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The Orthomyxoviridae family includes the genera Influenzavirus, Isavirus, Quaranjavirus,
and Thogotovirus. In turn, Influenzavirus can be classified into four types: α, β, γ, and
δ (Formerly A, B, C, and D), from which Alphainfluenzavirus (AIV) has the broadest host
range, including birds, mammals, reptiles, and amphibians. Additionally, AIV has shown
global epidemiological relevance owing to its pandemic potential. The epidemiological
relevance of Chiropteran due to its multiple functional characteristics makes them
ideal reservoirs for many viral agents. Recently, new influenza-like subtypes have been
reported in Neotropical bats, but little is known about the relevance of bats as natural
reservoirs of influenza viruses. Therefore, the current study aimed to determine the
presence of AIV and new influenza-like subtypes in South American bats. For a better
understanding of the drivers and interactions between AIV and bats, we used molecular
assays with different gene targets (i.e., M, NP, and PB1) to identify AIV in New World
bats. A housekeeping gene (CytB) PCR was used to check for nucleic acid preservation
and to demonstrate the bat-origin of the samples. A total of 87 free-living bats belonging
to 25 different species of the families Phyllostomidae and Vespertilionidae were collected
in Casanare, Colombia. As a result, this study found seven AIV-positive bat species,
three of them reported for the first time as AIV prone hosts. Neither of the AIV-like
analyzed samples were positive for H17N10/H18/N11 subtypes. Although additional
information is needed, the presence of a completely new or divergent AIV subtype in
neotropical bats cannot be discarded. Collectively, the results presented here expand
the epidemiological knowledge and distribution of AIV in neotropical free-ranging bats
and emphasize the need to continue studying these viruses to establish the role they
could play as a threat to animal and public health.

Keywords: Orthomyxovirus, Alphainfluenzavirus, bat-virus, influenza, Colombia

INTRODUCTION

Orthomyxoviridae is a family of enveloped negative-sense single-stranded RNA (-ssRNA) viruses
(Shaw and Palese, 2013) composed of seven genera. The Quaranjavirus and Thogotovirus, both
Arboviruses transmitted by ticks, mainly infect wildlife (L’vov et al., 2014; Kosoy et al., 2015;
Ballard et al., 2017), Isavirus causes infectious anemia in salmonids (Batts et al., 2017), and
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Influenzavirus, the epidemiologically more relevant genus, which
includes four types: α, β, γ, and δ (formerly known as A, B, C,
and D). These types are determined by specific characteristics
of matrix protein 1 (M1) and the nucleoprotein (NP) genes
(Palese and Young, 1982; Tobita, 1997; Sanjuan et al., 2009).
Within these, Alphainfluenzavirus (AIV) have shown global
epidemiological relevance (Messenger et al., 2014) owing to the
pandemic potential (Taubenberger and Morens, 2010) and a wide
range of susceptible hosts among wild birds and poultry (Causey
and Edwards, 2008; Gonzalez-Reiche and Perez, 2012) terrestrial
felines, canines, equids (Keawcharoen and Oraveerakul, 2004;
Parrish et al., 2015; Zhou et al., 2015; Xie et al., 2016), swine
and humans (Rose et al., 2013), as well as marine mammals
(Ohishi et al., 2006; Blanc et al., 2009; Ramis et al., 2012; Boyce
et al., 2013; Groth et al., 2014), the Amphibia and Reptilia
Class (Mancini et al., 2004; Davis and Spackman, 2008; Temple
et al., 2015), and bats in which new influenza-like subtypes
have been reported (Tong et al., 2012, 2013). On the other
hand, Beta and Gammainfluenzavirus cause a mild to moderate
disease in humans (Taubenberger and Morens, 2008) and they
can also infect seals and swine, respectively (Kimura et al., 1997;
Osterhaus et al., 2000). Finally, Deltainfluenzavirus, the newest
genus, was recently identified in ruminants and swine (Hause
et al., 2014; Ferguson et al., 2015; Ng et al., 2015; Quast et al.,
2015; Salem et al., 2017).

The order Chiroptera has approximately 1,224 species
distributed all over the world (Wilson and Reeder, 2005;
Fenton and Simmons, 2015), comprising approximately 25%
of mammalian species and, thus, the second most biodiverse
order in animal kingdom (Mickleburgh et al., 2002; Burgin
et al., 2018). Bats are unique among mammals with remarkable
diversity, global distribution, and accumulated flight distances
of up to 2,518 km (Fleming and Peggy, 2006; Richter and
Cumming, 2008). These characteristics together with unique
anatomo-physiological, biological, and etiological features, make
them ideal natural reservoirs and key pieces of the eco-
epidemiological dynamics of several emergents and reemerging
viral infectious diseases linked to human spillovers (Omatsu et al.,
2007; Wong and Lau, 2009; Wang et al., 2011; Chan et al.,
2013; O’Shea et al., 2014; Brook and Dobson, 2015; Han et al.,
2015; Allocati et al., 2016; Plowright et al., 2016). Approximately
61% of human diseases are considered zoonotic and wildlife
reservoirs are the source of most human emerging infectious
diseases (Taylor et al., 2001; Childs et al., 2007). It is well-
known that many viral pathogens have arisen through adaptation
and/or cross-species transmission events. Bat-associated viruses
database (DBatVir)1 and other authors report around 30 viral
families identified in bat species (Table 1) (Chen et al., 2014).
Otherwise, global search on bat viruses resulted in the detection
and sometimes isolation of over 200 viruses from almost all
viral families, thus, suggesting that bats may harbor substantial
diversity of viruses rivaling or even surpassing viral diversity
found in rodents (Misra, 2020). Despite decades of research
into bats and associated pathogens, the bat-virus ecology
and molecular biology remain still quite unexplored, with

1http://www.mgc.ac.cn/DBatVir/

many questions largely unsolved (Letko et al., 2020). There
have been several major bat-borne viruses outbreaks such as
Hendra, Sosuga, Nipah, Marburg, and Ebola virus diseases,
the severe acute respiratory syndrome (SARS-CoV), Middle
East respiratory coronavirus (MERS-CoV), and the most recent
SARS-CoV-2 virus responsible for the last pandemic, along with
the report of two influenza-like viruses (Orthomyxoviridae) in
South American bats, the H17N10/H18/N11 subtypes, which were
identified by NGS methodologies in 2012. These two new bats-
derived influenza-like viruses show different specific structural
features affecting sialic acid receptor binding capability making
them different from avian or human influenza viruses. To
determine whether there is a risk for reassortment, and therefore
a major concern about potential influenza pandemics originating
from unknown bat origin viruses including orthomyxoviruses, it
is necessary to establish the spectrum of viral diversity that exists
in the mammalian species of order Chiroptera (Tong et al., 2013;
Letko et al., 2020; Irving et al., 2021).

Despite advances to understand the viral dynamics of
new influenza-like subtypes in bats (Dlugolenski et al.,
2013; Aguiar et al., 2016; Ciminski et al., 2017) and
characterization of different genomic segments (Garcia-
Sastre, 2012; Sun et al., 2013; Zhu et al., 2013; Juozapaitis
et al., 2014; Poole et al., 2014; Tefsen et al., 2014; Turkington
et al., 2015; Hoffmann et al., 2016; Maruyama et al., 2016),
the eco-epidemiology of those viral subtypes remains
poorly understood due to sparse reports of influenza-like
positive bat species and a lack of studies across Neotropics.
Therefore, the present study aims to determine the
presence of AIV and influenza-like subtypes in Colombian
bats through molecular techniques as an approach to
contribute to the knowledge of the neotropical distribution
of this viral agent.

MATERIALS AND METHODS

Studied Areas and Animal Sampling
Different populations of free-ranging bats were investigated
in two highly biogeographically divergent regions. The first
sampling area was in the south-southwest amazon rainforest
biome in the Putumayo department and the second was
in the east-southeast floodable savannas of Orinoco Basin
(Figure 1). The study was conducted from January 2016 to
December 2017. A total of 87 wild free-ranging Yangochiroptera
bats were captured by mist-netting and manually collected.
Thereafter, the bats were morphologically identified and
classified into species based on taxonomic keys on external
and craniodental morphology by a specialist mastozoologist
(Table 2). The collected bats were healthy and showed no
signs of disease. Next, oropharyngeal, and rectal samples were
collected separately by deep swabbing using CLASSIQSwabsTM

(Copan) from each bat. Swab samples were preserved in FTATM

classic cards (WhatmanTM), and RNAlaterTM (InvitrogenTM),
incubated at 4◦C overnight, and stored at −80◦C until
further molecular assays were performed. Additionally, tissue
samples were collected.
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TABLE 1 | Worldwide viral families reported in bat species.

Viral genomeU

-ssRNA +ssRNA dsDNA ssDNA RT-Virus dsRNA

Arenaviridae§ Astroviridae Adenoviridae Anelloviridae Hepadnaviridae Reoviridae

Bornaviridae Caliciviridae Asfarviridae† Circoviridae Retroviridae Picobirnaviridae‡

Filoviridae Coronaviridae Herpesviridae Parvoviridae

Hantaviridae Flaviviridae Papillomaviridae

Nairoviridae Hepeviridae Polyomaviridae

Orthomyxoviridae Picornaviridae Poxviridae

Paramyxoviridae Togaviridae

Peribunyaviridae

Phenuiviridae

Rhabdoviridae

UViral classification according to Koonin et al. (2021), §Cogswell-Hawkinson et al. (2012), †Hu et al. (2017), and ‡Dacheux et al. (2014). -ssRNA, negative-sense single-
stranded RNA; +ssRNA, positive sense-single-stranded RNA; dsDNA, double stranded DNA; ssDNA, single stranded DNA; RT-Virus, reverse transcriptase; dsRNA,
double-strand RNA.

FIGURE 1 | Geographic location of sampling areas in the Amazon and Orinoco Basins. (1) Puerto Leguízamo, Putumayo and (2) Trinidad, Casanare.

Total Nucleic Acid Extraction
Total ribonucleic acid (TRA) from swabs was obtained using the
high throughput QIAampTM Viral RNA Mini Kit (QiagenTM)
following the manufacturer’s instructions. Previous to the
TRA extraction protocol from FTATM card samples, 6 mm
diameter disks were excised and incubated in TE buffer
overnight (Sakai et al., 2015) at 4◦C (Ndunguru et al., 2005)
in absolute darkness. Likewise, RNAlaterTM preserved swabs
were temperate and gently homogenized by vortex in phosphate-
buffered solution previous RNA extraction. All TRA samples

were used immediately for molecular assays. High Pure Viral
Nucleic Acid Kit (RocheTM) was used for tissue total nucleic
acid extraction.

Housekeeping Gene Assay
Small mammal Cytochrome B gene was used as a housekeeping
gene. For this purpose, a PCR method with a set of primers
designed to amplify a 946 bp highly conserved region of
this gene was used. The sequence of universal degenerated
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TABLE 2 | Complete list of Yangochiroptera bat specimens collected.

Family Genus Species Diet (food
source)

(n)

Phyllostomidae Anoura caudifer O 1

Phyllostomidae Artibeus lituratus F 6

Phyllostomidae Artibeus planirostris F 2

Phyllostomidae Carollia brevicauda F/I 6

Phyllostomidae Carollia castanea F/I 1

Phyllostomidae Carollia perspicillata 0 23

Phyllostomidae Desmodus rotundus H 1

Vespertilionidae Eptesicus chiriquinus I 2

Phyllostomidae Gardnerycteris§ crenulatum C/I 4

Phyllostomidae Lonchophylla sp. N 2

Phyllostomidae Lophostoma brasiliense O 2

Phyllostomidae Mesophylla macconnelli F 1

Vespertilionidae Myotis sp. nov. I 3

Phyllostomidae Phyllostomus discolor O 1

Phyllostomidae Phyllostomus hastatus O 1

Phyllostomidae Phyllostomus elongatus O 3

Phyllostomidae Platyrrhinus brachycephalus F 7

Phyllostomidae Platyrrhinus helleri F 1

Phyllostomidae Rhinophylla fischerae F 4

Phyllostomidae Rhinophylla pumilio F/I 2

Phyllostomidae Sturnira tildae F 1

Phyllostomidae Sturnira lilium F 7

Phyllostomidae Tonatia saurophila O 2

Phyllostomidae Trachops cirrhosus C/I 3

Phyllostomidae Vampyriscus bidens F 1

§Synonym Mimon sp. O, omnivorous; F, frugivorous; I, insectivorous; H,
hematophagous; C, carnivorous; N, nectarivore.

primers was: CytBUnifw 5′-TCATCMTGATGAAAYTTYGG-
3′ and CytBUnirev 5′-ACTGGYTGDCCBCCRATTCA-3′,
amplification conditions were adapted from Schlegel
et al. (2012) and performed in a Labcycler Gradient
(SensoQuestTM GmbH).

Polymerase Chain Reaction Assays for
Alphainfluenzavirus Detection
To assess AIV detection in oropharyngeal and rectal swabs, a
fluorogenic real-time reverse transcription-polymerase chain
reaction (RT-qPCR) targeting a highly conserved region of
the M gene was applied. The set of primers and probes used
were: IndiForward 5′-GACCRATCCTGTCACCTCTGAC-3′,
InfAReverse 5′- AGGGCATTYTGGACAAAKCGTCTA-3′, and
InfAProbe 5′-TGCAGTCCTCGCTCACTGGGCACG-3′ (CDC.,
2009). The amplification procedure consisted of 30 min at 50◦C,
followed by 2 min at 95◦C, 50 cycles for 15 s at 95◦C, and
30 s at 55◦C, where fluorescence was collected. Samples were
tested by triplicate in a 25 µL final reaction volume. Negative,
positive, and non-template controls were included in all tested
plates. For quantification of viral load and measure of the Cq
threshold, at least two standard template dilutions of known
viral concentration from a cloned M segment were included.
Unknown viral copy number in samples was calculated from

the external curve of known concentration templates analyzed
on the same plate.

Additionally, we carry out the detection of influenza-like
subtypes by RT-qPCR and endpoint RT-PCR. The RT-qPCR
target a 90 bp segment of the nucleoprotein (NP) gene. The
reactions were performed using the following specific primers
and probes: GTMFluNPFor, GTMFluNPRev, and GTMFluNP
probe (Tong, 2015). Thermic amplification conditions were:
30 min at 45◦C, followed by 5 min at 94◦C, 40 cycles for 15 s
at 94◦C, and 60 s at 60◦C. RT-qPCR assays were performed
in a LightCyclerTM 480 Instrument II (RocheTM) using Super-
Script IIITM Platinum One-step (InvitrogenTM). The TaqManTM

probes were labeled at 5′-end with the 6-carboxyfluorescein
reporter and Blackhole Quencher 1 (Biosearch TechnologiesTM)
at 3′-end. Based on viral concentration expected in the low cell
concentration of cell-free swab samples, an increase of fluorescent
signal below the 37 Cq threshold was selected as the cut-off
value (Bustin et al., 2009; Bustin and Nolan, 2017). All RT-
qPCR AIV results are in agreement with MIQE guidelines (Bustin
et al., 2009; Bustin and Nolan, 2017) and RDML data standard2

(Lefever et al., 2009).
The influenza-like PB1 gene-specific endpoint PCR, designed

by Dr. Lucas Matías Ferreri (Department of Population
Health, PDRC, UGA, United States) was performed after
retrotranscription using Random Hexamer primers (Thermo
ScientificTM). The following set of PB1-specific primers was
used: BatPB1-970For and BatPB1-1260Rev (available upon
request). Reactions were performed in a Labcycler Gradient
(SensoQuestTM GmbH) using the following amplification
conditions: 2 min at 94◦C, followed by 40 cycles for 15 s at 94◦C,
15 s at 52◦C, and 30 s at 72◦C, with a final extension step of 30 s
at 72◦C. High sensibility SuperScriptTM III One-Step RT-PCR
System with PlatinumTM Taq DNA Polymerase (InvitrogenTM)
was used. The pHW_Bat_NP and the pHW_Bat_PB1 DNA
plasmid used as positive control were kindly provided by Dr.
Daniel R. Pérez at the Department of Population Health, PDRC,
UGA, United States.

RESULTS

CytB-Polymerase Chain Reaction as Bat
Housekeeping Gene and Preservation
Control
A total of 15 liver samples from different bat species of
Phyllostomidae and Vespertilionidae bat families analyzed by
CytB-PCR showed the expected 946 bp amplicon (Figure 2).
Therefore, the results of this PCR assay from different bat
species confirmed the chiropteran origin of the samples
and the suitability of preserved nucleic acids for subsequent
molecular assays.

Alphainfluenzavirus RT-qPCR Assays
A total of 127 swab samples were analyzed by RT-qPCR in
triplicates and given as positive when two or more replicates

2http://www.rdml.org
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FIGURE 2 | Agarose gel electrophoresis of CytB-specific PCR amplified fragments assay. Line 1, 9, and 18: 100 bp DNA ladder (Invitrogen); Line 2: Vampyriscus
bidens; Line 3: Anoura caudifer; Line 4: Desmodus rotundus; Line 5: Carollia brevicauda; Line 6: Carollia castanea; Line 7: Lonchophylla sp; Line 8: Gardnerycteris
crenulatum; Line 10: Tonatia saurophila; Line 11: Sturnira tildae; Line 12: Myotis sp; Line 13: Trachops cirrhosus; Line 14: Platyrrhinus brachycephalus; Line 15:
Artibeus lituratus; Line 16: Eptesicus chiriquinus; Line 17: Mesophylla macconnelli; Line 19 and 20: Negative controls from MDCK cell line and allantoic fluid from
chicken embryonated SPF eggs, respectively.

TABLE 3 | Alphainfluenzavirus (AIV) positive samples by RT-qPCR assay.

Species Copy/reaction OS RS R F

Gardnerycteris crenulatum 4,51 × 102 x x x

Carollia brevicauda 1,88 × 103 x x

Trachops cirrhosus 1,87 × 103 x x

Platyrrhinus brachycephalus 1,95 × 103 x x

Artibeus lituratus 1,86 × 103 x x

Artibeus planirostris 6,32 × 103 x x

Carollia perspicillata 4,10 × 103 x x

Artibeus lituratus 6,30 × 103 x x

Carollia perspicillata 6,62 × 103 x x

Carollia perspicillata 5,09 × 103 x x

OS, Oropharyngeal swab; RS, Rectal swab; R, RNAlater-preserved; F, FTA-
preserved.

had a Cq less than or equal to 37 cycles. Quantification of cycle
threshold (Cq) ranged from 34.17 to 37. Furthermore, the virus
copy number per sample was determined using an eight-point
standard curve. As a result, a total of 10 neotropical bat swab
samples belonging to 7 different species were found positive
for AIV by RT-qPCR assay (Table 3). The amount of AIV M
gene segment and thus, the number of AIV viral particles by
reaction varied from 4,51 × 102 in insectivorous Gardnerycteris
crenulated from Putumayo to 6,62 × 103 in frugivorous Carollia
perspicillata from Casanare.

Alphainfluenzavirus-Like Tested Samples
Neither RT-qPCR targeting nucleoprotein (NP) nor endpoint
PCR for the basic polymerase 1 (PB1) gene segments were
detected. Therefore, none out of 127 samples tested showed
amplification for these genes corresponding to NP and PB1 of the
H17N10 and H18N11 influenza-like virus subtypes.

DISCUSSION

The results presented here show evidence, for the first time, of
the presence of AIV in the Yangochiroptera bat suborder from
Colombia, using molecular approaches. Is worth mentioning
that three out of the seven positive neotropical bat species
had not been reported as AIV prone hosts before (Figure 3).
Thus, this is not only the first AIV record in Colombian,
bats but also the first worldwide report of AIV in these three
species, expanding the brief list of naturally susceptible bat
species to AIV. Taking advantage of the high diversity of
bats in the neotropical region where the country is located,
the study allowed us to detect AIV in four unreported bat
genera to date: Carollia spp., Gardnerycteris spp., Platyrrhinus
spp., and Trachops spp. Additionally, neotropical bat species
previously reported as seropositive to AIV (Tong et al., 2013)
were also found positive for AIV presence by the molecular
approaches used in this study (A. lituratus, A. planirostris,
C. brevicauda, and C. perspicillata). Likewise, AIV presence
was detected in two Great fruit-eating bats (Artibeus lituratus)
and a Flat-faced fruit-eating bat (Artibeus planirostris) in this
study. In agreement with our results, influenza virus presence
has been reported previously in Artibeus spp. by serological
and molecular methods in different sampling areas and genus
species (Supplementary Table 1). On the other hand, IgG
serological reactivity against recombinant hemagglutinin 17
subtype (rH17) has been detected in A. jamaicensis, A. lituratus,
A. phaeotis, and A. obscurus in Guatemala, and A. obscurus,
A. planirostris, and A. lituratus in Peru (Tong et al., 2013).
AIV H18N11 subtype has also been identified by PCR for
the first time in Peruvian Artibeus planirostris, and Artibeus
obscurus in Bolivia (Tong et al., 2013; Liang et al., 2015).
The absence of information about AIV and/or influenza-
like subtypes in Colombian bats provides more value to the
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FIGURE 3 | Three new host species for AIV in Phyllostomid bat species: (A) Gardnerycteris crenulatum, (B) Platyrrhinus brachycephalus, and (C,D)
Trachops cirrhosus.

findings shown in the present study as there are no reports
or surveillance data available on this subject at the time
the study was conducted. There is also a lack of indexed
information in the Influenza Research Database (IRD) and the
Database of Bat-associated virus (DBatVir), where no sequences
of any viral family distinct to Rhabdoviridae, Flaviviridae,
and Togaviridae have been reported in Colombian bat species
(Squires et al., 2012; Chen et al., 2014). Therefore, the results
presented here contribute to the knowledge, providing insights
on the relevance that different bat species and particularly
the Artibeus spp, genus could have in the AIV eco-biology
and epidemiology of AIV among neotropical chiropterans.
It also helps to illuminate the unclear situation of these
viral agents in the new world and the distribution of
AIV in neotropics.

A detection in bat oropharyngeal swabs, not previously
reported, highlights the importance and makes the virological
evidence found in the present study another relevant
finding, where 60% (6/10) of the positive AIV samples
corresponded to oropharyngeal swabs. These results show
not only the feasibility of AIV molecular detection in this
type of sample but also draw attention to the potential eco-
biological consequences that imply, considering the aerosol
transmission of influenza viruses (Cáceres et al., 2021) and
the relevance and the pivotal role that fruit-eating bats of
genus Artibeus sp. could have in AIV eco-epidemiology. Even
though the behavior of bats and AIV-bat interactions are

not fully elucidated, it is valuable to consider that droplets
and/or respiratory aerosols are the main transmission
routes of AIV (Richard and Fouchier, 2016) and represent
a potential risk of infection to naïve hosts, which could
favor adaptation events of the cross-species jump. On the
other hand, even if non-virological evidence of H17N10 and
H18N11 subtypes were found, it is highly recommended
to further study and establish AIV subtypes circulating in
neotropical bats. In addition, the absence of H17N10/H18N11
subtypes molecular detection also opens the possibility that
hypothetically divergent lineage of influenza-like viruses could
be circulating in new unreported hosts and reinforces the
enzootic distribution of AIV in neotropical bats (Liang et al.,
2015). Molecular approaches like next-generation sequencing
would be of major help in clarifying this issue, however,
as this was not the purpose of the study, it would be the
next step to follow.

Finally, in addition to new worldwide species and sample
types reported here for AIV detection, this study allowed to
generate of a biobank of molecular grade-preserved samples from
various species of Yangochiroptera bats, providing a potential
source for molecular identification of diverse infectious agents
circulating within bat populations. This is relevant considering
that outbreaks, emergence, and the e-emergence of infectious
diseases tend to originate from wildlife under anthropic pressure
that increases animal/human contact (Uribe-Soto et al., 2020).
The results of this study encourage further evaluation of the
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role that neotropical bats could play in the epidemiology and
dissemination dynamics of AIV in chiropteran populations,
emphasizing the biotic and microbiological relevance of this
unique flying mammalian order. The study and evaluation
of pathogen reservoirs helps to understand and to establish
preventive measures to limit the risk of dissemination and
emergence of infectious diseases under one health principle.
Therefore, studies to detect the plethora of viral agents in South
American bats are needed.
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