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Analog–digital hybrid computing with SnS2
memtransistor for low-powered sensor fusion
Shania Rehman1, Muhammad Farooq Khan1, Hee-Dong Kim1 & Sungho Kim 1✉

Algorithms for intelligent drone flights based on sensor fusion are usually implemented using

conventional digital computing platforms. However, alternative energy-efficient computing

platforms are required for robust flight control in a variety of environments to reduce the

burden on both the battery and computing power. In this study, we demonstrated an

analog–digital hybrid computing platform based on SnS2 memtransistors for low-power

sensor fusion in drones. The analog Kalman filter circuit with memtransistors facilitates noise

removal to accurately estimate the rotation of the drone by combining sensing data from the

gyroscope and accelerometer. We experimentally verified that the power consumption of our

hybrid computing-based Kalman filter is only 1/4th of that of the traditional software-based

Kalman filter.
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Sensor fusion is a widely used technique in various control
systems that aims to overcome the limitations of individual
sensors by gathering and fusing data from multiple sensors

to produce more reliable information with less uncertainty1.
Sensor fusion has been actively applied in unmanned aerial
vehicles (UAVs), also referred to as drones. To determine the
accurate position or orientation of the drone in real time, various
types of sensors, such as global positioning systems, gyroscopes,
accelerometers, magnetometers, and pressure sensors, are
embedded in the drone. Because these sensors are prone to errors,
including noise and drift, sensor fusion is essential for achieving
an optimal accuracy from noisy sensing data2.

For robust flight, sensor fusion to estimate the Euler angle of a
drone has been commonly exploited in all drones. Euler angles
provide a method to represent the three-dimensional orientation
using a combination of three rotations about different axes. In
particular, the rotations of the drone are referred to as roll (ϕ),
pitch (θ), and yaw (ψ) (Fig. 1a). A gyroscope and accelerometer
are used to measure the Euler angles of the drone (Fig. 1b and
Supplementary Note 1)3. The gyroscope measures the rate of
rotation projected on its sensing axis, that is, the angular velo-
cities (p, q, and r). By substituting the measured angular velocities
into Eq. (S1) and then performing integration, the Euler angles of
the drone can be obtained. However, the gyroscope exhibits a
steadily growing error over time because noise accumulates
during the integration3. Therefore, the application of a gyroscope
alone cannot provide an absolute measurement of rotations.
Alternatively, the accelerometer can measure linear accelerations
along three axes (Ax, Ay, and Az) and provide Euler angles using
Eq. (S5). However, the accelerometer is likely to be subject to high
levels of noise owing to vibrational effects from the motor of the
drone3.

The Kalman filter4, which is a recursive algorithm for pro-
viding the best estimate (filtered output) from noisy sensing data

(raw input), is widely used for sensor fusion5. Variants of the
Kalman filter algorithm have shown excellent performance in
noise reduction, even in nonlinear systems6. The algorithm
involving complex matrix operations should be executed more
than tens of times per second; however, the computing power and
available memory of the microcontroller embedded in the drone
are limited because of insufficient battery capacity. Moreover, as
drones are evolving to be applied for more complex missions, a
more complex sensor fusion algorithm is required. The growing
demand for computing power with limited battery capacity
restricts higher degrees of freedom in drone operation. Therefore,
the development of an alternative computing platform with a
higher energy efficiency for sensor fusion is essential for future
drone technology7.

Notably, an analog-digital hybrid computing platform, which
is inspired by biological neural networks (typically referred to
as neuromorphic systems8), has been considered as a promising
candidate for realizing energy-efficient computing9–13. The precisely
tunable analog resistive switch (i.e., memristor) energy-efficient
analog computation with a process-in-memory architecture and also
allows for functional reconfigurability. The feasibility of the analog-
digital hybrid computing platform has been successfully demon-
strated to mitigate the computational burden of vector-matrix
multiplication in the calculation of various machine-learning
algorithms14–16. The research to reduce overall energy consump-
tion by replacing a part of digital calculation with analog circuits is
being conducted in various application fields. Furthermore, recent
advancements in memristors based on two-dimensional materials
offer the possibility of designing new materials with atomic-level
precision, resulting in excellent resistive switching performance
with only a small amount of energy consumption17–20. A drone is a
complex real-time sensing system that can benefit substantially from
this memristor-based analog-digital hybrid computing platform.
Because the Kalman filter algorithm can be expressed by linear

pitch

Fig. 1 Overview of memtransistor-based analog–digital hybrid computing platform. a The inertial frame of the drone. b The Euler angle estimation
procedure through the sensor fusion with Kalman filter algorithm. c Schematic illustration of our analog–digital hybrid computing platform. The analog
component, i.e., memristor-based analog circuit, is responsible for executing the Kalman filtering algorithm. The digital component, i.e., microcontroller,
contributes to the data collection from the sensor module, and signal generation through the DAC.
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equations, it can be implemented using memristor-based analog
circuits. Moreover, this memristor-based analog component can
operate independently without using computing resources from the
digital processor, thereby reducing the computational load of the
digital component. Nevertheless, there exist some demonstrations
of memristor-based hybrid computing for drones but only one
recent study has applied this to control an inverted pendulum for a
mobile robot21.

In this study, we demonstrate a memtransistor (memristor
with transistor structure22)-based analog-digital hybrid comput-
ing platform for sensor fusion with higher energy efficiency. The
measured data from both the gyroscope and accelerometer were
combined to accurately determine the Euler angles of drones,
wherein the Kalman filter algorithm was implemented using a
customized analog circuit with the memtransistor. Because this
analog Kalman filter circuit can operate independently without
using the computing resources of the microcontroller, the com-
putational burden on the microcontroller is reduced, and subse-
quently a reduction in overall power consumption can be
expected. Here, we used transition-metal dichalcogenide (TMD)
materials in the channel of the memtransistor, which is a three-
terminal hybrid memristor and transistor. The bulk traps located
at the tin disulfide (SnS2) nanosheet exhibit a highly reliable
nonvolatile resistive switching behavior, which is achievable
through the electrical pulse applied to a gate electrode. The pre-
cise tunability of the SnS2 memtransistor allows for the reconfi-
gurability of our analog-digital hybrid computing platform.
Finally, we experimentally demonstrated that a drone using our
hybrid computing performs sensor fusion with higher energy
efficiency than a drone with only a conventional digital processor.

Results
Experimental conditions. Figures 1c and S1 show our home-
built quadrotor, which is composed of a microcontroller
(ATmega32U4) and sensor module (MPU6050, including a
gyroscope and accelerometer). Detailed specifications of the
microcontroller and sensor module are presented in Supple-
mentary Note 2. In our experiment, sinusoidal oscillations of ±30°
were performed about the roll and pitch axes simultaneously with
a frequency of 0.2 Hz (for simplicity, the yaw angle was fixed to
zero). Thereafter, the angular velocities (p, q, and r) and accel-
erations (Ax, Ay, and Az) were measured by the gyroscope and
accelerometer, respectively, with a sampling rate of 100 Hz (the
measured raw data are shown in Figs. S2a, S2b respectively).
Because the gyroscope is subject to bias instabilities, its initial zero
reading will cause a drift over time owing to the integration of
inherent imperfections (Fig. S2c). Similarly, the vibration owing
to the high-speed motors resulted in substantial high-frequency
noise in the measured accelerations (Fig. S2d). Therefore, neither
the gyroscope nor accelerometer can be used alone to accurately
estimate the Euler angles; thus, sensor fusion is essential.

In conventional drones, a discrete-time Kalman filter algorithm
is performed on the microcontroller (i.e., software-based Kalman
filtering, whose principles are summarized in Supplementary
Note 3). For software-based Kalman filtering, one cycle of the
algorithm shown in Fig. S4 should be executed to update the
Kalman gain (K) whenever new sensing data is generated at each
sampling time. Consequently, dozens of algorithm cycles
per second should be executed continuously for sensor fusion,
which consumes a substantial amount of power, and causes a high
latency23. Therefore, we demonstrated a memtransistor-based
analog Kalman filter circuit, that is, a continuous-time hardware-
based Kalman filter (Fig. 1c). It has been proven that the Kalman
gain converges to a constant value after several algorithm cycles24.
Therefore, in our proposed Kalman filter, a fixed Kalman gain value

was employed rather than a value that requires updating for every
algorithm cycle. Thereafter, the constant Kalman gain value is
stored using the nonvolatile conductance of the memtransistor;
therefore, it can be maintained without additional energy
consumption. Moreover, the analog Kalman filter circuit (analog
component) can operate independently without using the
computing resources of the microcontroller (digital component),
thereby reducing the computational burden on the microcontroller.

Resistive switching characteristics of SnS2 memtransistor. A
memtransistor based on layered SnS2 was employed for our
hybrid analog–digital computing platform (see Fig. 2a and the
Methods section). Figure 2b shows a high-resolution microscopic
image of the memtransistor obtained via a transmission electron
microscope (TEM), where the thickness of the SnS2 layer is
~20 nm. The energy dispersive X-ray analysis confirms the pre-
sence of sulfur (S) and tin (Sn) in the sample, as shown in Fig. S5.
Note that the TEM image reveals a clear crystalline lattice of the
Al2O3 layer, meanwhile, the SnS2 layer is composed of poly-
crystalline. The intrinsic defects due to the grain boundaries in
the SnS2 layer will provide electrical traps (to be discussed in next
Section). Figure 2c shows the transfer characteristics (drain cur-
rent−gate voltage: ID−VG) of the SnS2 memtransistor (the source
electrode is always grounded). Note that pulsed current–voltage
(I−V) measurements were used to exclude any bias-cumulative
effect. As shown in the inset of Fig. 2c, voltage pulses were applied
only for a short period (1 ms) to the gate and drain, and the drain
current was measured only when a pulse was applied. Because a
long interval time (100 ms) between pulses prevents any accu-
mulation effect, the measured ID–VG result shows a hysteresis-
free curve. From this hysteresis-free transfer characteristic, the
field-effect mobility (μ) of SnS2 was calculated using the following
equation:

μ ¼ dID
dVG

L
WCAl2O3VD

ð1Þ

where L and W are the length and width of the SnS2 channel,
respectively, and CAl2O3 is the gate-insulator capacitance per unit
area (assuming that the dielectric constant of the Al2O3 layer is
7.0)25. The obtained μ is 2.18 cm2V−1s−1 at room temperature,
which is comparable with that of recently reported SnS2
transistors26. In addition, the output characteristics (drain current
−drain voltage, ID−VD) at different gate voltages (Fig. S6a, b)
confirm the sufficiently low contact resistance between the
source/drain electrodes and SnS2 layer.

Interestingly, when the duration of the applied VG pulse was
increased beyond a certain level (>5 ms), the conductance of the
SnS2 channel (G) could be modulated. Figure 2d shows the G
modulation behavior, in which G can be adjusted gradually by
repeatedly applying VG pulses. To update G (i.e., potentiation or
depression of G), a VG pulse of −10 or +8 V was applied for
50 ms along with the grounded source and drain. Subsequently, G
can be adjusted gradually by applying VG pulses in the range of
0.1–1.1 μS. Even after 105 updating cycles, stable resistive
switching behavior can be maintained, which allows for the
reliable operation of our analog-digital hybrid computing plat-
form. In addition, by exploiting the previously developed
update–verify feedback method (Fig. S7 in Supplementary
Note 4)27,28, G can be further tuned precisely within the desired
target error range (e.g., Gvar is set to ±5% in Fig. 2e). Furthermore,
each conductance state showed a stable retention performance
even after 105 s (Fig. 2f). The precise tunability and stability of G
are the basis for the reliable reconfigurability of our analog–digital
hybrid computing.
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Different resistive switching mechanisms of TMD-based mem-
transistors have been considered in previous studies29,30 owing to
the following reasons: (1) the adsorption of water and oxygen
molecules on the exposed TMD surface31, or (2) the trapped
charges at the TMD/dielectric stack32. In this study, we suspect that
trapped charges are the origin of such resistive switching in the
SnS2 memtransistor. Our measurement result did not support an
adsorbate-mediated mechanism because there was no difference in
the switching behavior even when the measurement was performed
under vacuum conditions (Fig. S8). In general, various traps have
been considered for TMD/dielectric stacks, as follows: interface
traps33 located at the TMD/dielectric interface, border traps34

located inside the dielectric, or bulk traps35 located inside the TMD
layer. In the case of our SnS2 memtransistor, because the Al2O3

dielectric layer has a crystalline lattice structure as shown in Fig. 2b,
the effect from trapped charges in the border traps are negligible.
Instead, the interface and bulk traps caused due to the grain
boundaries in the SnS2 layer are expected to be responsible for
resistive switching. To investigate which type of trap dominantly
contributes to resistive switching, transient I–V measurements
were performed to extract the time response of the traps. Figure 3a
shows the gate and drain pulses applied to the SnS2 memtransistor.
When t < 0, the high negative gate bias (−8 V) depleted the

channel. During this period, electrons with energy levels lower than
the Fermi level are initially filled in both interface/bulk traps, as
shown in Fig. 3b (the estimation of the energy band alignment and
Fermi-level position are discussed in Supplementary Note 4 with
Fig. S9). When t ≥ 0, a positive gate pulse (+8 V) is applied for a
duration of tp. This pulse leads to the carrier trapping and diffusion
processes, sequentially:36 (1) the electrons from the inverted
channel are quickly trapped in the interface traps, (2) followed by
the diffusion of these trapped electrons toward the bulk trap inside
the TMD layer over time. Because two sequential processes have
different time constants, the change in ID also appears over two
stages. When tp is sufficiently short, only the trapping process in the
interface trap occurs, which is responsible for the fast ID transient.
Conversely, as tp becomes longer, the diffusion to the bulk traps
also contributes to ID change, resulting in a slow ID transient. In
other words, traps have a certain time constant and will not
respond when the ON pulse width (tp) is shorter than this value37.
Therefore, extracting the trap time constant with different tp can
reveal which type of trap contributes to the trapped charge-related
resistive switching behavior in the SnS2 memtransistor.

Figure 3c shows the measured ID transients for different values of
tp. When tp is shorter than 1ms, the ID curve can be fitted with a
single trap time constant (red line), yielding ID= I0+A ∙ exp(−t/τi),

Fig. 2 SnS2-based memtransistor. a Schematic and optical microscopic image of the fabricated SnS2 memtransistor, where the gate length and channel
width are 2 μm and 8 μm, respectively. b Transmission microscope image of the device. The thickness of the layered SnS2 is ~20 nm. c Transfer
characteristic of the SnS2 memtransistor obtained through the pulsed I-V method. The inset figure shows the timing condition for the pulsed I-V
measurement. Gray curve represents the gate current (IG), which is always below the 1 nA level. dMeasured conductance modulation behavior of the SnS2
memtransistor. Each pulse train consists of 100 depression/potentiation pulses (VG=− 10 V or +8 V for 50ms) applied to the gate, followed by
nonperturbative read voltage pulses (VG= 0 V for 50ms) within the provided intervals. e Four different G states in the SnS2 memtransistor obtained via
the update-verify feedback method when the pre-defined target Gvar= 5%. f Retention property for different G states.
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where I0 is the steady-state drain current, A is a fitting parameter,
and τi is the trap time constant for the interface trap. As tp increases
from 0.1 to 1ms, τi increases to 764 μs because additional interface
traps contribute to the ID transient. However, when tp is >10ms, the
ID curve can only be fitted using two different trap time constants,
thus different types of traps additionally contribute to the ID
transient. ID is expressed as ID= I0+A ∙ exp(−t/τi) + B ∙ exp(−t/τb),
where B is another fitting parameter and τb is the trap time constant
for the bulk trap. Note that the extracted τi was fixed at 764 μs, but
the extracted τb was significantly longer than τi (several tens of
milliseconds). This longer τb was owing to the slow electron
emission process from the bulk trap. As aforementioned, the
resistive switching behavior of our SnS2 memtransistor is only
observed when the duration of the gate pulse is longer than 5ms.
Therefore, it can be concluded that the trapped charges at the bulk
traps inside the SnS2 layer result in reliable nonvolatile resistive
switching of the SnS2 memtransistor, which can be exploited for the
analog−digital hybrid computing, as discussed below.

Continuous-time Kalman filter algorithm and its analog Kal-
man filter circuit. As mentioned in above, the traditional Kalman
filter algorithm is expressed in a discrete-time form such that it
can be executed in a conventional digital processor, and it should
then be converted into a continuous-time form to be executed in
the proposed memtransistor-based analog circuit. From the
continuous-time Kalman filter theory24 (see the details in Sup-
plementary Note 5–1), the update equation for Euler angles (EðtÞ)
can be written as

_EestðtÞ ¼ ϖmeaðtÞ þ K½EmeaðtÞ � EestðtÞ�: ð2Þ

In detail, in our experiment, the roll (ϕ) and pitch (θ) angles
oscillated in the range of ±30°; therefore, EðtÞ represents ϕðtÞ or
θðtÞ. As shown in Fig. 1c, the measured raw data from the sensor
module (p, q, r, Ax, Ay, and Az) were delivered to the
microcontroller. The microcontroller then calculated Eq. (S1),
and subsequently generated an ϖmeaðtÞ signal using a digital-to-
analog converter (DAC), thus ϖmeaðtÞ implies the angular velocity
obtained by the gyroscope (ϖmeaðtÞ = _ϕmeaðtÞ or _θmeaðtÞ).
Similarly, the microcontroller calculated using Eq. (S5) generated
the EmeaðtÞ signal. EmeaðtÞ implies the Euler angles obtained by the
accelerometer (EmeaðtÞ = ϕmeaðtÞ or θmeaðtÞ). In addition, EestðtÞ is
the output of the Kalman filter (ϕestðtÞ or θestðtÞ) and K is the
Kalman gain. Figure 4a shows the transfer function block diagram
representing Eq. (2) in the frequency domain. Figure 4b shows
the circuit diagram of the analog Kalman filter for implementing
Eq. (2). Note that the performance of our analog Kalman filter
depends on the K value, which is determined by the conductance
of the memtransistor (GK), where K is determined by K ¼ GK=Cf

(see details in Supplementary Note 5–2).
Figure 4c shows the input signals of the analog Kalman filter

circuit for the roll angle, that is, ϕmeaðtÞ (green curve) and _ϕmeaðtÞ
(orange curve). Owing to the limited operating voltage range of
the operational amplifier, the microcontroller generated input
signals such that 0.1 V of a signal level represents an angle of 1
degree. Consequently, a rotation of ±30° in the roll angle is
represented as a signal in the range of ±3 V. Note that the ϕmeaðtÞ
obtained by the accelerometer has high-frequency noise, and
_ϕmeaðtÞ obtained by the gyroscope overestimates the actual
rotation angle. As previously explained, both the gyroscope and

Fig. 3 Analysis of different trap time constants. a Schematic diagram of gate and drain pulses applied to the SnS2 memtransistor for measuring ID
transient. b Energy band diagram schematics showing the key mechanism responsible for the resistive switching. c ID transient results according to differing
gate pulse durations (tp). Obtained short trap time constant (τi) below 764 μs is responsible for the interface trap. Meanwhile, a trap time constant (τb)
longer than tens of milliseconds is responsible for the bulk trap.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30564-5 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2804 | https://doi.org/10.1038/s41467-022-30564-5 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


accelerometer cannot be used alone to accurately estimate Euler
angles. However, the signal filtered by our analog Kalman filter
(red curve in Fig. 4d) can effectively eliminate the noise and
estimate the roll angle accurately, which demonstrates the
feasibility of sensor fusion through our analog Kalman filter.
The same result was obtained for pitch angle, as shown in
Fig. S12. Moreover, the output of our memtransistor-based
analog Kalman filter shows good agreement with the result of the
traditional software-based Kalman filter (black dotted curve in
Fig. 4d), which was calculated entirely on the microcontroller
without using the memtransistor. The consistency of these results
with/without the memtransistor shown in Fig. 4d guarantees the
feasibility of our analog Kalman filter circuit. In addition,
according to Eq. (2), the performance of the analog Kalman
filter depends on GK (Fig. S13); therefore, the GK should be
optimized to achieve the best Kalman filtering performance. The
precise tunability of the GK in our SnS2 memtransistor can
provide reliable reconfigurability for optimizing the performance
of our analog Kalman filter circuit.

Comparative analysis of the power consumption. We must
ascertain whether our analog−digital hybrid computing is more
energy efficient than traditional digital computing for sensor
fusion applications. A current waveform analyzer was used for
quantitative power consumption analysis in our study (Fig. S14a
and see Supplementary Note 6), which enables real-time mon-
itoring of the current flow and subsequent calculation of the
power consumption. As explained in earlier, our analog−digital
hybrid computing platform is composed of a digital component
(the microcontroller) and an analog component (the
memtransistor-based analog Kalman filter circuit). The power
consumption of the digital component (Pd) can be obtained by

measuring the voltage (V+) and current (Id) supplied to the
microcontroller (Fig. S14b). Similarly, the power consumption of
the analog component (Pa) can be obtained by measuring the
supply voltages (V+ and V−), supply current (Ia), and output
voltage and current (Vo and Io). In the case of the traditional
software-based Kalman filter, the entire algorithm is executed
only on the microcontroller; therefore, the power consumption
required for the software-based Kalman filter (Psoft-K) can be
evaluated using Pd, that is, Psoft�K ¼ Pd . Meanwhile, in the case of
our hybrid computing-based Kalman filter, the algorithm is cal-
culated through an analog circuit, but the conversion of the
sensing signal is responsible for the digital component using the
DAC. Therefore, the total power consumption required for our
hybrid computing-based Kalman filter (Phybrid-K) is the summa-
tion of Pd and Pa, that is, Phybrid�K ¼ Pd þ Pa.

It is necessary to establish a power-consumption criterion for
comparison. In our experiment, because the roll and pitch angles
oscillated repeatedly, we assigned the total amount of power
consumption during one period of angle oscillation (±30° change
in ϕ and θ for 5 s, as shown in Fig. S14c) as comparison criteria.
Fig. S15 shows the summarized results of evaluating the power
consumption. In the case of the traditional software-based
Kalman filter (Fig. S15a), the total power consumption during
one period of angle oscillation was 197mJ. Meanwhile, in the case
of our hybrid computing-based Kalman filter (Fig. S15b), the
analog component consumed only 0.79 mJ. The power consump-
tion of the digital component was also reduced to 53.7 mJ owing
to the analog circuit mitigating the computational burden of the
algorithm calculation. Consequently, our analog-digital hybrid
computing platform can implement reliable sensor fusion with
only 1/4th of the power consumption compared to the traditional
software-based method.

Fig. 4 Continuous-time analog Kalman filter circuit. a Block diagram of the signal filtering (Euler angle estimation) with continuous-time analog Kalman
filter. The Laplace transform of the complex frequency is denoted by S. The Euler angle (EestðsÞ) can be estimated through the continuous-time analog
Kalman filter algorithm, where ϖmeaðsÞ signal obtained by the gyroscope and EmeaðsÞ signal obtained by the accelerometer are generated from the
microcontroller. b Circuit schematic diagram of the memtransistor-based analog Kalman filter, where the Kalman gain is reconfigurable by adjusting the
conductance of the memtransistor (i.e., K ¼ GK=Cf). In our experiment, GK= 0.5 μS, Rw= 100 kΩ, Rf= 700 kΩ, Rc= 100 kΩ, and Cf= 10 μF were used.
c Two input signals (ϕmeaðtÞ and _ϕmeaðtÞ) for the roll angle. d Filtered output (estimated roll angle, ϕestðtÞ) by the continuous-time analog Kalman filter
circuit. The output accurately estimated the roll angle oscillation (i.e., ±30°), and it shows a good agreement with the result obtained by the traditional
software-based Kalman filter.
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Discussion
In this study, an analog–digital hybrid computing platform was
demonstrated for low-power and high-accuracy sensor fusion in
drones. The hybrid computing platform was built by the co-
integration of the conventional digital processor (digital compo-
nent) and SnS2 memtransistor-based analog circuit (analog
component). The developed continuous-time Kalman filter
algorithm was implemented using an analog Kalman filter circuit,
where the precise tunability and high reliability of the SnS2
memtransistor enabled stable algorithm execution. The output of
the analog Kalman filter circuit shows good agreement with the
result of a traditional software-based Kalman filter, which pro-
vides a practical accuracy of analog-digital hybrid computing. In
addition, our hybrid computing platform achieves higher energy
efficiency while mitigating the burden on the battery capacity and
computing power of the digital component. Notably, because the
memtransistor does not require to be reprogrammed frequently
and is non-volatile, the power consumption required to optimize
the performance of the computing platform can be minimized.
Consequently, the memtransistor-based analog–digital hybrid
computing platform can be applied to a broad spectrum of
applications that require processing sensing data with limited
energy, such as the Internet of Things and edge computing
applications.

We believe that the power consumption of our hybrid com-
puting platform can be further reduced when the sensor module
is integrated directly into the analog Kalman filter circuit. Because
the measured sensing signal is analog, the analog Kalman filter
circuit can process the data directly without using any analog-to-
digital conversion, thereby minimizing both the latency and
quantization error. In addition, because the memtransistor has
one more electrode (gate electrode) than a conventional two-
terminal memristor, the device conductance can be adjusted
through the gate electrode, which enables simpler circuit con-
figuration (see Supplementary Note 7 and Fig. S16). A simple
circuit configuration is also expected to contribute in reducing the
overall power consumption.

With regards to similar previous report21, our analog component
can provide higher performance and reliability; our SnS2 mem-
transistor showed higher endurance (above 105) with lower
operation current level (about 1 μA). In addition, the output of our
memtransistor-based analog Kalman filter was comparatively ana-
lyzed with the result from a traditional software-calculated Kalman
filter. This comparative study clearly guarantees the feasibility of our
analog-digital hybrid computing. Moreover, our study mainly
focused on improving the accuracy and energy efficiency in sensor
fusion through analog-digital hybrid computing, which is com-
pletely different from the previous report21 that mainly focused on
the improvement of speed (response time) in robot control.

Methods
Electrical measurement. The electrical pulses (VG and VD) were generated by a
function generator (Keysight 33622a) and drain current (ID) was measured by a
source-measurement unit (SMU, Keysight B2902a). The pulse was applied to the
gate and drain electrodes, and the drain current was measured through the source
electrode. Additionally, to evaluate the power consumption in real-time, a current
waveform analyzer (Keysight, CX3300) was used to monitor the amount of current
flow to both the digital and analog components.

Fabrication of the SnS2 memtransistor. The SnS2 memtransistor, which served as
the gate electrode, was fabricated on a heavily n-doped Si wafer with a resistivity of
<0.005Ω ∙ cm (QL Electronics Co.). A 20-nm-thick aluminum oxide (Al2O3) film,
which is a gate dielectric layer, was grown via atomic layer deposition (Nano-
ALD2000, IPS) at 350 °C. In the next step, we obtained a thin flake of SnS2 from
bulk SnS2 (HQ Graphene) by mechanical exfoliation using the scotch tape method
and transferred it gently on top of a polydimethylsiloxane (PDMS) stamp. We
selected the desired flake on PDMS through an optical microscope and transferred

it onto a Si/Al2O3 substrate (dry transfer method) through a micromanipulator.
Finally, the source and drain electrodes were patterned using electron beam
lithography. Ti/Au (10 nm/50 nm) metals were deposited using a thermal eva-
porator at high vacuum pressure (~106Torr) and patterned using a conventional
lift-off process.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the paper and its Supplementary Information files. Source data are provided with
this paper.

Code availability
The code presented and used in this publication is available from the corresponding
authors on reasonable request.
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