Indeed, 
we found that differential DNAm patterns sepa-
rated those who have not been infected with 

SARS-CoV-2 from those who have recovered 
from mild COVID-19, suggesting that epigenetic 
mechanisms are at play during SARS-CoV-2 infec-
tion. The observations could be replicated in 
in vitro experiments, further underpinning our 
findings.

Materials and methods

Materials

Study population
In this study, participants were enrolled between 
29 May and 10 July 2020 during the first wave of 
the SARS-CoV-2 pandemic in Linköping, Sweden. 
Individuals who had recovered from and indivi-
duals who had not experienced COVID-19 were 
recruited after announcements with leaflets. 
Exclusion criteria were the existence of current 
active SARS-CoV-2 infection and/or other infec-
tious disease symptoms, as well as being younger 
than 18 years. The study participants voluntarily 
entered the study in a consecutive manner. The 
study was conducted on blood and saliva samples 
from in total 38 individuals from three different 
groups (Figure 1); non-infected controls (Con, 
n = 18), COVID-19 convalescents (CC19, 
n = 14), and symptom-free individuals with SARS- 
CoV-2-specific T cell responses (SFT, n = 6). 
Additionally, blood samples from anonymous 
healthy blood donors from the blood bank at 
Linköping University Hospital before 2020 were 
included as a separate group in the analyses 
(pre20, n = 5), collected between 2014 and 2019 
prior to the outbreak of the pandemic. CC19 par-
ticipants presented with either mild or asympto-
matic initial infections, and none were admitted to 
hospital. Con participants were healthy individuals 
with no other known severe disease background 
who furthermore were defined as neither having 
any positive circulating IgG-antibody or T cell 
responses to SARS-CoV-2, while CC19s were 
defined by the presence of SARS-CoV-2-specific 
IgG antibodies in plasma using suspension multi-
plex immunoassay (SMIA), some of which were 
positive for IgG in saliva, rapid test, and in T cell 
responses as well. From the included individuals, 
the following information was retrieved using 
health questionnaires: self-reported COVID-19 
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symptoms (if applicable, one or several of the 
following: fever, headache, shortness of breath, 
loss of smell/taste, cough, fatigue, muscle pain, 
nausea, sinusitis/congestion), date of self-reported 
symptoms, weeks between symptoms and sam-
pling, age, sex, smoking, weight, height, comorbid-
ities, as well as medications. Blood and saliva from 
the study participants were processed in 
a Biosafety level-2 facility. The present study is 
an exploratory pilot study on the effects of mild- 
to-moderate SARS-CoV-2 infection on DNA 
methylation patterns in PBMCs. The sample size 
could not be determined beforehand, as the SARS- 
CoV-2 infection rate in society was not known at 

the time of sample collection. Hence, all indivi-
duals fulfiling inclusion criteria, consenting to par-
ticipation and providing both blood and saliva 
samples were included in the study. However, the 
sample size is similar to previous studies on the 
effect of BCG vaccination [19,27], where mean-
ingful differences in DNA methylation upon 
tuberculosis infection were shown. Likewise, the 
belonging to the different groups described above 
was determined after the performance of the DNA 
methylation analyses, and hence handling, extrac-
tion, and experimental procedures performed on 
the samples were performed in a blinded fashion. 
For samples from the natural exposure cohort, all 

Figure 1. Outline of included participants, experimental procedures as well as statistical and bioinformatic approaches utilized in the 
present study. CC19 – convalescent COVID-19, Con – non-infected control, DMG – differentially methylated gene, Pre20 – Pre-2020 
non-infected control, SFT – symptom-free individuals with SARS-CoV-2-specific T cell response, SMIA – suspension multiplex 
immunoassay.
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participants provided written informed consent, 
and the present study was approved by the 
Regional Ethics Committee for Human Research 
in Linköping (Dnr. 2019-0618). Regarding the 
anonymous blood samples used for in vitro experi-
ments, informed consent was given by the healthy 
donors at the time of blood donation, and the use 
of the donated blood for research purposes was 
guaranteed as per the guidelines of Regional Ethics 
Committee for Human Research in Linköping and 
the Helsinki Declaration.

Methods

PBMC and plasma isolation from whole blood
Peripheral blood was collected in three 10 ml 
EDTA tubes (BD Vacutainer, 10331254, Fisher 
Scientific, Sweden). Up to 20 ml of whole blood 
was used for PBMC isolation after Ficoll-Paque 
Plus gradient centrifugation (GE17-1440-03, GE 
Healthcare Life Sciences, Sigma-Aldrich, Sweden) 
with SepMateTM tubes (85450, StemCell 
Technologies, France) according to the manufac-
turer’s protocol. Cells were frozen in 10% DMSO 
(10103483, Fischer Scientific, Sweden) in foetal 
bovine serum (FBS) (10270106, Gibco, Fisher 
Scientific, Sweden) and kept at −150°C until ana-
lysis. After thawing, the cells were washed twice in 
cell culture medium (RPMI medium 1640, 31870- 
025, 10% foetal bovine serum, 1% penicillin/strep-
tomycin, 15140, 1% L-glutamine, 25030081, all 
from Gibco, Fisher Scientific, Sweden) further on 
termed as complete culture medium, prior to 
further processing. Up to 10 ml of whole blood 
was used for plasma separation by centrifugation 
(2000 g for 15 min, 4°C) and aliquots were stored 
at −80°C till further analysis.

Measurements of SARS-CoV-2-specific T cell 
responses using ELISpot
Peptides for the spike (S) protein of SARS-CoV-2 
were obtained from Mabtech (3629–1, Sweden) 
and were reconstituted with dimethyl sulphoxide 
(DMSO) at a concentration of 200 µg/ml accord-
ing to the manufacturer’s instructions. The SARS- 
CoV-2 S1 scanning pool contains 166 peptides 
consisting of 15-mers, overlapping with 11 amino 
acids, covering the S1 domain of the spike S1 
protein (amino acid 13–685). The peptides were 

combined into one pool. IFN-γ ELISpot Plus kit 
was purchased from Mabtech (3420-4HST-10, 
Sweden). Briefly, the pre-coated wells were plated 
with unfractionated PBMCs at counts of 300 000 
cells/well, and the cells were cultured with peptides 
for the S protein of SARS-CoV-2 at a final con-
centration of 2 µg/ml (diluted in complete culture 
medium) for 20–22 hr in a 37°C, 5% CO2 incuba-
tor. Cells cultured with medium alone were used 
as negative controls. Stimulation with anti-CD3 
antibody at a concentration of 1 µg/ml was used 
as a positive control for each subject. Anti-CD28 
antibody (3608-1-50, Mabtech, Sweden) was 
included at a final concentration of 0.1 μg/ml as 
a co-stimulator. All experiments were conducted 
in duplicates and the results represent the mean of 
the duplicates. The plates were then processed 
according to the manufacturer’s protocol. 
Estimation of specific T cell numbers was 
expressed as spot-forming cells per 1 × 106 

PBMCs (SFC). SFC were counted using an auto-
mated reading system (BioSys Bioreader 5000 Pro- 
F beta, Bio-Sys GmbH, Germany) and assessed 
with the Bioreader 5000 analyser. A stimulation 
index was calculated by dividing the SFC elicited 
by a SARS-CoV-2 stimulus by the SFC present in 
the negative control wells. An increment value was 
calculated by subtracting the SFC from the nega-
tive control wells from the SFC of the stimulated 
wells. A stimulus was considered to be positive 
when the stimulation index was >2, and the incre-
ment value was >10.

Saliva samples
Prior to saliva collection, participants were 
required to rinse their mouths with water and 
confirmed they did not show documented oral 
disease or injury, that they had fasted, refrained 
from smoking, chewing a gum, taking oral medi-
cation, tooth brushing for a minimum of 1 hour 
before sampling, and that no dental work had been 
performed within 24 hours prior to sample collec-
tion. Donors were asked to provide a 5 ml sample 
of saliva in a 50 ml sterile conical tube by passive 
drooling.

All saliva samples were stored/transported on 
ice upon receipt of the laboratory for processing 
to preserve sample integrity. Samples were centri-
fuged (2500 g for 20 minutes at 4°C) to pellet cells 
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and insoluble matter. The supernatant was col-
lected, and samples were complemented with 
cOmplete™ protease (#11836170001, Sigma) and 
PierceTM phosphatase inhibitor cocktails 
(#88667, Thermo Scientific), aliquoted, and fro-
zen/stored at −80°C on the same day. On the day 
of the assay, samples were thawed and micro- 
centrifuged (2500 g for 10 minutes at 4°C) prior 
to analysis.

Antibody responses in plasma and saliva using 
suspension multiplex immunoassay (SMIA)
MagPlex-C microspheres (Luminex Corp., Austin, 
TX, USA) were used for the coupling of antigens 
according to the manufacturer’s protocol as pre-
viously described [28]. Briefly, 200 µl of the stock 
microsphere solution (1.25 × 107 beads/ml) were 
coupled by adding 10 μg of recombinant SARS- 
CoV-2 Spike protein RBD His-Tag (#40592-V08B, 
SinoBiological Inc., USA). After the coupling, 
beads were incubated in phosphate buffered saline 
(PBS: 0.15 M sodium chloride, 10 mM sodium 
phosphate, pH 7.4) containing 0.05% (v/v) Tween 
20 (PBS-T) for 15 min on a rocking shaker at RT. 
The beads were then washed with 0.5 ml 
StabilGuard solution (SurModics, Eden Prairie, 
MN, USA, #SG01-1000) using a magnetic separa-
tor (Milliplex® MAG handheld magnetic separa-
tion block for 96-well plates, Millipore Corp. 
Missouri, USA. Cat. #40-285) and resuspended in 
400 µl of StabilGuard solution. The coupled beads 
were stored at 4°C in the dark until further use.

For plasma samples, 50 µl of plasma diluted 
1:1000, and for saliva samples 50 µl of sample 
diluted 1:2 in PBS-T containing and 1% (v/v) 
BSA (Sigma-Aldrich Sweden AB, Stockholm, 
Sweden, #Sigma-Aldrich-SRE0036) (PBS-T + 1% 
BSA) was added per well of a flat bottom, 96-well 
µClear non-binding microtiter plate (Greiner Bio- 
One GmbH, Frickenhausen, Germany, #Greiner- 
655,906). Fifty microlitres of a vortexed and soni-
cated antigen-coupled bead mixture suspended in 
PBS-T + 1% BSA (~50 beads/µl) was then added to 
each well. The plate was incubated in the dark at 
600 rpm for 1 h at RT. The wells were then washed 
twice with 100 µl of PBS using a magnetic plate 
separator. The beads were resuspended in 100 µl of 
1 µg/ml goat anti-human IgG-PE labelled antibody 
(Southern BioTech, Birmingham, AL, USA. Cat. 

#2040-09) in PBS-T + 1% BSA and incubated for 
30 min at RT in the dark with rotation at 600 rpm. 
The beads were subsequently washed twice with 
PBS, resuspended in 100 µl of PBS, and analysed in 
a FlexMap 3D® instrument (Luminex Corporation, 
Austin, TX, USA) according to the manufacturer’s 
instructions. A minimum of 100 events for each 
bead number was set to read and the median value 
was obtained for the analysis of the data. All sam-
ple analyses were repeated three times. A naked, 
non-antigen-coupled bead was included as a blank 
along with PBS-T + 1% BSA as a negative control.

In vitro stimulation with SARS-CoV-2
PBMC samples from four healthy blood donors, 
frozen in 2019 in −150°C in foetal bovine serum 
(FBS) with 10% DMSO, were thawed and added to 
10 ml of Gibco Dulbecco’s Modified Eagle 
Medium (DMEM) (Thermo Fisher Scientific, 
Waltham, US) containing 1% L-glutamine (Cat 
no: 25,030–024, Gibco, Waltham, Massachusetts, 
USA), 1% penicillin–streptomycin (Cat no: 
15,140,148 Gibco) and 10% normal human serum 
(NHS) (pooled from 5 donors) filtered through 
a 40 µm strainer and pre-heated to 37°C. The 
cells were washed twice by centrifugation at 
330 g for 10 min. The pellet was resuspended in 
1.5 ml medium and 2 million per donor were 
seeded in six-well plates and incubated for 16–24 
h. The cell culture media were collected and cen-
trifuged at 330 g for 5 min to pellet the non- 
adherent cells.

For in vitro infection experiments, SARS-CoV-2 
virus previously isolated in a Biosafety level 3 lab 
according to local safety regulations from the 
nasopharyngeal aspirate of a COVID-19 patient 
(early April 2020) was used[29]. The isolated 
virus was passaged five times in Vero E6 cells 
and for cell infection experiments, freeze-thawed 
medium supernatants of 4–5 days infected cells or 
mock supernatants were used. Virus titres were 
determined using immunoperoxidase assay. In 
brief, two-day-old confluent cells (in a 96-well 
plate) were first washed with DMEM (Gibco, 
Code: 13345364) containing 100 μg/ml gentami-
cin, and 100 μl of 10-fold serially diluted SARS- 
CoV-2 virus lysate was added in quadruplicate. 
SARS-CoV-2 or mock Vero cell supernatant was 
added to the PBMC cultures corresponding to 
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a multiplicity of infection of 0.01. Two hours post 
infection, the cells were washed twice with DMEM 
and 100 μl of fresh DMEM (containing 2% FBS 
and 100 μg/ml gentamicin) was added, and the 
plate was incubated for 8 hours at 37°C in pre-
sence of 5% CO2. After incubation, the superna-
tant was discarded, and the cells were fixed for 
2 hours with 4% formaldehyde. Next, Triton-X 
(1:500 in phosphate buffered saline, PBS) was 
added for 15 min, washed once with PBS and 
incubated for 2 hours at 37°C with PBS containing 
3% BSA. Next, the cells were incubated with 
mouse-anti-dsRNA antibody (Scions, Code: J2 at 
1:100 dilution) for 1.5 h followed by detection 
using horseradish peroxidase–conjugated goat 
anti-mouse IgG (heavy plus light chain) 
(Catalogue: 1,706,516, Bio-Rad Laboratories, 
Hercules, CA, USA) (1:1000) for 1 h. The plates 
were washed five times with PBS between every 
incubation, all incubations were done at room 
temperature, and the antibody dilutions were 
made in PBS containing 1% BSA. Finally, the 
SARS CoV-2-infected Vero E6 cells were identified 
using 3-aminoethylcarbazole (AEC) substrate. The 
spots representing virus-infected cells were 
counted under the light microscope, and the 
virus lysate was titrated to be 5 × 106 per ml.

Cells were monitored in the IncuCyte S3 live 
cell analysis system (Sartorius, Göttingen, 
Germany) to allow quantification of cell death in 
SARS-CoV-2 infected wells versus controls. After 
48-h incubation, the cell culture media was col-
lected from each well and centrifugated at 330 g 
for 5 min to collect the non-adherent cells. Lysis 
buffer (RLT from the AllPrep® DNA/RNA Mini 
Kit, Qiagen, Hilden, Germany) was added to the 
wells to lyse adherent cells, and the mixture was 
then added to the pelleted non-adherent cells in 
order to collect DNA (according to the manufac-
turer’s instructions) from the entire PBMC 
fraction.

Epigenome-wide DNA methylation analyses
DNA extraction and quantification. For the per-
formance of epigenome-wide DNA methylation 
analyses, DNA was extracted from the above 
isolated PBMCs (approximately 2 × 106 cells) 
using the AllPrep® DNA/RNA Mini Kit (Cat 
no: 80204, Qiagen, Hilden, Germany) according 

to the manufacturer´s instructions. 
Concentrations of the extracted DNA were mea-
sured using the Qubit® 4.0 Fluorometer (Thermo 
Fisher Scientific, Waltham, Massachusetts, USA), 
using dsDNA High Sensitivity (HS) Assay Kit 
and RNA HS Assay Kit. The measurement was 
performed according to the manufacturer’s 
instructions.

Illumina MethylationEPIC 850K array. DNA 
samples were sent to the Bioinformatics and 
Expression analysis Core facility, Karolinska 
Institutet, Stockholm, Sweden, where the samples 
first went through bisulphite conversion on site, 
followed by the performance of the Illumina 
Infinium MethylationEPIC 850K array. Two hun-
dred ng of DNA from each sample was analysed.

Statistics
Descriptive analyses on demographic variables. 
Initial descriptive analyses of demographic vari-
ables were performed on the available information 
about age, gender, smoking, and BMI (kg/m2). 
Continuous variables were compared using an 
unpaired two-tailed t-test, and categorical vari-
ables were examined using the Pearson χ2 test or 
Fisher’s exact test (if the number of observations 
was smaller than five), see Table S1.

DNA methylation analyses. The resulting raw 
IDAT-files from the MethylationEPIC array ana-
lyses were processed in R programming environ-
ment (version 4.0.2). The analyses described below 
were identically performed for the clinical in vivo 
cohort and the in vitro experiment, unless stated 
otherwise.

Pre-processing and quality control. The resulting 
raw IDAT-files containing the raw DNA methyla-
tion profiles for each cell type were analysed in 
R (version 4.0.2) using the minfi package [30] 
(version 1.36.0), and the data were pre-processed 
in several steps. The following filters were applied: 
i) removal of probes with detection p-values above 
0.01, ii) removal of non-CpG probes, iii) removal 
of multi-hit probes, and iv) removal of all probes 
in X and Y chromosomes.
Pre-processing and quality control – In vivo. We 
removed the sex chromosomes from our data set, 
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as female X–inactivation skews the distribution of 
beta values (Figure S1). Of the initial 865918 
probes, 841524 probes remained upon filtering. 
After filtering, quality control was performed, 
and normalization of the data was done with sub-
set-quantile within array (SWAN) normalization 
method[31]. The β-values and M-values of the 
samples were calculated against each probe per 
sample. The quality of the data was assessed before 
and after the normalization (Figure S2). 
Thereafter, we performed singular value decom-
position (SVD) analyses using the ChAMP pack-
age [32] (version 2.19.3) to identify underlying 
components of variation within the filtered and 
normalized data set (Figure S3). Significant com-
ponents consisted of slide, batch, and sample 
groups that contributed to variation within the 
data set. Corrections were performed for the iden-
tified components using ComBat from the SVA 
package [33] (version 3.38.0). As PBMCs consist 
of multiple nucleated cell types in peripheral 
blood, we utilized the Houseman method to infer 
cell type proportions within the samples [34]. No 
differences could be determined in cell type pro-
portions between any of the individuals or 
between sample groups (Table S2), motivating 
our choice of not correcting for these cell type 
proportions. We next performed Principle 
Component Analysis (PCA) using the normalized 
batch corrected β-matrix utilizing the R package 
pca3d (version 0.10.2). To determine which known 
sources of variation (i.e., disease phenotype, gen-
der) explain the total variance of the data set, we 
applied regression of principal components (PCs) 
over the independent variables.
Pre-processing and quality control – In vitro. In 
this dataset, we did not have any information on 
demographic variables, as the samples were 
derived from anonymous donors. However, we 
still removed the sex chromosomes from our data 
set, as female X–inactivation skews the distribu-
tion of beta values. Of the initial 861728 probes, 
837694 probes remained upon filtering. After fil-
tering, quality control was performed, and normal-
ization of the data was done with SWAN 
normalization method[31]. The Houseman 
method was utilized to infer cell type proportions 
within the samples [34], yet again revealing no 
differences could be determined in cell type 

proportions between any of the individuals 
(Table S2), motivating our choice of not correcting 
for these cell type proportions. The β-values and 
M-values of the samples were calculated against 
each probe per sample. The quality of the data was 
assessed before and after the normalization (Figure 
S4). SVA package (version 3.40) was applied to 
correct the batch effect. Cell deconvolution was 
performed using FlowSorted.Blood.EPIC package 
(version 1.11).

Differential DNA methylation analysis 
Differential DNA methylation – In vivo. As we 
were interested in studying CpGs that were differ-
entially methylated between CC19s and non- 
infected controls from both before and after the 
start of the COVID-19 pandemic, we performed 
differential DNA methylation analyses, using the 
limma package (version 3.46.0). A linear model 
was fitted to the filtered, normalized and SVD- 
corrected DNA methylation data. Identifying 
sources of variation that were still present upon 
SVD correction provided the basis for the inclu-
sion of these variables as co-variates in the models, 
in this case, gender and BMI (Figure S3). For each 
investigated probe, moderated t-statistics, log2 
Fold Change (logFC), and p-values were com-
puted. The logFC values represent the average 
beta methylation difference (from hereon referred 
to as mean methylation difference, MMD) 
between the CC19s (n = 14) vs. non-infected con-
trols (Cons + Pre20, n = 18 + 5). SFTs were 
excluded from these analyses as these individuals 
displayed SARS-CoV-2-specific T cell responses 
despite being reportedly healthy. Differentially 
methylated CpGs (DMCs) were defined as CpG 
sites having a nominal p-value of less than 0.01 
along with an MMD of >0.2. As a means to ascer-
tain the quality of the identified DMCs, genomic 
inflation and pertaining bias were estimated using 
the BACON package [35] (version 1.18.0). As the 
estimated genomic inflation for the comparison 
was close to 1 (genomic inflation: 1.20, bias: 0.01, 
Figure S5), this suggested that no major genomic 
inflation was present in the comparisons, and no 
correction for this was deemed necessary. The 
distribution of the DMCs among all investigated 
DNA methylation sites was illustrated by creating 
volcano plots (EnhancedVolcano, version 1.8.0). 
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A heatmap of the identified DMCs was generated 
using the normalized batch corrected β-matrix for 
all samples in each group (CC19, Con, Pre20, and 
SFT) using the ComplexHeatmap package in 
R (version 2.6.2). The clustering dendrograms in 
the heatmap were plotted using the Euclidean dis-
tance matrix. Thereafter, the DMCs were mapped 
to their corresponding DMGs. DMGs contained at 
least one DMC and were considered hyper- or 
hypomethylated if all DMCs within the gene 
were hyper- or hypomethylated, respectively. If 
both hyper- and hypomethylated genes were pre-
sent in the same gene, the gene was considered 
having a mixed methylation pattern.
Differential DNA methylation – In vitro. To eval-
uate the difference between the mock and infected 
sampeles, the fold change was calculated using the 
cut-off obtained from the density plot (M-value >| 
2|; Figure S6) for each CpG site. Only those CpGs 
with higher values than the cut-off were selected 
for further analysis. Venn analysis was performed 
among the samples using the ggVennDiagram 
(version 1.1) package in R (version 4.0.3) and 
bioconductor (version 3.12).

Pathway over-representation analyses. To make 
biological sense of the putatively SARS-CoV 
-2-induced DNA methylation differences, we per-
formed PANTHER pathway over-representation 
test analyses using the PANTHER database (ver-
sion 16.0). The Fisher’s exact test was used for the 
generation of nominal p-values (significance level 
set to p-value of <0.05), in case the false discovery 
rate correction was too stringent. The significantly 
enriched pathways were displayed in dot plots 
generated in R using ggplot2 package (version 
3.3.3).

Network analyses. Network analyses were con-
ducted to generate further and wider biological 
insight about the DMGs generated in the in vivo. 
An input object was constructed using the pre- 
2020 (Pre20, n = 5) and post-2020 (Con, n = 18) 
non-exposed controls and COVID-19 convales-
cents (CC19, n = 14), as a two-column data 
frame containing gene annotation and P-value of 
the significant DMGs (n = 54). The graph cluster-
ing algorithm MCODE [36] was used to identify 
molecular complexes and create a large disease 

module, which was then fitted to a protein–protein 
interaction network, and both were analysed and 
rendered in Cytoscape (version 3.8.0). High con-
fidence interactions with a STRINGdb confidence 
value >0.7 were displayed in the network. 
Centrality measurements of degree, betweenness, 
and closeness were used to expose the most central 
nodes in the network. Finally, a functional enrich-
ment of the genes present within the module was 
carried out using StringDB [37]. In addition, the 
inference of modules was performed with two 
other methods from the MODifieR package 
(DIAMOnD and WGCNA) [38] to study whether 
it was possible to condense the module genes to 
fewer genes of particular interest within the net-
work, for both the in vivo and the in vitro setting.

Overlap to SARS-CoV-2 interactome. A publicly 
available protein–protein interaction (PPI) net-
work of SARS-COV-2 and human genes curated 
by BioGRID (version 4.4.197) was downloaded 
from the Network Data Exchange in Cytoscape 
(version 3.8.0). The DMGs from the in vivo and 
in vitro settings alongside the gene list from the 
module generated by MCODE were overlapped 
onto the PPI network to visualize their respective 
distributions.

Results

COVID-19 convalescents display altered DNAm 
patterns compared to non-infected controls

We compared epigenome-wide DNAm patterning 
in peripheral blood mononuclear cells (PBMC) 
from non-infected controls (Con, n = 18), 
COVID-19 convalescents who had recovered 
from mild or moderate symptoms (CC19, 
n = 14), donor blood collected before the pan-
demic (Pre20, n = 5) and from asymptomatic 
individuals presenting with SARS-CoV-2-specific 
T cell responses (SFT, n = 6, Figure 1). 
Comparisons of demographic variables revealed 
no significant differences between any of the 
groups (Table S1). To examine any inherent dif-
ferences in the DNA methylome between the dif-
ferent sample groups, principal component 
analyses (PCA) were performed. Three principal 
components (PCs) were identified as both 
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contributing to the variation within the DNAm 
data and correlating with the sample groups 
(Figure S7). A three-dimensional illustration of 
these three most contributing components 
revealed that the CC19 subjects are distinct from 
the Con, Pre20, and SFT subjects, whose centroids 
clustered more closely together (Figure 2(a), 
Figure S8). The observed methylome-wide differ-
ences prompted us to identify differentially methy-
lated CpGs (DMCs), which we defined as CpG 
sites with a nominal p-value of <0.01 along with 
a mean methylation difference (MMD) of >0.2. 
We found 87 DMCs, when comparing the DNA 

methylomes of CC19s to the merged groups of 
Cons and Pre20s (Figure 2(b), Table 1, Table 
S3a). This identified DMC signature could further-
more distinguish the CC19s from Cons, Pre20s, 
and SFTs (Figure 2(c)), suggesting that a past 
SARS-CoV-2 infection may have resulted in mod-
ulation of the epigenome that persists at least 
a couple of months after the virus is eliminated 
from the body. Interestingly, the majority of 
CC19s showed positive SARS-CoV-2-specific IgG 
responses both in the circulation and in saliva 
(Figure 2(c)). Individuals who showed T cell 
responses towards SARS-CoV-2 or presented 

Figure 2. Principal component and differential DNAm analysis of PBMC DNA methylomes in COVID-19 convalescents and uninfected 
controls. Upon filtering and normalisation, the DNAm data were subjected to PCA. Panel A shows a 3D-PCA plot of principal 
components (PC)1, PC3 and PC5, where the group means are illustrated as centroids. DMCs were identified comparing CC19s to Cons 
and Pre20s by computing a linear model on the DNAm data. Panel B illustrates a volcano plot of the CC19 vs. Con + Pre20 DNAm 
data. The dash-dotted horizontal line represents a nominal p-value cut-off of 0.01, and the vertical lines represent a cut-off in mean 
methylation difference (MMD) in CC19 vs. Con + Pre20 of > ± 0.2. Panel C shows a heatmap representing an unsupervised 
hierarchical clustering analysis of individual β values of the 87 identified DMCs in B. The individuals’ antibody status is indicated as 
a grey-scale (unknown = anonymous Pre20 blood donors, orange).
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with SARS-CoV-2-specific antibodies in saliva 
while being negative for antibodies in plasma, 
aligned with the uninfected controls in the PCA 
and unsupervised clustering analyses 
(Figure 2(a,c)).

Differential methylation of COVID-19 
convalescents identifies a putatively SARS-CoV- 
2-induced module

To further explore the biological impact of SARS- 
CoV-2 exposure in the CC19 subjects, the identi-
fied DMCs were annotated to their respective dif-
ferentially methylated genes (DMG), resulting in 
54 unique genes (Table 1, Table S3b). Subsequent 
pathway over-representation analyses revealed 
involvement in two significantly over-represented 
pathways (Wnt and integrin signalling pathways, 
Table S4).

As a means to elaborate on the wider interac-
tion context in which the DMGs act with other 
proteins, the DMGs (n = 54) were used as seed 
genes in the identification of SARS-CoV 
-2-induced modules in network analyses. The 
resulting module consisted of 66 genes from the 
protein–protein interaction network, with 139 
intra-network interactions, which is significantly 
more interactions than expected (34 interactions) 
for a network of that size (Figure 3, Table S5). Six 

of these genes were present in at least two module 
identification methods (INS, HSPA4, SP1, ESR1, 
TP53, and FAS), and they were all located in the 
centre of the module.

The four genes with the highest combined cen-
trality scores were HSP90AA1, TP53, INS, and 
CFTR. Pathway over-representation analyses of the 
66 module genes revealed involvement in pathways 
such as apoptosis signalling, muscarinic acetylcho-
line receptor 1 and 3 signalling, and gonadotropin- 
releasing hormone receptor pathway (Figure S9).

SARS-CoV-2-stimulated PBMCs in vitro reveal 
overlaps with in vivo differential methylation, 
network analyses, and SARS-CoV-2 interactome

In the present study, we only had access to self- 
reported time-after-onset of COVID-19 symp-
toms (Table S6), thus making the immediate 
effects of SARS-CoV-2 exposure on the epigen-
ome impossible to analyse. Moreover, as the 
virus-induced DNAm patterns in the CC19ʹs 
may fade over time, we set out to examine 
SARS-CoV-2-induced DNAm patterns in an 
in vitro setting. To this end, we exposed pre- 
2020 PBMCs collected from four blood donors 
in 2014–2019 to SARS-CoV-2 at a low multi-
plicity of infection (MOI = 0.01) for 48 h to 
mimic immediate in vivo exposure to the virus 
(Figure S10), and compared genome-wide DNA 
methylation changes to non-infected mock sam-
ples from the same individuals. Exploring the 
intra-individual DNAm differences between sti-
mulated and unstimulated cells, a set of DMCs 
(n = 3693), (Table 1), (Figure 4) were identified 
to be shared between all four individuals (Table 
S7a-b). These DMCs were mapped to in total 
606 DMGs (542 unique genes, Table 1, Table 
S7c), which were significantly over-represented 
in a number of pathways including several glu-
tamate receptor pathways, muscarinic acetylcho-
line receptor 1 and 3 signalling pathway, as well 
as the Wnt and cadherin signalling pathways 
(Figure S11).

As similar pathways were revealed in the findings 
from the in vivo study and the SARS-CoV-2 stimu-
lations, we wanted to explore further similarities in 
DNAm between the in vivo and in vitro settings. 
Analyses of the overlap of shared DMGs identified 

Table 1. A summarizing table of results from the in vivo and 
in vitro differential DNA methylation and module identification 
analyses.

Comparison
# 

DMCs

# DMGs 
(interactions 
SARS-CoV-2 

interactome)

# Module genes 
(interactions SARS- 

CoV-2 
interactome)

In vivo 
Con+Pre20 (n = 24) 
vs. CC19 (n = 14)

87 54 (11) 66 (33)

In vitro 
SARS-CoV-2 
stimulated (n = 4) 
vs. non-infected 
mock (n = 4)

3693 542 (100) 6 (2)

Overlap 
In vivo vs. in vitro

1* 8*(1) 6 (2)

DMC – differentially methylated CpG site, DMG – differentially methy-
lated gene. * Only one (1) DMC overlapped between the in vivo and 
the in vitro comparisons, whereas 8 DMGs overlapped. This is due to 
the fact that different DMCs may have been detected for the same 
genes, explaining the discrepancy in numbers between overlapping 
DMCs and DMGs. 
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in the two comparisons revealed eight overlapping 
DMGs (Table 1) (OR12D3, PCSK6, INPP5A, 
RAD51B, CDH4, PHACTR3, CDH13, and SFTA2). 
Additionally, to understand the biological context of 
the genes identified in the in vitro comparison, we 
performed network analyses in the same manner as 
for the in vivo comparison. These analyses found 
a module consisting of six genes (Table 1) (TP53, 
INS, HSPA4, SP1, ESR1, and FAS), which were 

among the previously identified module genes 
from the in vivo setting and were also identical to 
those that had been identified by more than two 
module identification methods (Figure 3). 
Furthermore, explorations of the overlap between 
identified genes in the differential DNAm analyses 
and network module analyses of the genes from 
a publicly available SARS-CoV-2 interactome iden-
tified numerous interactions in the in vivo (n = 11/ 

Figure 3. Network illustration of SARS-CoV-2-induced module genes from the in vivo comparison. A network module constructed by 
means of the graph clustering algorithm MCODE with the 54 DMGs from the in vivo setting as input. Nodes (n = 66) represent genes 
and connecting lines represent high-confidence protein–protein interactions within the network (STRING combined score > 0.7). 
Combined ranked scores of centrality quantification of degree, betweenness and closeness is visualized as a colour (light orange to 
dark red) continuum, with dark red nodes constituting the most central parts of the network. Nodes that were also found both when 
utilising two other module identifying methods (DIAMOnD and WGCNA) and when performing the same analyses on the in vitro 
data set using MCODE are enclosed with a black line.
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54), in vitro (n = 100/542), and network module 
setting (in vivo n = 33/66, in vitro n = 2/6) 
(Table 1, Figure S12, Table S8).

Discussion

The epigenetic events triggered during a mild 
COVID-19 disease course are largely unexplored, 
despite the fact that these individuals make up 
a majority of all SARS-CoV-2-infected individuals. 
The main finding of our study was an observed 
DNAm signature that was evident several months 
after recovery in CC19s compared to non-infected 
individuals. Although this has, to our knowledge, 
not previously been described, further investiga-
tions are needed to prove whether this particular 
signature is a remaining epigenetic mark from the 
time of active infection. Studies of DNA methy-
lomes in circulating cells of COVID-19 patients 
have so far focused on the hospitalisation phase 
for moderate-to-severe disease or at discharge 
[39–43], and none of these studies report compar-
isons upon convalescence from a mild-to-moderate 
disease course. Not surprisingly, most of these stu-
dies mainly identify the engagement of several anti-
viral immune-related pathways as well as 
inflammatory responses in severely ill COVID-19 
patients compared to controls [42,43]. In contrast, 
our pathway over-representation analyses revealed 

the involvement of distinct, previously unappre-
ciated pathways such as the Wnt signalling and 
the muscarinic acetylcholine receptor 1 and 3 sig-
nalling pathways. The Wnt signalling pathway has 
been implicated in several aspects of COVID-19, 
including development of inflammation, cytokine 
storms, as well as pulmonary fibrosis[44]. 
Furthermore, potential viral hijacking of host Wnt 
targets has been suggested upon SARS-CoV-2 
infection in multi-omics studies[45]. The muscari-
nic acetylcholine receptor 1 and 3 signalling path-
way was present in the module identification 
analyses from both the natural in vivo exposure 
and the in vitro stimulations. In mice, it has been 
shown that blocking of the muscarinic acetylcho-
line receptor 1 and deletion of both muscarinic 
acetylcholine receptors 1 and 3 actually leads to 
deficits in olfactory perception [46,47]. 
Furthermore, in post-viral fatigue patients, includ-
ing post-SARS-CoV and myalgic encephalomyeli-
tis/chronic fatigue syndrome patients, this 
signalling pathway is dysfunctional, which has 
been tentatively attributed to the development of 
anti-muscarinic receptor autoantibodies [48,49]. 
This is interesting in terms of anosmia (loss of 
smell) in SARS-CoV-2 infected individuals, parti-
cularly in those who experience long-term symp-
toms, as it could indicate that epigenetic 
mechanisms are at play. Although we cannot draw 

Figure 4. Differential DNAm analyses of PBMCs stimulated in vitro with SARS-CoV-2. Venn diagrams depicting the overlap of DMCs 
from the SARS-CoV-2 in vitro stimulated PBMCs in pre-2020 non-infected individuals. PBMCs from non-infected pre-2020 individuals 
(n = 4, collected in 2014–2019 before the start of the pandemic) were stimulated with SARS-CoV-2 in vitro for 48 h (MOI = 0.01) or 
left unstimulated (non-infected mock). Results from the subsequent 850 K DNA methylation analyses were thereafter performed, by 
making. intra-individual comparisons of differential DNAm in treated vs. untreated PBMCs. DMCs were defined as a fold change in 
M-value >|2|. These DMCs were further mapped to their corresponding annotated genes (DMGs, n = 542).
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any conclusions regarding expression from our 
data, the consequent immersion of these pathways 
suggests that they are indeed modulated. Future 
studies should elaborate on the role of Wnt and 
muscarinic acetylcholine signalling in the develop-
ment of post-acute COVID-19 syndrome, as the 
effects we observe have persisted for months after 
the initial exposure to the virus.

In the present study, DNA methylome analysis 
of PBMCs identified a number of genes that were 
shared between the natural in vivo infection and 
following in vitro stimulation, which were further 
confirmed by several module identification meth-
ods. One of these genes was tumour protein 53 
(TP53), an evolutionarily conserved protein that 
is one of the most well-studied hub genes in cell 
signalling due to its central role in cancer [50]. 
TP53 has in several other studies previously been 
identified as a hub gene, in whole blood from 
COVID-19 patients [51], and has been shown to 
interact with ACE2 in SARS-CoV-2-infected 
human induced pluripotent stem cell-derived car-
diomyocytes[52]. Moreover, transcriptomic ana-
lyses of PBMCs from a small group of patients 
infected with SARS-CoV-2 revealed involvement 
of apoptosis and TP53 signalling pathways [53], 
a finding that was further supported by studies of 
the SARS-CoV-2 interactome, where TP53 was 
identified as a central player in apoptosis- 
mediated pathways[54]. Two additional genes, 
both members of the heat shock protein family, 
HSP90AA1 and HSPA4 stand out in the network 
derived from our in vivo and in vitro data. 
Interestingly, reports on differentially expressed 
genes overlapping between acute respiratory dis-
tress syndrome and venous thromboembolism 
datasets identified TP53 and HSP90AA1 as central 
genes, among the top ranked hub genes in their 
networks[55]. HSP90AA1 was previously shown 
to be upregulated in bronchial cells of patients 
with mild COVID-19 disease, as compared to 
those with a severe disease course [56], suggesting 
that this gene may be of particular importance in 
the mounting of a protective antiviral response. 
Although our study does not provide any evi-
dence for a protective role of the observed epige-
netic alterations, HSP70 family members have 
been discussed as both anti-viral defence compo-
nents [57,58], and anti-viral drug targets, against 

SARS-CoV-2[59]. Altogether, our findings on the 
network centrality of the hub genes that we 
derived from the in vivo and in vitro data suggest 
that they may be of particular importance in the 
interaction with epigenetically modulated genes 
upon SARS-CoV-2 infection. Nevertheless, 
further studies are needed to elucidate the 
mechanistic role of these genes during infection 
and recovery from COVID-19.

A limitation of this pilot study is the lack of 
validation of the DNAm findings on 
a transcriptional level. Since epigenetic alterations 
do not necessarily affect basal transcription levels, 
such studies need to address the transcriptome 
comparing epigenetically naïve and rewired sam-
ples with and without the exposure to a relevant 
stimulus [60,61]. Only then, when the need for an 
activation of defense systems seems apparent can 
differences be detected at the transcriptome level. 
Hence, whether the observed DNAm patterns are 
indeed associated or causally linked to host pro-
tective or host detrimental immune responses still 
needs to be addressed in future studies, with more 
well-designed, larger cohorts, and consecutive 
sample materials from the onset of SARS-CoV-2 
infection. The investigation of epigenetic modifi-
cations in mild-to-moderately ill COVID-19 
patients enabled us to discern DNAm differences 
that otherwise would have been masked by over-
riding inflammatory responses. Though these 
subtle changes may not primarily be relevant to 
immune response severity towards SARS-CoV-2, 
they may be insightful for the identification of 
both effective host protective mechanisms at play, 
or ensuing deliberating conditions such as long- 
COVID. The presentation of longstanding symp-
toms in long-COVID could be attributed to detri-
mental alterations in DNAm patterns, though 
originally triggered as a short-term anti-viral 
response.

In conclusion, we found epigenome-wide differ-
ences in DNAm patterns of individuals that had 
recovered from a mild-to-moderate disease course 
of COVID-19 compared to non-infected controls. 
This study suggests that DNAm is one of several 
epigenetic mechanisms that is altered upon SARS- 
CoV-2 infection. Presently, several clinical trials 
investigating how DNA methylation may impact 
and predict short- and long-term outcomes of 
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COVID-19 are ongoing (ClinicalTrials.gov-ID: 
NCT04364828, NCT04411563, NCT04859894) 
and these studies will, along with our upcoming 
longitudinal studies of the epigenetic impact of 
SARS-CoV-2-infection (NCT04368013), further 
elaborate on whether our observed findings are 
induced by protective host responses or constitute 
virally induced hijacking processes. Pinpointing 
these matters will aid the development of effica-
cious diagnostic tools and treatments of COVID- 
19 in the future.
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