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Abstract: (1) The human luteinizing hormone (LH)/chorionic gonadotropin (hCG) receptor (LHCGR)
discriminates its two hormone ligands and differs from the murine receptor (Lhr) in amino acid
residues potentially involved in qualitative discerning of LH and hCG. The latter gonadotropin
is absent in rodents. The aim of the study is to identify LHCGR residues involved in hCG/LH
discrimination. (2) Eight LHCGR ¢cDNAs were developed, carrying “murinizing” mutations on
aminoacidic residues assumed to interact specifically with LH, hCG, or both. HEK293 cells expressing
a mutant or the wild type receptor were treated with LH or hCG and the kinetics of cyclic adenosine
monophosphate (cAMP) and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2)
activation was analyzed by bioluminescence resonance energy transfer (BRET). (3) Mutations falling
within the receptor leucine reach repeat 9 and 10 (LRR9 and LRR10; K225S +T226I and R247T), of the
large extracellular binding domain, are linked to loss of hormone-specific induced cAMP increase, as
well as hCG-specific pERK1/2 activation, leading to a Lhr-like modulation of the LHCGR-mediated
intracellular signaling pattern. These results support the hypothesis that LHCGR LRR domain is
the interaction site of the hormone 3-L2 loop, which differs between LH and hCG, and might be
fundamental for inducing gonadotropin-specific signals. (4) Taken together, these data identify
LHCGR key residues likely evolved in the human to discriminate LH/hCG specific binding.

Keywords: luteinizing hormone (LH); human chorionic gonadotropin (hCG); LH/hCG receptor
(LHCGR); mutation; cAMP; ERK1/2

1. Introduction

Luteinizing hormone (LH) and chorionic gonadotropin (CG) are two glycoprotein
hormones regulating development and reproduction in both sexes. They share a common
o and have a unique 3 subunit responsible of binding the same G protein-coupled recep-
tor (GPCR), the LH/human chorionic gonadotropin (hCG) receptor (LHCGR) [1,2]. In
spite of these similarities, the two hormones regulate distinct physiological processes in
primates [2]. LH is released by the pituitary gland in a pulsatile fashion and modulates an-
drogen gonadal synthesis and gametogenesis, while hCG is the primate-specific pregnancy
hormone fundamental for supporting fetal development and progesterone synthesis [2].
Moreover, hCG differs from LH for slight differences in the aminoacidic sequence on
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the 3 subunit, as the 3-L2 loop [3,4], the C-terminal extension (CTP), and five additional
glycosylation sites [5,6].

In analogy to the crystal structure of the hormone bound extracellular domain of the
highly sequence homologues follitropin receptor (FSHR) [7], the LHCGR is characterized by
a large extracellular, leucine-rich-repeat domain (LRRD) with hormone binding properties,
a hinge region acting as a structural linker involved in the transmembrane helices (TMH)-
mediated signal transduction [3,7]. In the human, the receptor is expressed in Leydig
cells, where it modulates testosterone synthesis upon LH binding, and, in females of
fertile age, in ovarian theca and granulosa cells, as well as in the corpus luteum, mediating
progesterone and androgen production under the stimulus of LH or hCG [2]. Although
differences in LHCGR functioning may occur at the molecular level, between men and
women [2,8], the receptor distinguishes the two ligands and mediates hormone-specific
intracellular signaling patterns of cyclic adenosine monophosphate (cAMP)/protein kinase
A (PKA)-, protein kinase B (AKT)-, and extracellular signal-regulated kinases % (ERK1/2)-
pathway activation [9,10]. LH is more potent than hCG in activating the phosphorylation
of ERK1/2 and AKT, consistently with the requirement of proliferative and survival
signals for modulating folliculogenesis. Instead, hCG predominantly triggers steroidogenic
events fundamental for supporting pregnancy and delivered mainly through preferential
activation of the cAMP /PKA-pathway [10].

The murine receptor (Lhr) is structurally similar to LHCGR and binds both human LH
and hCG. This is suggestive of evolutionarily conserved residues regulating the hormone-
receptor interaction, leading to the capability of Lhr binding even to primate-specific
hormones, i.e., the choriogonadotropin. However, Lhr does not discriminate qualita-
tively between the LH- and hCG-specific signaling [9]. Therefore, in Lhr-expressing cells,
hCG is more potent than LH in activating both the cAMP /PKA- and ERK1/2-pathways
(Table 1) [9,10], which is plausibly indicative of different binding affinities [11] and of
quantitative, but not qualitative differentiation between the two molecules. These data
may be obtained by comparing the hormone 50% (50% effective concentrations, EC5g) and
maximal effective concentrations (ECnax) (Table 1), as two pharmacological parameters
indicative of the amount of molecules, and suggest the existence of LHCGR-specific amino
acids, differentiating the LH/hCG dual hormonal system evolved in primates and missing
in rodents [12,13].

Table 1. Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) 50% effective concen-
trations (ECsp), and maximal effective concentrations (ECmax) for cyclic adenosine monophosphate
(cAMP) and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) activation (pM;
means + SEM; n = 3-5). LHCGR = LH/hCG receptor; Lhr = the murine receptor; Ref. = reference.

cAMP PERK1/2 cAMP:pERK1/2

Receptor. Cell Type Hormone ECso ECypan Ratio Ref.
Human LH 530 + 51 100 5:1
LHCGR  Granulosa hCG 107 + 14 100 11 [10]
- Mouse LH 192 + 54 100 2:1 ]
r Leydig hCG 18+ 10 10 2:1

Computational predictive models identified LHCGR amino acids, falling within the
LRRD and the hinge region of the receptor that are interacting with the beta-L2-loop of the
hormones and putatively discriminating between LH and hCG [3]. Nevertheless, clear-cut
in vitro data confirming these inferences obtained in silico are missing.

This study aims to elucidate the origin of the discriminative potential of LHCGR for
LH and hCG, in order to understand molecular details of their different pharmacological
impact. To this purpose, mutational analysis of LHCGR was performed by introducing
“murinizing” amino acids (Figure 1), replacing those residues assumed to be responsi-
ble of LH/hCG-specific signal differentiation in humans [14]. Assuming that the two
gonadotropins have similar affinity for the wild type and mutant LHCGR, LH-, and hCG-
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induced cAMP and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2)
activation was compared for each receptor.
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Figure 1. “Murinizing” point mutations induced in the LHCGR protein chain. Amino acid changes
were obtained by mutagenesis (see methods) and a total of eight mutant human receptors, carrying
mouse luteinizing hormone receptor (mLhr) amino acids in one or two key residues, were obtained.

2. Results
2.1. Analysis of LH- and hCG-Induced cAMP Production

The wild type and mutant LHCGR-mediated cAMP activation was evaluated by
bioluminescence resonance energy transfer (BRET), in 1 pM-100 nM LH- and hCG-treated
cells transiently co-expressing the cAMP-biosensor and the receptor. cAMP values were
indicated as mean £ SEM (Figure 1) and forskolin-treated cells served as a positive control
(Figure S1).

None of the mutations impaired completely receptor functionality and the gonadotropin
dose-dependent cAMP accumulation was detected in all samples (Figure 2; Figure S2).

We confirmed [10] that hCG is more potent than LH in inducing cAMP increase,
in wild type LHCGR-expressing cells, as demonstrated by lower ECs value (Table 2).
Similar results were obtained using cells expressing mutant LHCGRs, except for the overall
marginal effect mediated by the K2255 + T226I and, mostly, the R247T mutants, which
are linked to similar LH- and hCG-induced cAMP production (Figure 2; Table 2; Mann—
Whitney U test; p > 0.05; n = 4). The loss of LH/hCG discriminatory potential of these
murinized receptors is better indicated by the LH:hCG ECs ratio, which reveals that the
choriogonadotropin is only 3.6- and 1.4-fold more potent than LH for the K225S + T2261
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and R247T mutants, respectively, versus 7.9-fold higher potency of hCG- than LH-induced
cAMP response mediated by the wild type LHCGR.
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Figure 2. LH- and hCG-induced cAMP response in HEK293 cells overexpressing (a)
wild type LHCGR, (b) the K225S + T226I or (c) the R247T mutants. HEK293 cells were
transiently transfected with mutant or wild type LHCGR- and CAMYEL-expressing
plasmids. Bioluminescence resonance energy transfer (BRET) changes were measured
after treating cells 30 min with increasing concentrations of LH or hCG (1 pM-100 nM
range) in the presence of 3-isobutil-1-methylxanthine (IBMX). Moreover, 50 uM forskolin
served as a positive control. Data were interpolated by non-linear regression and expressed
as percentage of the maximal response (means + SEM; n = 4).

Table 2. LH and hCG ECsg extrapolated from dose-response curves after cAMP measurements.

LHCGR Mutation LH EC5y (pM) hCG ECs (pM) p Value
K225S + T2261 697.5 £ 165.9 193.5 + 100.2 0.0571
N35D + V37A 595.4 +154.8 94.49 + 3.38 0.0286

E270V 2806.0 £ 1393.0 248.4 £ 40.65 0.0286
A57T 702.6 + 2229 152.8 + 33.91 0.0286
183S 7119 +187.7 1272 + 6.28 0.0286
S149F 755.8 +£173.3 111.0 + 23.66 0.0286
T48R 1207.0 £ 389.1 130.5 + 19.58 0.0286
R247T 556.5 + 31.63 386.2 £ 132.0 0.6286
Wild type 1111.0 £ 378.2 142.8 + 30.85 0.0286

(Mann-Whitney U test; p < 0.05; means + SEM; n = 4).

2.2. Analysis of LH- and hCG-Induced ERK1/2 Phosphorylation

The impact of “murinizing” LHCGR mutations on pERK1/2 activation was assessed
in transfected HEK293 cells treated by 100 pM LH or hCG, as the hormone concentration
maximally activating pERK1/2 and resulting in significantly higher LH- than hCG-induced
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response [10]. The kinetics of pERK/2 activation was evaluated over 20 min and 1 ng/pL
of PMA served as a positive control (Figure S3). Results are indicated in an x-y graph by
locally weighted scatterplot smoothing (LOWESS) curves of the induced BRET changes
over the baseline (Figure 3).
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Figure 3. LH- and hCG-induced pERK1/2 activation. In HEK293 cells transiently overexpressing
(a) the wild type receptor, (b) the K225S + T226I, (c) the N35D + V37A, (d) the E270V, (e) A57T, (f)
1835, (g) the S149F, (h) the T48R or (i) the R247T mutants, the kinetics of ERK1/2 phosphorylation
was analyzed. Induced BRET changes obtained thanks to the interaction between the REV BRET-
biosensor and pERK1/2 were measured over 1200 s upon administration of 100 pM LH or hCG. Data
from LH/hCG-treated cells were represented by locally weighted scatterplot smoothing (LOWESS)
of the induced BRET changes. All the LH- vs hCG-induced kinetics of ERK1/2 phosphorylations are
different, except those mediated by the K225S + T226I and I83S mutants (Kruskal-Wallis test and
Dunn’s Multiple Comparison post-test; p > 0.05; each point is the mean value from eight independent
experimental replicates).

All mutant LHCGRs mediate hormone-induced ERK1/2 phosphorylation, although
some point mutations modulated pERK1/2 activation (Figure 3). Different activation
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kinetics were found upon cell treatment by LH or hCG (Kruskal-Wallis test and Dunn’s
multiple comparison post-test; p < 0.05; n = 8), except for those mediated by the K2255 +
T226I and 1835 mutant LHCGRs (Kruskal-Wallis test and Dunn’s Multiple Comparison
post-test; p > 0.05; n = 8; means).

Since previous analyses demonstrated that LH is more potent than hCG in activating
pERK1/2[9,10,15], areas under the curve (AUCs) obtained from LOWESS were compared
(Table 3). LH AUC is significantly larger than that of hCG calculated from the kinetic curves
mediated by wild type receptor (Table 3; two-way ANOVA and Sidak’s correction for mul-
tiple test; means & SEM, relative units; p < 0.05; n = 8) confirming the preferential activation
of proliferative signal operated by the lutropin in comparison to hCG [10]. Moreover,
hCG AUC is larger than that of LH when LHCGR carries the A57T and R247T mutations
(Table 3; two-way ANOVA and Sidak’s correction for multiple test; means + SEM, relative
units; p < 0.05; n = 8), revealing that these amino acid changes reverse the relationship
between LH and hCG potencies in activating pERK1/2. Finally, we found that the ac-
tivation of pERK1/2 mediated by N35D + V37A, A57T, and 1835 LHCGRs resulted in
overall different AUCs than those obtained after treatment of wild type LHCGR-expressing
cells (Table 3; two-way ANOVA and Sidak’s correction for multiple test; means + SEM,
relative units; p < 0.05; n = 8), indicating that these mutations are linked to altered response
to gonadotropins.

Table 3. LH and hCG area under the curve (AUC) calculated from ERK1/2 activation kinetic curves
(two-way ANOVA and Sidak’s correction for multiple test; means £ SEM, relative units; n = 8).
NA = not assessed; ns = not significantly different.

I\I;Iflltitcl;i LHAUC hCc AuC (LI;’ ‘X?IIL:EG) (vs. F‘)/V‘illa;zl"eype)
K225S + T2261 11.40 £ 1.30 9.47 £1.70 ns ns
N35D + V37A 5.48 £+ 0.63 8.19 £1.35 ns <0.0001

E270V 1093 +1.14 718 £0.93 ns ns
A57T 10.89 + 3.19 20.50 £ 4.86 <0.0001 <0.0001
183S 8.03 £1.85 6.65 = 1.08 ns <0.0001
S149F 10.40 + 1.64 13.91 £ 3.07 ns ns
T48R 12.28 £ 1.56 13.44 £ 3.94 ns ns
R247T 10.53 + 1.07 15.44 £+ 2.36 <0.01 ns
Wild type 13.92 + 1.60 7.98 £ 0.80 <0.0001 NA

3. Discussion

We identified the LHCGR hot spots fundamental for discriminating between LH and
hCG, transforming the human receptor in a mouse-like receptor upon induction of point
mutations in a very small number of key residues. Therefore, this study provides new
molecular insights on how the LRRD portion of the human receptor differentiates the two
ligands, modulating hormone-specific signaling and physiology. The amino acid residues
involved in these functions are barely known and were previously investigated by in
silico approaches [3,16], while data obtained in vitro were missing. Amino acids crucial for
recognizing the dual primate-specific ligand system were predicted by structural modelling
of the human and murine receptors to fall within the extracellular hormone binding site
of the human hormones at the LRRD and hinge region of the receptor [3]. The models
served for generating “murinized” LHCGR molecules replacing human amino acids by the
corresponding murine Lhr residues (Figure 1; Tables 4 and 5). K225S + T2261 (on LRR-9)
and, especially, the R247T (on LRR-10) mutation induced the loss of hormone-specific
differences of cAMP production mediated by LHCGR, while A57T (cysteine-rich region)
and R247T mutations increased the hCG-specific potency in activating pERK1/2, which
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become even higher than that of LH, resulting in “murinization” of the human receptor
functioning. Indeed, Lhr does not qualitatively discriminate between the two hormones [9],
consistently with the lack of hCG in rodents. This suggests that the Lhr lacks of residues,
such as the charged amino acids K225 on LRR-9 and E270 on LRR-11, discriminating
the LH- and hCG-specific activity in LHCGR. In particular, the R247 amino acid falling
within the LRR-10 could be one of the main human receptor hot spot for differentiating
the action of the two hormones, since the arginine change to threonine at position 247
is linked to increased hCG-induced phosphorylation of ERK1/2 together with dramatic
loss of hormone potency for cAMP activation. Other LHCGR mutations, i.e., N35D +
V37A, A57T and I83S, perturbed the receptor-mediated activation of pERK1/2 without no
substantial differences between LH- and hCG-induced responses. These conclusions are
supported by LH:hCG concentration ratios calculated for cAMP and pERK1/2 activation
(Table 4). Indeed, certain LHCGR spots play a key role in discriminating hormone-specific
activities and the change of these amino acids to the corresponding mouse residue results
in the “murinization” of the response to gonadotropins.

Table 4. LH:hCG ratio from E50 for cAMP activation, and AUC of pERK1/2 kinetics, mediated by
LHCGR. Data were calculated from Tables 1 and 2 of the present study where indicated.

LHCGR Mutation. 10 (AL, Shvtion for pERKI Activation _ Reference
K225S + T2261 3.6 1.2 Present study
N35D + V37A 6.3 0.7 Present study

E270V 11.3 15 Present study
A57T 4.6 0.5 Present study
1835 5.6 12 Present study
S149F 6.8 0.7 Present study
T48R 9.2 0.9 Present study
R247T 14 0.7 Present study
Wild type 7.8 1.7 Present study
Wild type 5.0 1.0 (calculated on ECpax) [10]
Lhr 10.7 10.0 (calculated on ECpax) [9]

Table 5. Murinizing mutations introduced in the human LHCGR. Nucleotides inducing the amino acid changes are
indicated in bold and underlined.

Amino Acid Forward Primer Sequence Reverse Primer Sequence Stru.ctur.al
Change Localization
K225 + T2261 CCACAGGGCCGAGTATCTTGGATAT GAAATATCCAAGATACTCGGCCCTG LRR-9
TTC TGG
N35D + V37A GAGCCCTGC%’(I;%C@CCCGAC CGCCGTCGGG%%%SCAGTCGCAGG Cystein-rich region 1
E270V CAATCTCCTGGTGGCCACGTTGAC  GTCAACGTGGCCACCAGGAGATTG  Hinge region (LRR-11)
A57T GACTATCACTTACCTACCTCCCTG CAGGGAGGTAGGTAAGTGATAGTC LRR-2
1835 GAAATCTCTCAGAGTGATTCCCTGG CCAGGGAATCACTCTGAGAGATTTC LRR-3
S149F CCTCTGAATTCAATTTCATTCTGG CCAGAATGAAATTGAATTCAGAGG LRR-5
T48R GCCCCGGCCCCAGGGCCGGTCTC GAGACCGGCCCTGGGGCCGGGGC Cystein-rich region 1
R247T GTCCATTCAGACGCTAATTGCCACG CGTGGCAATTAGCGTCTGAATGGAC LRR-10
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Predictive hormone-receptor interaction models indicate that the 3-L2 loop of the two
hormones likely interacts with the LRRD of the receptor [3], and results obtained inducing
the double K225S + T226I mutation, falling within the ninth LRR (LRR9), support this
hypothesis. Indeed, the “murinization” of this spot resulted in the loss of different LH-
and hCG-induced cAMP and pERK1/2 responses. Similar effects on cAMP production
were obtained by the R247T mutation, which shifts the preferential hCG activity towards
PERK1/2-, instead of cAMP /PKA pathway activation. These findings might be the result
of different binding affinities between LH and hCG for LHCGR, as previous experiments
using rodent receptors suggested [11]. However, these data should be confirmed by
displacement experiments performed in cells expressing the human receptor, using both
radio-labeled gonadotropins. To date, only displacement data obtained using ['?*T]hCG
were available [14,17], while similar experiments using ['25T]LH were never performed.
This is an unanswered question of LH/hCG molecular biology, which is limited by the use
of radioactive compounds and technical difficulties in labelling glycosylated hormones. In
any case, it may be supposed that the larger and sterically bulkier side chains of LHCGR
can apparently discriminate between the different 3-L2 loop conformations of the two
hormones, while the smaller side chains of the murine receptor are not able to do so
(Figure 4). The E270V mutation, falling within the LRR11 as part of the hinge region, is
linked to a drop of LH, but not of hCG potency in increasing the intracellular cAMP, in spite
of no effects on pERK1/2 activation compared to the wild type receptor and suggesting it
could be a site relevant for the functioning of the hinge region. Previous data demonstrated
that deletions carried by the LHCGR hinge region impaired the steroidogenic potential of
LH, while hCG remains functional [17,18].

B-subunit L2 loop

Figure 4. Comparison between mouse and human receptor extracellular leucine-rich-repeat domain
(LRRD) bound to the heterodimeric hormone (« and 3 subunit). (a) Images were obtained using hCG
sequence as a template for the hormone, as previously described [3], and the « and 3 subunits are
indicated with the colors green and light blue, respectively. Receptor LRRD is pink, while the murine
and human LRR11 residue at positions 247, as well as the adjacent residues at position 225 and 270,
are indicated by bubbles. mLhr LRRD- and (b) LHCGR LRRD-hCG complexes. The hormone 3-L.2
loop might potentially interact with these different, key residues of rodent and human receptors.

It was demonstrated that gonadotropin-induced intracellular signals may vary ac-
cording to LHCGR (and FSHR) coupling to G proteins and/or 3-arrestins, as a feature
depending on the expression levels [19-21]. However, the different nature of LH/hCG inter-
action with the LHCGR [3,16] is the origin of downstream hormone-specific signals, likely
initiating with different Gs and Gq protein activation [22] and (3-arrestin recruitment [15],
impacting the intracellular signaling pattern [2]. The different interaction of LH and hCG
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with the receptor were firstly suggested by a clinical case report. The androgenisation of
an adult male patient with hypergonadotropic hypogonadism, lack of secondary sexual
characteristic and failure of testosterone production was partially recovered by injections
of exogenous hCG, while the high endogenous LH had no effects [18]. This patient carried
a DNA sequence deletion affecting the conformational structure of LHCGR, impairing
LH- but not hCG-mediated signaling, although maintaining the capability of bind both
hormones [16,17]. Further findings demonstrated that the treatment of human primary
granulosa cells by LH predominantly activates the ERK1/2- and AKT-pathways, while
hCG has higher potency than the lutropin in increasing the intracellular cAMP in vitro [10].
These peculiarities are reflected in different life and death signals modulated by the two
molecules in primates, and consisting in LH-dependent proliferative and anti-apoptotic
effects, as well as in steroidogenic and pro-apoptotic events mediated by hCG in vitro [23].
Non-primate mammals have no choriogonadotropins and the regulation of gametogenesis,
androgen synthesis and pregnancy is undertaken by molecules encoded from the Ihb gene.
Reflecting the presence of a unique Lhr ligand during the evolution and a relatively high
sequence similarity to LHCGR, the rodent receptor may bind human LH and hCG but does
not qualitatively differentiate the cAMP/PKA-, ERK1/2, and AKT activation, resulting in
similar LH- and hCG-induced steroid synthesis [9].

The impact of different LH- and hCG-induced signals would impact the ovarian follicle
growth and quality, since the addition of these molecules to FSH in women undergoing
assisted reproduction improved different clinical outcomes [24]. Taken together, these data
are suggestive of the existence of LHCGR residues deputed to LH and hCG discrimination
evolved in primates, allowing to separate their endocrine signals and optimizing follicular
development and pregnancy support. We could suppose that these residues, unique of
LHCGR, are the result of receptor-ligands co-evolution [25,26], driving the regulation of
endocrine reproductive functions [27]. It was hypothesized that hCG appeared in primates
for enhancing the trophoblast invasion of maternal tissues, as a requisite for providing
proper energetic support to the fetal brain development [28]. These prerogatives are lacking
in mice and other mammals, where pregestational effects relies on the LH action mediated
by a receptor evolved for binding this unique ligand.

4. Materials and Methods
4.1. Recombinant Hormones

All in-vitro experiments were performed using LHCGR-overexpressing transfected
HEK293 cells treated by recombinant human LH and hCG (Luveris and Ovitrelle; Merck
KGaA, Darmstadt, Germany).

4.2. HEK293 Cell Line Cultures and Handling

HEK293 cells were maintained in Dulbecco’s Modified Eagles Medium (DMEM)
with the addiction of 10% fetal bovine serum (FBS), 100 IU/mL penicillin, 50 pg/mL
streptomycin, and 2 mM L-glutamine (all from Sigma-Aldrich, St. Louis, MO, USA). The
cells were cultured in Petri dishes at 37 °C and 5% CO; in an incubator and separated
by 0.5% trypsin and 0.2% EDTA diluted 1:10 in phosphate buffered saline (PBS; Sigma-
Aldrich) when achieved 70% confluence. 2-days transiently transfected cells were treated
by gonadotropins after over-night starvation. Intracellular cAMP increase was evaluated as
a measure of the steroidogenic pathway activation, while the phosphorylation of ERK1/2
was indicative of proliferative signals. Data were collected by bioluminescence resonance
energy transfer (BRET).

4.3. Plasmid Vectors of Mutant and Wild Type LHCGR

The cDNA encoding the wild type LHCGR were inserted into a pcDNA3.1 plas-
mid under the transcriptional control of the human cytomegalovirus promoter. Mutant
“murinized” LHCGRs were obtained by mutagenesis of the wild type template using spe-
cific primer sequences (Table 5). These new, mutant nucleotides introduced missense muta-
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tions corresponding to murine Lhr residues, replacing those of the human receptor at the
same position of the protein sequence (Figure 5), and were predicted not to change the ter-
tiary receptor structure using the SWISS-MODEL server (https:/ /swissmodel.expasy.org).
Given these characteristics, mutant receptors should not have differential expression than
the wild type LHCGR. In fact, raw data of LH and hCG dose-response curves revealed that
each receptor allows to achieve similar cAMP plateau levels, suggesting they are effectively
and similarly expressed (Figure 54).

LHCGR  MKQRFSALQ---LLKLLLLLQPPLPR-ALREALCPEPQ

M +R AL+ +L +L+L Q L L + CPEPCQ

Lhr  MGRRVPALRQLLVLAMLVLKQSQLHSPELSGSRCPEP(Q

A5TT I83s
LHCGR  |AFLPVKVIPSQAFRGLNEVIKIEISQIDSLERIEANAFDNLLNLSEILIQNTKNLRYIEP

YLPVKVIPSQAFRGLNEV+KIEISQ PSLERIEANAFDNLLNLSEILIQNTKNL YIEP
Lhr |TYLPVKVIPSQAFRGLNEVVKIEISQSPSLERIEANAFDNLLNLSEILIQNTKNLLYIEP
S149F

LHCGR  GAFINLPRLKYLSICNTGIRKFPDVTKVFSSESNFILEICDNLHITTIPGNAFQGMNNES

GAF NLPRLKYLSICNTGIR PDV+K+ SSEH NFILEICDNL+ITTIPGNAFQGMNNES

Lhr  GAFTNLPRLKYLSICNTGIRTLPDVSKISSSHENFILEICDNLYITTIPGNAFQGMNNES
K2255+T2261I

LHCGR  VTLKLYGNGFEEVQSHAFNGTTLTSLELKENVHLEKMHNGAFRGATGPKTLDISSTKLQA

+TLKLYGNGFEEVQSHAFNGTTL SLELKEN++LEKMH+G F+GATGP| [LD+SSTKLQA

Lhr ITLKLYGNGFEEVQSHAFNGTTLISLELKENIYLEKMHSGTFQGATGPESILDVSSTKLQA

R247T E270V
LHCGR  LPSYGLESIQRLIATSSYSLKKLPSRETFVNLLEATLTYPSHCCAFRNLPTKEQNFSHSI

LPS+GLESIQ LIATSSYSLK LPSRE F +LI} ATLTYPSHCCAFRNLP KEQNFS SI

Lhr LPSHGLESIQTLIATSSYSLKTLPSREKFTSLIVATLTYPSHCCAFRNLPKKEQNFSFSI

Figure 5. Alignment of LHCGR and Lhr aminoacidic extracellular domain sequences (1-300 aa),
using the single-letter code for each amino acid. LHCGR amino acids in positions 35 and 37, 48,
57, 83,149, 225, and 226, 247, 270 were substituted by mutagenesis with the corresponding murine
amino acid (red boxes), as these are residues possibly involved in LH-hCG recognition [14].

4.4. Transfection Protocols

A previously described transfection protocol was used [15]. For BRET measurements
of cAMP, 3 x 10* cells were seeded in a 96-well plate and transiently transfected with
50 ng/well of cAMP biosensor (CAMYEL)-expressing pcDNA3.1 vector (OriGene Technolo-
gies, Rockville, MD, USA) carrying the yFP-RAPGEF3-rluc8 fusion sequence [29], 100 ng
of mutant or wild type LHCGR-expressing vector, and 0.5 uL of Metafectene PRO reagent
per well (Biontex, Miinchen, Germany), according to the manufacturer’s instructions.

Measurement of pERK1/2 activation by BRET were performed by seeding cells at a
density of 5 x 10° per well, of a 96-well plate, and transiently transfected with 20 ng/well
of pERK1/2 biosensor. This compound was previously described [30] and consists in a
rluc8-ERK-substrate-Venus (REV)-expressing vector containing the pRK5-Rluc8-EKARyto-
Venus fusion gene, 100 ng of mutant or wild type LHCGR-expressing vector and 0.5 pL of
Metafectene PRO reagent per well (Biontex), according to the manufacturer’s instructions.
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Cells were then incubated at 37 °C and 5% CO, for 48 h to allow the expression of the
receptors and the biosensors.

4.5. cAMP Measurement by BRET

Transiently transfected cells were washed and preincubated at 37 °C and 5% CO,
for 20 min in 40 uL of phosphate buffered saline (PBS) added with 1 mM HEPES and
500 uM of the phosphodiesterase inhibitor 3-isobutil-1-methylxanthine (IBMX). Then,
cells were washed by PBS and maintained for 30 min at 37 °C and 5% CO, in 50 uL of
PBS and 1 mM HEPES, in the presence or absence of increasing doses of LH or hCG
(1 pM-100 nM range) [10]. Cells treated with 50 uM forskolin (Sigma-Aldrich) served as
positive controls [31]. Bioluminescence resonance energy transfer (BRET) measurements
were performed upon addition of 10 uL of 5 pM coelenterazine H (Interchim, Montlugon,
France). Signals emitted by donor and acceptor tags were detected by the CLARIOstar
microplate reader (BMG Labtech, Ortenberg, Germany) at wavelengths of 480 + 20 and
540 £ 20 nm, respectively, and represented as a ratio (BRET changes) [32].

4.6. Evaluation of pERK1/2 Activation by BRET

Forty-eight-hour transiently transfected cells were washed and maintained for 1 h
in 100 pL of serum-free media at 37 °C and 5% CQO,. Cells were washed with PBS and
incubated for 20 min in 40 uL PBS added with 1 mM HEPES. Upon automatic injection of
10 uL of 5 uM coelenterazine H and 1 mM HEPES diluted in 20 pL of PBS, in the presence
or in the absence of 100 pM LH or hCG, as the hormone concentration maximally activating
pERK1/2 [10]. BRET signals were detected using a CLARIOstar microplate reader. Cells
treated by phorbol-12-myristate-13-acetate served as positive controls [33]. Light emissions
at 480 and 540 + 20 nm were detected over 17 min, at intervals of 1.76 s, and represented
as acceptor/donor ratio.

4.7. Statistics

cAMP data were represented as BRET changes over the baseline and values are
mean =+ standard error of mean (SEM) in a graph with a logarithmic X-axis. Dose-response
curves were obtained by data interpolation using non-linear regression. The 50% effective
concentrations (ECsp) were extrapolated and compared using the Mann-Whitney U test,
after testing the departure from normality using the D’ Agostino and Pearson test. pERK1/2
kinetic curves were represented as locally weighted scatterplot smoothing (LOWESS) of the
induced BRET changes over the baseline. Multiple comparison between LOWESS functions
of pERK1/2 activation kinetic curves were performed using the Kruskal-Wallis test and
Dunn’s Multiple Comparison post-test, after testing the departure from normality using
the D’Agostino and Pearson test. The area under the curve (AUC) was also calculated
from the LOWESS, considering the time-window of 10-15 min as that displaying optimal
PERK1/2 activation [10]. AUCs were then compared using the Mann-Whitney U test, after
the exclusion of outliers calculated by the Grubb’s test. Statistical analysis was performed
using GraphPad Prism software (GraphPad Software Inc., San Diego, CA, USA) and
differences were considered as significant for p < 0.05.
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Abbreviations

LH. Luteinizing hormone

hCG Human chorionic gonadotropin
GPCR G protein-coupled receptor
LHCGR Human LH/hCG receptor

Lhr Murine luteinizing-hormone receptor
CTP C-terminal extension

LRRD Leucine-rich-repeat domain
cAMP Cyclic adenosine monophosphate
PKA Protein kinase A

AKT Protein kinase B

ERK1/2 Extracellular signal-regulated kinases 1/2
HEK293 Human Embryonic kidney 293

DMEM Dulbecco’s Modified Eagles Medium

FBS fetal bovine serum

EDTA Ethylenediaminetetraacetic acid

PBS Phosphate buffered saline

BRET Bioluminescence resonance energy transfer

pERK1/2  Phosphorylated extracellular signal-regulated kinases 1/2
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IBMX Phosphodiesterase inhibitor 3-isobutil-1-methylxanthine
EC50 50% effective concentrations

LOWESS Locally weighted scatterplot smoothing

AUC Area under the curve

SEM Standard error of the mean

PMA Phorbol 12-myristate 13-acetate
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