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ABSTRACT

microRNAs (miRNAs) are post-transcriptional regu-
lators involved in many biological processes and hu-
man diseases, including cancer. The majority of tran-
scripts compete over a limited pool of miRNAs, giv-
ing rise to a complex network of competing endoge-
nous RNA (ceRNA) interactions. Currently, gene-
regulatory networks focus mostly on transcription
factor-mediated regulation, and dedicated efforts for
charting ceRNA regulatory networks are scarce. Re-
cently, it became possible to infer ceRNA interactions
genome-wide from matched gene and miRNA expres-
sion data. Here, we inferred ceRNA regulatory net-
works for 22 cancer types and a pan-cancer ceRNA
network based on data from The Cancer Genome
Atlas. To make these networks accessible to the
biomedical community, we present SPONGEdb, a
database offering a user-friendly web interface to
browse and visualize ceRNA interactions and an ap-
plication programming interface accessible by ac-
companying R and Python packages. SPONGEdb
allows researchers to identify potent ceRNA regu-
lators via network centrality measures and to as-
sess their potential as cancer biomarkers through
survival, cancer hallmark and gene set enrichment
analysis. In summary, SPONGEdb is a feature-rich
web resource supporting the community in studying
ceRNA regulation within and across cancer types.

INTRODUCTION

microRNAs (miRNAs) are important non-coding, post-
transcriptional regulators that are involved in many bio-
logical processes and human diseases (1). miRNAs regulate
their target RNA transcripts by either degrading them or

by preventing their translation (2), thus acting as rheostats
that regulate gene expression and maintain the functional
balance of gene networks (3). The competing endogenous
RNA (ceRNA) hypothesis suggests that RNA transcripts
sharing binding sites for the same miRNA are in com-
petition (4). Hence, miRNA–ceRNA interactions follow a
many-to-many relationship where one miRNA can affect
multiple ceRNA targets, and one ceRNA can contain mul-
tiple binding sites for various miRNAs (5), leading to com-
plex cross-talk.

Since failures of these complex regulatory systems may
lead to cancer (6), it is crucial to infer and compare gene-
regulatory networks across various cancer types. However,
previous network inference efforts focused mostly on tran-
scription factor regulation (7–9), neglecting the influence
of miRNA regulation and ceRNA competition. To close
this gap, several efforts have been directed at developing
methods for ceRNA network inference (10), which were ap-
plied to individual cancer types (11) but also across cancer
types (12).

A number of resources have been proposed for study-
ing ceRNAs, including miRTissuece (13), LnCeVar (14),
Pan-ceRNADB (15), miRTarBase (16), ceRDB (17),
lnCeDB (18), miRSponge (19), LncACTdb (20), miR-
code (21), and starBase v2.0 (22) (see Supplementary Sec-
tion S7 and Tables S1–3 for a systematic comparison). Only
a few of these databases are dedicated to ceRNA networks.
Pan-ceRNADB covers 20 cancer types (15) and considers
messenger RNAs (mRNAs) in addition to lncRNAs as po-
tential ceRNAs. In contrast, the LnCeVar database focuses
on lncRNAs with experimental evidence for ceRNA inter-
actions and adds additional analyses on the effect of sin-
gle nucleotide and copy number variants on ceRNA activ-
ity (14). Existing resources currently do not afford genome-
wide coverage, i.e. are limited to lncRNAs, or employ sim-
plistic methods, which lead to a large number of false pos-
itives. For instance, only considering if two genes are en-
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riched for shared miRNA regulation in a hypergeometric
test neglects that both genes and the miRNA have to be
co-expressed. Examining the correlation of gene expression
with a shared miRNA does not quantify the effect on gene–
gene correlation.

This highlights the need for a comprehensive and eas-
ily accessible resource of pan-cancer ceRNA networks that
leverage state-of-the-art methods that account for the trian-
gle relationship of ceRNA–miRNA–ceRNA triplets. Since
methods leveraging conditional mutual information such as
CUPID (23) or JAMI (24) do not afford genome-wide cov-
erage due to computational costs, we have previously devel-
oped the method SPONGE, which overcomes limitations of
sensitivity correlation (25) and facilitates fast genome-wide
ceRNA network inference (26).

Here, we present SPONGEdb, a database providing ac-
cess to SPONGE-inferred genome-wide ceRNA networks
of 22 cancer types in TCGA (27) and a pan-cancer ceRNA
network considering all available data (Figure 1). In con-
trast to most other resources, SPONGEdb results account
for the contribution of multiple miRNAs and address pre-
viously neglected confounding factors. Specifically, we use
the SPONGE R package (26) to infer empirical P-values
that limit the false positive rate and avoid spurious cor-
relations. SPONGEdb offers additional insights into the
results through providing user-friendly features for acces-
sibility not found in other databases: (i) SPONGEdb re-
ported ceRNA interactions are easily accessible via a well-
documented application programming interface (API); (ii)
SPONGEdb allows investigating the effect of individual or
multiple ceRNAs on a global ceRNA network, highlight-
ing their relevance in a cancer background; a user-friendly
web interface allows for searching and filtering ceRNA in-
teractions and to visualize them as an interactive network
enriched with additional information about patient sur-
vival as well as gene expression or functional annotations
from WikiPathways (28), GeneCards (29), Quick GO (30),
and Cancer Hallmarks (31). Functional enrichment analy-
sis can be performed via g:Profiler (32). In addition to the
web interface, we provide R and Python packages to allow
third-party developers, data scientists, and biomedical re-
searchers to carry out in-depth analyses. Here, we give an
overview of the features of SPONGEdb and present a se-
ries of use cases demonstrating how this unique resource
can be used for explorative analysis and hypothesis gener-
ation when studying ceRNA competition in cancer. Fur-
thermore, we present results of SPONGE with experimen-
tally validated data retrieved from Tay et al. (33) and miR-
Sponge (19) using the features of SPONGEdb.

MATERIALS AND METHODS

Data processing

Using the SPONGE (26) bioconductor package, we iden-
tified significant ceRNA interactions for 10 019 samples
for which paired gene, and miRNA expression data were
available in TCGA (27). Data were processed by the TOIL
project (35) and downloaded from the TOIL data hub
in the Xena browser (36). Expression values were log2
transformed, and genes and miRNAs were discarded if
not expressed in 80% or more of the samples or when

variance was <0.5. To cover both non-coding and cod-
ing miRNA interactions, we used sequence-based predic-
tions of several methods, namely TargetScan 7.1 (37) and
miRcode v.11 (21). We further consider experimental ev-
idence reported by miRTarBase 7.0 (38,39) and DIANA-
LncBase v2 (40,41). SPONGE infers a ceRNA interaction
network from the paired gene and miRNA expression data.
SPONGE was applied to 22 cancer types in TCGA with
>100 samples to obtain robust results for the correlations
as well as for the aggregated pan-cancer dataset using de-
fault settings. For more details, we refer to the original
method publication (26). Survival information from TCGA
was used to produce Kaplan-Meier plots, where patients
were split into two groups based on the median expression
level. We used a log-rank test for assessing if the two survival
curves differ significantly.

Implementation

Centrality measures. Centrality measures provide impor-
tant information about the organization of complex systems
in network analysis (42,43). Del Rio et al. showed that a
combination of at least two centrality measures achieve re-
liable performance in biomarker detection (44). Hence, we
provide degree, betweenness and eigenvector centrality (45)
in SPONGEdb.

Degree centrality. The degree centrality corresponds to
the number of edges connected to a node and highlights hub
nodes (42), which are known to be important in biological
systems (46–48).

Betweenness centrality. Here, we consider bottlenecks
rather than hubs of a network to be important, i.e. between-
ness centrality cBC

i (g) of node i in a graph g is high if i falls
on a large fraction of shortest paths between other nodes j
and k (49). Formally,

cBC
i (g) =

∑

( j,k), j �=i, j=i

vg(i : j, k)
vg( j, k)

(1)

with vg(i: j, k), the number of shortest paths between j and
k that visit i and vg(j, k) the number of all shortest paths
between j and k. Raman et al. demonstrated that between-
ness centrality correlate with lethality of organisms in pro-
tein networks (50).

Eigenvector centrality. Here, the importance of a node i is
related to the importance of neighbors j connected by edge
aij, i.e. eigenvector centrality cEC

i is defined as:

cEC
i = 1

λ

n∑

j=1

ai j cEC
j (2)

where aij is 1 if i and j are connected and else 0. � corre-
sponds to the eigenvalue which is unique under the require-
ment that all values of the eigenvector are positive. Negre
et al. showed the importance of eigenvector centrality for
biological pathways by creating a protein allosteric pathway
network (51).

The SPONGEdb database contains expression and
survival data from TCGA, gene anotations from EN-
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Figure 1. SPONGEdb overview: ceRNA networks for 22 cancer types as well as a pan-cancer ceRNA network for all 10 019 samples in TCGA have been
inferred with SPONGE (26) and can be queried efficiently via a RESTful API through any programming language. We provide R and Python packages
to simplify scripted access and offer a user-friendly and feature-rich web interface offering additional insights into ceRNA from external resources (EN-
CODE (34) for additional gene information, miRBase for additional miRNA information, Quick GO for correlating Gene Ontologies and the WikiPath-
ways keys for each gene). The web interface offers visualization of the ceRNA networks, expression heat maps and survival analysis via Kaplan–Meier
plots. Various filters for node centrality and edge weights allow refining the ceRNA network to focus on cancer-type-specific essential ceRNA regulators
and their strongest or most significant interactions.



4 NAR Cancer, 2021, Vol. 3, No. 1

Figure 2. (A) Number of significant ceRNA interactions for each cancer type on a logarithmic scale. (B) Many ceRNAs are specific for a certain cancer
type. Only two subsets of core ceRNA interactions are active in almost all cancer types (subsets with 101 and 128 ceRNAs, respectively). (C) Distribution
of network properties for core ceRNAs for the subset of 101 ceRNA interactions, highlighting that core ceRNAs have only moderate regulatory strength.

CODE (34) and miRNA annotations from miRBase (52).
For more details about the implementation of SPONGEdb,
see Supplementary Sections S1–4 and Figures S1 and 2.

RESULTS AND DISCUSSION

SPONGEdb allows users to query ceRNA interactions for
22 cancer types, as well as a pan-cancer ceRNA network
via an API for which we implement three use cases: (i) a
user-friendly web interface, (ii) an R package, and (iii) a
Python package. The general architecture and work-flow
of SPONGEdb are shown in Figure 1. In the following, we
present three application cases that illustrate the broad util-
ity of SPONGEdb in ceRNA research.

Pan-cancer analysis of ceRNA activity

SPONGEdb reports many significant interactions across 20
of the 22 cancer types as well as a unique pan-cancer anal-
ysis revealing key ceRNAs that play a role across cancer
types (Figure 2A). Many of the candidate ceRNAs impli-
cated here have not been described in the literature and can
thus serve to prioritize candidates for experimental valida-
tion. Only a fraction of ceRNAs appear to act across all
cancer types and, conversely, many ceRNAs act in a cancer-
specific fashion (Figure 2B and C). As expected, we ob-
serve a positive trend between the number of tumor sam-
ples (e.g. breast cancer has 1063 samples, while thymoma
has only 119 samples) and the number of significant inter-
actions (Figure 4), which can be explained by an increase

in statistical power. Fitting this hypothesis, the pan-cancer
analysis comprising all cohorts provides the largest number
of significant interactions. However, for some cancer types,
we find only very few significant interactions, even if the
sample numbers would suggest otherwise. Likewise, we ob-
serve a difference in the number of significant interactions
for cancer types with similar cohort sizes.

Ovarian serous cystadeno carcinoma and uterine corpus
endometrioid carcinoma appear as outliers with <1% of
significant interactions (Figure 2), suggesting that in these
cancer types, ceRNA regulation may either be less pro-
nounced than in other cancer types or confounded by het-
erogeneity, i.e. introduced by the tumor microenvironment
or by subtype-specific differences. To further investigate
this, we performed SPONGE analysis on an independent
Australian cohort of ovarian cancer patients (https://dcc.
icgc.org/releases/current/Projects/OV-AU) where we also
found <1% of significant interactions (see Supplementary
Section S8 and Table S4), confirming the results on TCGA
data.

There are other factors to consider that may limit the
sensitivity of SPONGE, e.g. the high number of significant
ceRNA interactions in testicular germ cell tumors could
be explained by a relatively high complexity of the tran-
scriptome in this tissue (53). Moreover, we consider only
gene–miRNA interactions with a negative regression coeffi-
cient and may thus miss cases where translational repression
rather than degradation of the target transcript occurs. The
presence of possible biological confounders highlights that

https://dcc.icgc.org/releases/current/Projects/OV-AU


NAR Cancer, 2021, Vol. 3, No. 1 5

Figure 3. The reproduced figures of PTEN, PTENP1, VCAN, CD34, CNOT6L, VAPA, ZEB2 and RB1. The SPONGE algorithm found most of the
described interactions in the Tay et al. paper and found additional interactions between the genes, which need to be experimentally validated. Additionally,
the website provides following information: (A) Network visualizing the interactions between the genes. The edge thickness and color, as well as the node
size, corresponds to the P-value/node degree. P-value ≤ 1: yellow, P-value ≤ 0.4: light orange, P-value ≤ 0.05: dark orange. (B) Expression heatmap. (C)
Survival Analysis of PTEN. P-value = 5.8e−7. (D) External links of the shown genes for one-click further investigation to important web resources. We
included WikiPathways, GeneCards, Quick GO and g:Profiler.

Figure 4. Pan-cancer analysis of the number of significant ceRNA interactions at FDR < 0.05 compared to the number of tumor samples. This figure was
created with the SPONGEdb R package, see Supplementary Section S6 for details.
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Figure 5. Comparison of results for BRCA and its subtypes luminal A, luminal B and basal after subsampling to 132 samples.

Figure 6. Different network centrality measures summarized across cancer types for experimentally validated ceRNAs from (A) Tay et al. (33) and (B)
miRSponge (19). This plot was produced using the SPONGEdb python package (see Supplementary Section S12). Note that the mean and median were
computed across all cancer types.

comparisons between cancer types should focus on com-
monalities rather than differences. We further note that the
size of the resulting ceRNA networks in SPONGEdb can
be increased by adjusting the FDR cutoff, which defaults
to 0.05 to provide suitable candidates for experimental val-
idation.

Cancer subtype analysis of BRCA

To further investigate the influence of cancer subtype-
related heterogeneity, we performed independent analyses
for the major breast cancer subtypes (luminal A, luminal B,
HER2, and basal) from TCGA data. We chose breast can-
cer since its subtypes are clinically well defined, and since

this dataset has a sufficiently high sample number to con-
sider subtypes. In Supplementary Section S9, (Supplemen-
tary Table S5 and Figures S3 and 4), we show that, despite
the reduced heterogeneity, the number of significant interac-
tions is dramatically reduced as a consequence of the lower
sample number.

Next, we subsampled luminal A, luminal B, and basal
subtype data as well as the entire BRCA cohort to 132 sam-
ples (owing to basal, the smallest of the subtype cohorts
considered here). This analysis (Figure 5; Supplementary
Section S9, Table S6, Figure S5 and 6) shows that the num-
ber of overall and significant interactions differs strongly
between subtypes. Luminal A, which is the most frequent
and least aggressive subtype, shows the largest number of
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overall and significant interactions compared to the other
subtypes as well as compared to a random sample drawn
across all subtypes. This shows that subtype-specific anal-
ysis can reduce the influence of sample heterogeneity. Only
a few significant interactions are reported in the other sub-
types, which suggests that a subtype separation alone does
not address all sources of heterogeneity. For example, we
could recently show that the luminal and basal breast can-
cer subtypes in TCGA are confounded by tumor-infiltrating
leukocytes (54).

Experimentally validated ceRNAs in a pan-cancer context

SPONGE can also be used to investigate previously re-
ported or putative interactions of experimentally validated
ceRNAs. For example, the pseudogene PTENP1 has been
reported to regulate levels of the tumor suppressor gene
PTEN by competing for shared miRNAs. Low amounts of
PTEN are associated with a higher risk of developing can-
cer. Furthermore, Tay et al. reported a dense ceRNA net-
work involving PTEN and PTENP1 together with VCAN,
CNOT6L, CD34, VAPA, ZEB2 and RB1. To test if the re-
ported ceRNA network can be reproduced in SPONGEdb,
we selected the above query genes in the pan-cancer dataset.
The resulting network (Figure 3 A) corroborates previously
reported interactions by Tay et al. and highlights further
putative ceRNA interactions between the selected genes,
which need to be experimentally validated.

The web interface offers additional insights into the se-
lected network, including a heatmap of expression values
(Figure 3B), survival data shown as a Kaplan–Meier plot
(Figure 3C), key network centrality measures including de-
gree, betweenness and eigenvector centrality, as well as func-
tional annotation of cancer hallmarks and links to external
information about associated pathways and gene ontology
terms, including gene set enrichment analysis (Figure 3D).
All information shown in the web interface can conveniently
be exported in tabular format or as an image.

Experimentally validated ceRNAs show better sponging ca-
pacity than random ceRNAs

Next, we investigated if experimentally validated ceRNAs
outperform random sets of ceRNAs in terms of network
centrality measures. For this analysis, we selected the eight
ceRNAs reported by Tay et al. as well as another 21 ex-
perimentally validated ceRNAs reported by miRSponge
and compared their centrality measures to an average of
1000 times randomly chosen gene set of equal size as well as
to the median and mean of all genes available inside the net-
work. Our results (Supplementary Section S10 and Figures
S7–10) show that the betweenness, node degree and eigen-
vector centralities are considerably higher for these ceR-
NAs. We also investigated if these ceRNAs are only relevant
for specific cancer types by systematically comparing their
centrality measures. Our results (Supplementary Section
S11, Figures S11 and 12) show that many experimentally
validated ceRNAs are relevant in a larger number of can-
cer types. Figure 6 shows that all investigated ceRNAs but
VAPA (Tay et al.) and HULC, RAP1B (miRSponge) have
centrality measures larger than the mean of all ceRNAs re-

ported in SPONGEdb. This corroborates that network cen-
trality measures reported by SPONGEdb capture meaning-
ful ceRNA biology and that predicted ceRNAs are promis-
ing candidates for experimental validation.

CONCLUSION AND OUTLOOK

To date, TCGA is the most comprehensive resource of
molecular profiling data in cancer research (27). The avail-
ability of paired gene and miRNA expression data offers
a unique chance to comprehensively study ceRNA regu-
lation in a network context. Here, we made SPONGE-
inferred ceRNA networks for 22 cancer types available
as an easy-to-access resource. To facilitate broad utility,
SPONGEdb implements an API that allows biomedical re-
searchers to query the results programmatically to embed
our results in their own analyses and tools. Moreover, we
offer an interactive web interface to browse, filter and vi-
sualize the results. In conclusion, SPONGEdb is an im-
portant resource for studying the role of ceRNAs in var-
ious cancer types and for prioritizing ceRNA candidates
for experimental validation. For the future, we plan to ex-
tend SPONGEdb with more sophisticated network analy-
sis features, e.g. for the detection of disease-relevant sub-
networks via network enrichment (55). Although the paired
gene and miRNA expression data are currently scarce, we
envision that such data will become more prevalent, allow-
ing us to extend SPONGEdb beyond the current applica-
tion in cancer. Moreover, we expect that co-profiling of gene
and miRNA expression in single cells will allow us to infer
cell-type-specific ceRNA networks to further broaden the
scope of SPONGEdb.
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