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Abstract 

Neural signatures for the western classification of emotions have been widely discussed in the literature. The ancient 
Indian treatise on performing arts known as Natyashastra categorizes emotions into nine classes, known as Rasas. 
Rasa—as opposed to a pure emotion—is defined as a superposition of certain transitory, dominant, and tempera-
mental emotional states. Although Rasas have been widely discussed in the text, dedicated brain imaging studies 
have not been conducted in their research. Our study examines the neural oscillations, recorded through electro-
encephalography (EEG) imaging, that are elicited while experiencing emotional states corresponding to Rasas. We 
identify differences among them using network-based functional connectivity metrics in five different frequency 
bands. Further, Random Forest models are trained on the extracted network features, and we present our findings 
based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maxi-
mum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out 
of nine Rasas, Sringaram (love), Bibhatsam (odious), and Bhayanakam (terror) were distinguishable from other Rasas 
the most across frequency bands. On the scale of most network metrics, Raudram (rage) and Sringaram are on the 
extremes, which also resulted in their good classification accuracy of 95%. This is reminiscent of the circumplex model 
where anger and contentment/happiness are on extremes on the pleasant scale. Interestingly, our results are consist-
ent with the previous studies which highlight the significant role of higher frequency oscillations in the classification 
of emotions, in contrast to the alpha band that has shows non-significant differences across emotions. This research 
contributes to one of the first attempts to investigate the neural correlates of Rasas. Therefore, the results of this study 
can potentially guide the explorations into the entrainment of brain oscillations between performers and viewers, 
which can further lead to better performances and viewer experience.
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1  Introduction
Our emotions affect our daily lives in many ways and 
they contribute to cognitive processes such as percep-
tion, attention, and decision-making. Films engage view-
ers through experiences by capturing their attention and 
stimulating perception, cognition, and emotion. The 

grasp on the audience’s attention and generating certain 
kinds of emotions are driven by the structure of audio–
video placement in a film. A neurocinematics study 
explores different brain processes and mental states while 
watching movies. In line with this, neuroaesthetic is the 
field that involves the study of esthetic processing in the 
brain while watching a structured video pertaining to a 
set of emotions. Esthetic components of audio–video 
stimuli evoke various emotions in our daily lives.

The previous studies in neuroaesthetics are mostly 
based on the western classification of emotions. Several 
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such categorizations of emotions have been discussed 
in the literature. Ekman discusses the six basic emo-
tions including anger, disgust, fear, joy, sadness, and 
surprise [1], besides another six categorizations compris-
ing desire, love, sorrow, wonder, happiness, and interest 
[2, 3]. Tomkins et  al. [4] in their approach to emotion, 
describe nine basic emotions including anger, contempt, 
disgust, distress, fear, interest, joy, shame, and surprise. 
The cognitive structure of emotions has also been dis-
cussed in further 22 forms. In this study, we present our 
work on the Indian categorization of emotions into nine 
classes as described in ‘Natyashastra’: a treatise on per-
forming arts. These nine dimensions of emotions corre-
spond to the nine Rasa s (esthetic impact of an artwork). 
We study these Rasa s as evoked via watching audio-vis-
ual entertainment (movie clips) through electroencepha-
lographic recordings. A Rasa describes a state of mind 
to indicate emotion. This research is pivotal in under-
standing the theoretical work done by researchers in the 
domain of neuroaesthetics, especially Indian esthetics 
of performing arts. Several works on Rasa s have been 
produced, including dance, drama, and paintings [5–7]. 
However, there is a need to understand the underlying 
cognitive processes while observing various Rasa forms. 
This article investigates the role of different brain oscil-
lations while watching nine Rasa s in the form of audio-
visual clips.

This study recorded electroencephalography (EEG) 
responses while participants were watching movie clips 
depicting nine Rasa s. EEG has been a principal tool for 
brain research because it reflects electrophysiological 
activity that is representative of brain function and EEG 
recording can be conducted at a relatively low cost with 
high temporal and useful spatial resolution [8]. EEG  
signals produce high-resolution images of neural oscil-
lations, which opens several ways to study the human 
brain, from treating mental disorders to understand-
ing emotions. For example, to study the brain processes 
involved during happy or sad emotions, participants can 
view emotional images while recording their brain activ-
ity [9]. This opens the research avenue to explore dif-
ferent emotional processes based on the stimuli. EEG 
signals represent synchronized electrical pulses from 
masses of neurons interacting with one other. Brain 
rhythms are primarily divided into five frequency bands, 
differentiated via their morphological and functional 
aspects. These are majorly classified into five frequency 
bands: delta (1– 4 Hz), theta (4– 7 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), and gamma (30–45 Hz). Figure  2 dis-
plays the five brain rhythms.

Brain waves are the windows to understanding cogni-
tive functions and their underlying brain processes. The 
morphology of EEG signals encodes complex properties 

and patterns, which can be decoded to connect previ-
ous knowledge to new ones to get more depth of brain 
processes. Slow-to-fast brain rhythms have been dis-
cussed widely spanning numerous domains of cognitive 
neuroscience. Delta rhythm is the slowest and strong-
est brainwave and is usually associated with the deepest 
form of dreamless sleep. Theta waves are observed in 
deep meditation and relaxation. Alpha band is associ-
ated with relaxation or calmness, and alertness. Beta 
band is marked by the state of wakefulness/conscious-
ness, observed when performing any cognitive tasks 
(e.g., problem-solving, decision-making, etc.). Gamma 
frequencies are the fastest brainwaves, correlated with 
long-range neuronal communication, and facilitating 
the neural mechanisms underlying attention [10–13]. 
Previous studies on emotions highlight the discussion 
on frequency bands. Gamma band is ultra-fast brain 
waves identified to play an important role in human 
emotions [9, 14]. Gamma band is shown to find the dif-
ferences between happy and sad emotions [15]. Beta 
bands are indicated for identifying three emotions: 
positive, neutral, and negative [16, 17]. A recent study 
finds the significance of beta and gamma bands in the 
discrimination of low/high valence, low/high arousal 
[18]. A study of event-related oscillations involving 
event-related synchronization/desynchronization has 
discussed the role of the slow (delta) waves in emo-
tional processing in the passive viewing of emotionally 
evocative pictures [19].

Previous studies have suggested that functional con-
nectivity in different frequency bands preserves sig-
nificant network topology, which may be employed to 
classify emotions. In recent years, complex network the-
ory has gained popularity [20], researchers have shown 
that EEG can be used to build brain networks and the 
resulting networks show a number of important topo-
logical traits [21]. A functional connection in the brain 
is defined typically as the temporal correlation between 
remote neurophysiological events [22]. Brain activi-
ties require interactions among multiple brain regions. 
Emotional processing requires the cooperation of many 
brain regions, as it is a high-level cognitive function 
[23]. The study of brain activity mechanisms often relies 
on brain networks, which depict relationships between 
brain regions and information exchange between them 
[24, 25]. Using functional connectivity, Zhang and col-
leagues identify the interaction of the prefrontal area to 
most other areas in emotional processing [26]. Gamma 
waves form more dense connections during the nega-
tive and neutral valences than beta waves with specific 
sites of right frontal and parietal–occipital regions [27]. 
According to previous research, functional connectivity 
measurements based on EEG data effectively generate 
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the representation that may depict neural signatures for 
different emotional states.

Furthermore, functional connectivity has been stud-
ied widely by various graph theoretical measures, which 
reveal crucial topological features of the brain network 
[28]. Graph theoretical analysis of human brain net-
works has been utilized in a variety of imaging modali-
ties, including EEG/MEG, functional MRI, diffusion 
MRI, and structural MRI [29]. The impact of emotional 
stimuli on large-scale functional brain networks can be 
measured through the evaluation of parameters such as 
centrality and global efficiency [9, 30]. Other network 
properties such as modularity, node betweenness cen-
trality, clustering coefficient, and the existence of highly 
connected hub regions have been consistently discussed 
in the EEG studies [21, 29, 31]. Several network meas-
ures are explored to identify the characteristics of emo-
tional states. Alpha frequency has been found to have the 
closest community structure across nine emotions [32]. 
Another study discussed that the clustering coefficient 
is higher in the left anterior regions of the negative emo-
tions than positive groups [33].

Evidence from previous studies strongly suggests that 
functional connectivity of different frequency bands 
preserves significant network topology, which may be 
employed to classify emotions. In line with these find-
ings, we extract network features from EEG responses for 
classification between Rasa s. This research is motivated 
by the hypothesis that each Rasa may exhibit characteris-
tics that are indistinguishable or distinguishable from one 
another. The following three points state the two primary 
objectives of this research and the expected outcome: 

1.	 Which frequency band represents the maximum 
indistinguishable and distinguishable pair of Rasas?

2.	 What pair of Rasa s are indistinguishable and distin-
guishable?

3.	 We anticipate that the results of our research will be 
in line with previous neuroimaging studies on emo-
tion, especially on the role of fast brain waves in clas-
sifying emotions. Some of the indistinguishable and 
distinguishable pairs reflect the relationship on the 
pre-defined emotion model.

This work provides neural correlates of Rasa s in the form 
of brain networks and identifies brain waves that distin-
guish them the most and the least. Our research provides 
insights into the brain processing of emotionally laden 
movie clips that elicit a certain mood. We believe that our 
analysis and results may provide opportunities for per-
formers to understand the brain frequencies generated 
while doing an act among an audience; and the same goes 
for other art forms like music, literature and paintings. 

This is analogous to neural entrainment [34]—where a 
rhythmic sensory stimulus synchronizes neuronal activ-
ity. In the case of performing arts, the performer gen-
erates certain kinds of emotions that may induce the 
entrainment between the performer and viewer. There-
fore, this research has potential implications for studying 
the entrainment of brain oscillations between performer 
and viewer. Such synchrony of oscillations are the key 
to generating better performances and a better viewer 
experience.

To the best of our knowledge, this is one of the first 
attempts at the scientific study of Rasa s that involves 
modern experimental techniques and methodology, e.g., 
brain imaging through EEG, network construction based 
on weighted phase lag index, and machine learning for 
classification of Rasa s. Such a study is novel and interest-
ing, especially in the domain of neuroaesthetics, because 
Rasa s are defined as the esthetics associated with an art 
form experienced by an audience, and are not pure emo-
tional states. Through our analyses, we not only find dif-
ferences and commonalities in how the nine Rasa s are 
exhibited as brain waves, but also discover results that 
complement our contemporary understanding of emo-
tions and brain waves.

This article is organized in seven sections: (a) Introduc-
tion, (b) The Natyashastra and Rasa s, (c) Data descrip-
tion and preprocessing, (d) Methodology, (e) Results, 
(f ) Discussion, (g) Limitations and future scope, and (h) 
Conclusion.

2 � The Natyashastra and Rasas
The ‘Natyashastra’ (NS), the ancient Indian treatise on 
performing arts, which dates back to the second century 
AD, provides a major basis for the Indian system of cat-
egorizing emotional states [35].

Attributed to Bharata Muni (Sage), the NS provides 
instructions on topics such as dramatic composition, 
structuring of a play, construction of the stage, acting 
styles, kinds of body movements, costumes, goals of the 
art director, etc. [36]. NS has not only influenced various 
literary traditions in India, such as dance, music, and act-
ing but propounded Rasa Theory. The prime highlight of 
the theory is that although entertainment is the definite 
desired effect of performance art, it is not the primary 
goal. As a method of performance by movie actors, Rasa , 
has been an undeniable part of Indian cinema (Bolly-
wood). In contrast to western method acting, where an 
actor embodies the character they play, the focus of the 
Rasa method is to convey the emotion. Hence, according 
to Rasa theory, the performers must become the living 
embodiment of the Rasa they depict [37].

A word non-existent in the English language, 
Rasa expresses a combination of the ‘artist’ and the 



Page 4 of 20Pandey et al. Brain Informatics            (2022) 9:15 

‘aesthetic’ [38]. Its origins refer to the concept of taste 
of cuisine and can mean the essence or flavor. Bharata 
Muni described Rasa as ’extract’, to imply something 
worthy of being tasted, and asserted that without Rasa 
the purpose of art is unfulfilled [38]. In [39], Rasa is 

described as an ‘ecstasy’ caused by watching or listen-
ing to an art form such as a play or music. Addition-
ally, as opposed to being a single pure thing, Rasa is 
a superposition of many sensory inputs that produce 
“a richly textured, emotionally resonant experience 

Fig. 1  The nine-dimensional classification of emotions as described in Natyashastra (Indian Rasa Theory). The figure on the left depicts facial 
expressions corresponding to nine different Rasa s. In the table we give closest English translation of these Rasa s, and the corresponding dominant 
emotional state (or Sthayi Bhava ) also with the meaning in English. (Image source: https://​www.​youtu​be.​com/​watch?v=​sSdMU​aF3-​18)

Fig. 2  Brain rhythms depict the primary five waveforms. The figure shows various frequencies present in the EEG signal. Delta band (1–4 Hz) 
depicts lowest frequency waves, followed by theta band (4–7Hz), alpha band (8–13 Hz), beta band (13–30 Hz) and gamma band (30–45 Hz)

https://www.youtube.com/watch?v=sSdMUaF3-18
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larger than the sum of its parts” [40]. These parts (or 
ingredients, described in analogy to a cuisine) of Rasa s 
are the bhavas. These distinguishable bhavas (emo-
tional states), when combined creatively, add to give 
enjoyable esthetics of a mixture of emotions. Bharata 
describes Rasa s as “moods” experienced by the audi-
ence, and bhavas are “state of being” portrayed by 
actors in performing arts. He describes Rasa s and 
bhavas as “cause one another to originate”. Uppal 
(2018) [38] describes Rasa s as taste in food, or melody 
in music, or movement of the body in a dance, while 
the bhavas are more discretely conveyed through 
words, gestures, acting, expressions, etc. In light of this 
definition of the Rasa , and the traditional pertinence 
of Rasa theory in Indian cinema, we design our study 
and look at it through the lens of modern theories of 
cognition, perception, and computational esthetics.

In the Natyashastra, Rasas (pg. LXXXVI: [41]) are 
considered as superposition of certain dominant 
states (sthayi bhava), transitory states (vyabhicari 
bhava), and temperamental states (sattvika bhava) of 
emotions (pgs. 102, 105: [41]). Out of these only the 
the sthayi bhava is transformed into Rasa [38]. There 
are eight Rasa s in classical Indian performing arts 
which are: Sringaram (erotic), Hasyam (comic), Karu-
nayam (pathetic), Raudram (furious), Veeram (heroic), 
Bhayanakam (terrible), Bibhatsam (odious), and Adb-
hutam (marvelous). A later addition to the Sanskrit 
poetic tradition is a ninth sentiment called Santam 
(peace) (pg. 102: [41]). The facial expressions and the 
dominant state (bhava) corresponding to each of these 
Rasa s are depicted in Fig.  1 We based our selection 
of movie clips on this classification system and chose 
ones that correspond to each Rasa . In light of the fact 
that there are no defined movie clips for this classifi-
cation system, the movies we selected represent one 
set of selections.

3 � Data description
The Institute Ethical Committee (IEC) of Indian Institute 
of Technology, Gandhinagar, approved this study. Prior 
to conducting experiments, all of the participants pro-
vided informed consent.

3.1 � Subjects
The study involved 20 healthy (mean age: 26 years, 16 
males, 4 females), right-handed students from Indian 
Institute of Technology Gandhinagar. All participants 
were proficient in the Hindi language, which was also the 
language of the video clips. All participants were briefed 
about the task and asked to maintain their attention while 
watching the film clips. Small groups of subjects indepen-
dently scored movie clips from each category of emotion. 
Only those clips were selected with the highest ranking 
for evoking a particular response for all categories.

3.2 � Audio‑visual stimuli
Bollywood is popular Indian cinema based on the Hindi 
language. We selected nine Bollywood movie clips cover-
ing four decades from the 1980s to recent, as shown in 
Table 1. These movie clips depicted each Rasa and selec-
tion was based on the independent rating from a small 
group of participants. Each film segment had a different 
length because the clips contained narration that had to 
be shown for a certain time to evoke a specific Rasa . Film 
clips ranged in length from 42 s to 2 min 37 s, as shown 
in Table 1.

3.3 � EEG data acquisition and preprocessing
EEG recordings were collected while a participant was 
asked to watch the selected nine film clips correspond-
ing to nine Rasa s. A high-density Geodesic system of 
128 channels was used for this acquisition with a sam-
pling rate of 250 Hz. A white fixation cross on a blank 
screen preceded each film clip for 10 s, and the order of 

Table 1  Movie clips used in EEG data collection

Movie ID Rasa genre Film name Director Year Duration Start time End time

1 Adbhutam Mr. India Shekhar Kapur 1987 1m 48s 1h 1m 40s 1h 3m 28s

2 Bhayanakam Bhoot Ram Gopal Varma 2003 1m 34s 1h 2m 57s 1h 4m 31s

3 Bibhatsam Rakhta Charitra Ram Gopal Varma 2010 1m 12s 43m 55s 45m 7s

4 Hasyam 3 Idiots Rajkumar Hirani 2009 2m 33s 59m 55s 1h 2m 28s

5 Karunayam Kal Ho Naa Ho Nikhil Advani 2003 2m 37s 2h 47m 41s 2h 50m 18s

6 Raudram Ghajini A.R. Murugadoss 2008 2m 9s 2h 38m 43s 2h 40m 52s

7 Santam Zindagi Na Milegi Dobara Zoya Akhtar 2011 2m 22s 48m 22s 50m 44s

8 Sringaram Umrao Jaan Muzaffar Ali 1981 42s 43m 08s 43m 50s

9 Veeram Lagaan: Once Upon a Time in India Ashutosh 2001 2m 3s 2h 10m 57s 2h 13m
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the films was randomized for each participant. The com-
plete experiment was designed and run in E-primeTM 
and recordings were captured using Net-stationTM. The 
preprocessing was performed using the Matlab EEGLAB 
package. High-frequency signals after 60 Hz were fil-
tered to avoid noise effects. Raw EEG data mostly contain 
movement and eye blink artifacts that can be checked 
carefully and removed to make data useful for analysis. 
Therefore, we applied artifact subspace reconstruction to 
keep the clean continuous data [42]. Following this, we 
chunked the data respective to each Rasa across subjects 
and used it for further analysis.

4 � Methodology
4.1 � Construction of brain networks
We constructed the functional connectivity networks 
using the EEG signals from each of the participants 
and for each of the Rasa s. The nodes of these networks 
were the EEG electrodes and the edges representing the 
strength of connections between the nodes were evalu-
ated using a measure called weighted Phase Lag Index 
(wPLI). The wPLI that quantifies the phase synchrony 
between any two time-varying signals, is a standard func-
tional connectivity measure used in the network neuro-
scientific community. The wPLI is defined as the extent of 
absolute phase lag or lead between two signals weighted 
by the imaginary component of the cross-spectral power 
density between these signals. It is robust to the vol-
ume conduction, presence of noise, and biases induced 
by sample size in the electrophysiological data [43–45]. 
Firstly, the EEG time-series signals from each of the elec-
trodes were segmented into 5-s-long windows or epochs 
with an overlapping window of length 2.5 s. Followed 
by filtration in five frequency bands, namely, delta: 1–4 
Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, and 
gamma: 30–45 Hz. The wPLI measure between a pair of 
signals calculates the average over the number of epochs. 
For our computation of wPLI, we used MNE-python’s 
connectivity module [46]. This gives us the five different 
coupling matrices (weighted adjacency matrix) each of 
size (128×128) pertaining to each of the five frequency 
bands, for each participant and each Rasa.

4.2 � Thresholding of brain networks
Functional networks mostly preserve weak and errone-
ous connections, which may conceal the topology of cru-
cial connections [21]. Thresholding is commonly used to 
remove a percentage of the weakest links to retain a usa-
ble sparse network. We applied the thresholding process 
as implemented in the paper [47]: the network should be 
97% connected, and the average degree should be greater 
than 2 ∗ log(n) , while maintaining the highest threshold 
value for edge weights, where n is the number of nodes.

4.3 � On the choice of network metrics as features
We chose 14 structural metrics calculated from the final 
weighted and thresholded brain networks as features. 
These were: average degree, maximum degree, average 
edge weight, maximum edge weight, network density, 
average clustering coefficient, local efficiency, global 
efficiency, number of communities, modularity, transi-
tivity, mean degree centrality, mean node betweenness 
centrality, and mean edge betweenness centrality. As 
stated before, we hypothesize that the network meas-
ures obtained from the connection topology carry infor-
mation specific to different Rasa s in different brain 
frequency bands. This assumption is based on two of 
the research findings in neuroscience: one linking graph 
theory with brain conditions/states, and the other high-
lighting the role of frequency bands in brain processes. 
Several studies that use the graph theoretic framework 
[48, 49] to study the complex system of the brain, have 
proven that different structural and functional aspects of 
the brain are captured by EEG-based connectivity pat-
terns of the brain network [30, 50–54]. These studies 
have highlighted that such brain functional networks can 
be characterized in terms of complex network proper-
ties, such as node betweenness, small-worldness, hubs, 
and modularity. Moreover, they demonstrated that these 
structural connectivity metrics could also distinguish 
between different cognitive states and pathophysiologi-
cal states of brain [54]. Since our network connections 
are governed by the phase relationship of EEG signals 
between electrodes, they capture the functional dynamic 
connectivity pertaining to the activation of brain path-
ways of emotions. The brain frequencies as observed in 
clinical EEG, on the other hand, have played an enor-
mous role in cognitive research [55]. Different frequency 
bands, their power content, and amplitude have been 
found to be specific to various basic cognitive engage-
ment states such as wakefulness, sleep, and attention, 
brain diseases such as depression in Parkinson’s [56], and 
schizophrenia [57], the accuracy of working memory in 
adults [58] and encoding personality traits [59].

4.3.1 � Definitions of network metrics
In this section, we define each of the network metrics 
[28] used as features in this work. We use the NetworkX 
Python library [60] to evaluate each of these metrics: 

	 1.	 Average degree (AD): The degree of a node in a net-
work is the number of its neighbors or the number 
of nodes that it directly connects to. The average 
of this number over all the nodes in the average 
degree.

	 2.	 Maximum degree (MD): It is the maximum of all 
the node degrees in a network.
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	 3.	 Average edge weight (AEW): Edge weight is the 
strength of an edge connecting given two nodes in 
a network. Average edge weight is the mean of edge 
weights over all the edges in the network.

	 4.	 Maximum edge weight (MEW): It is the maximum 
of all the edge weights in the network. In other 
words, it is the strongest connection present in the 
network.

	 5.	 Density (D): It is the ratio of the total number of 
edges present in the network to the number of pos-
sible edges in the network.

	 6.	 Average clustering coefficient (ACC): The clustering 
coefficient of a node measures the fraction of trian-
gles involving that node. In other words, it meas-
ures the extent to which its neighbors tend to form 
a complete graph. The average clustering coeffi-
cient is the average of this quantity over all nodes.

	 7.	 Local efficiency (LE): For a network node, it is 
defined as the inverse of the average shortest path 
length of all its neighbors among themselves. It 
measures how robust the network is to the failure 
of this particular node in terms of its communica-
tion efficiency.

	 8.	 Global efficiency (GE): Similarly, global efficiency 
measures the efficacy of distant information trans-
fer in a network. It is defined as the inverse of the 
average characteristic path length between all node 
pairs present in the network.

	 9.	 Number of communities (NC): A community in the 
network is the set of nodes that have denser con-
nections or a higher number of edges within this 
node-set, than to other nodes or communities in 
the network. A modular network is organized into 
clearly identifiable communities.

	10.	 Modularity (M): Modularity is the measure of the 
extent to which a network is divided into commu-
nities. This measure is often used as a quantity that 
is optimized, in various community detection algo-
rithms.

	11.	 Transitivity (T): Transitivity is the ratio of thrice 
the number triangles to the number of connected 
triples of nodes in the network.

	12.	 Average degree centrality (ADC): Centrality is the 
measure of the importance of the node in a net-
work, or how central is the node to overall network 
connectivity. The degree centrality of a node is a 
fraction of the number of links a node has to the 
total number of potential links it can have in the 
network.

	13.	 Average node betweenness centrality (NBC): 
Betweenness centrality measures how often a node 
bridges the connections between any two pairs of 
nodes in a network via the shortest path. If a node 

lies in a large number of such shortest paths, it has 
a high node betweenness centrality. Average NBC 
is the average over all nodes.

	14.	 Average edge betweenness centrality (EBC): Simi-
larly, for an edge, the edge betweenness centrality 
measures the number of shortest paths on the net-
work to which this edge belongs. Average EBC is 
average over all network edges.

4.4 � Random Forest (RF) classifiers
Network metrics from different networks were used as 
features for the classification. In this study, we trained 
binary classifiers between two given Rasa s. We selected 
Random Forest (RF) classifier for this research due to 
its well-established theory and easy interpretability [61]. 
RF predicts the class based on a number of fitted deci-
sion tree classifiers on various sub-samples of the data-
set. Features are used to build decision trees, where a 
feature denotes a node, and a threshold is used to split 
the node into two children nodes. The quality of the split 
is decided using the Gini criteria. Once the trees are fit-
ted, and optimum thresholds are identified, the final class 
is selected by the majority vote. RF controls over-fitting 
and averaging improves the predictive accuracy. We 
performed validation using the tenfold stratified tech-
nique. The classifier’s performance was evaluated using 
accuracy, precision, recall, and f1-score. Models were 
developed using scikit-learn python [64]. The complete 
process of construction of networks to classification is 
shown in Fig. 3. The input to the random forest was the 
number of subject samples × 14 features. The ‘number of 
the tree’ was set to 100 trees in the forest, the ‘quality of 
the split’ was measured by Gini impurity, ‘max depth’ of 
the nodes of the trees were spread until all leaves were 
pure or leave had minimum split samples. The ‘min sam-
ples’ were set to 2 for the minimum number of samples 
required to split an internal node. ‘Min sample leaf ’ was 
set one for the minimum number of samples required to 
be at a leaf node. ‘Min weight fraction’ on the leaf was set 
to equal weight, and the ‘max features’to consider when 
looking at the split was sqrt(number of features).

Previous studies have suggested employing permu-
tation-based p-values for assessing the competence of 
a classifier [62, 63]. This test is proposed to measure the 
real connection between the data and the class labels, 
and learning signifies a real class structure. We used the 
permutation test with 10,000 rounds with fivefold cross-
validation to examine the statistical significance of the 
classifier. The permutation test shuffles the labels of the 
instances to evaluate the significance of the classifier. This 
test [63] has been utilized extensively in the literature and 
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the results discussed via the permutation test are effective. 
A small p-value suggests that there is a real dependency 
between features and targets, which has then been used 
by the estimator to give good predictions. A high p-value 
may indicate little or no relationship between the fea-
tures and targets or that the estimator could not use the 
relationship to make good predictions. Majorly, the per-
mutation test procedure assesses how likely a particular 
accuracy score would be observed by chance. We have 
used the implementation of sklearn [64].

4.5 � Visualization
The obtained feature matrix was high dimensional, 
which limits the visualization in two-dimensional space; 
therefore, we applied t-distributed Stochastic Neigh-
bor Embedding (t-SNE) to generate lower-dimensional 
embedding [65]. t-SNE is a manifold learning unsuper-
vised approach for non-linear dimensionality reduction. 
It transforms the data into a low-dimensional space for 
visualization. EEG signals contain non-linearity and rep-
resent manifold brain processes, therefore we applied 
this technique to observe the manifolds that can retain 
the non-linear relationship of the dataset. There is one 
parameter, perplexity, which defines the variance of the 
Gaussian distribution. Different values of perplexity 

result in significantly different results, hence, we gener-
ated two-dimensional embedding using seven values: [5, 
10, 15, 20, 30, 40, 50].

4.6 � Statistical analysis
To test for gender and age effects on the features 
extracted, we averaged the network features extracted for 
male and female participants for each emotion and found 
that the measures for the two genders were strongly cor-
related ( R2 > 0.95 ). Similarly, we did not find any cor-
relation between age and any of the features extracted 
( p > 0.05 ). Hence, we do not consider these two factors 
in further analyses.

5 � Results
5.1 � Findings from classification
We developed binary classification models between pairs of 
Rasa s (emotions) across five bands. There were 36 models 
built for each band comprising a total of 180 (36 × 5) mod-
els. In Fig. 4, the first column depicts the test accuracy score 
for each model across bands and the second column men-
tions the respective significance scores (p-values). Based on 
the p-value, we segregated the Rasa pairs as either indis-
tinguishable or distinguishable. Indistinguishable refers to 

Fig. 3  The workflow of the present paper: (Box 1) EEG data acquisition is performed when a participant watches movie clips. The subsequent step 
involves preprocessing and segmentation of EEG signals into epochs of 5 s. Then the extracted segments are passed for frequency decomposition 
into five frequency bands comprising delta (1–4 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–35 Hz) bands. This is followed 
by the construction of brain networks with a threshold that retains the significant connections. Network properties are computed from the 
thresholded functional networks. These network properties are then used as features to build binary classifiers between Rasa s. Resultant models are 
selected based on the significance of the permutation test (Box 2). From the selected models, we identify the distinguishable and indistinguishable 
pairs and the frequency bands in which these pairs appear

Fig. 4  [Left column] Matrices represent the test accuracy between each pair of Rasa s across five frequency bands. Order of frequency bands from 
top to bottom is: delta, theta, alpha, beta, and gamma. [Right column] The corresponding p-value indicates the statistical significance of test scores 
between Rasa pairs

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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the pair whose p-value was greater than 0.1, whereas the 
distinguishable pair had p-value less than 0.01.

Definition  Indistinguishable pair implies that the clas-
sification model was unable to discriminate between 
features of Rasa s. In contrast, distinguishable pair rep-
resents that the model determined the discriminating 
properties between Rasas.

5.1.1 � Indistinguishable pairs
We selected the indistinguishable pairs based on the two 
thresholds on the p-value, i.e., p > [0.1, 0.5] , and plotted 
them as shown in Fig.  5. The nine Rasa s are arranged in 
a circular layout and the existing links between the Rasa 
pairs represent that they are indistinguishable in a given 
band. The maximum number of such pairs were found in 
the alpha and theta bands; whereas, the delta, beta, and 
gamma bands showed lesser pairs. To illustrate the indis-
tinguishable pairs more clearly, we constructed Venn dia-
grams based on the obtained relationships, as shown in 
Fig.  6. The overlap between any two Rasa s depicts that 
the pair is indistinguishable. One such example is that of 
Bibhatsam and Bhayanakam, a pair that is largely indistin-
guishable, except in the beta band. However, for p > 0.5 
they formed a indistinguishable pair only in delta and alpha 
bands.

Key finding: Theta and alpha bands formed maximum 
indistinguishable pairs.

5.1.2 � Distinguishable pairs
The smaller the p-value, the stronger the evidence to have 
the discriminating features between two classes. Therefore, 
we selected two thresholds ( p < [0.01, 0.001] ) and, respec-
tively, plotted the distinguishable pairs in Fig. 7. The alpha 
band formed the minimum distinguishable pairs followed 
by the theta band, whereas the delta, beta, and gamma 
bands revealed the maximum distinguishable pairs. The 
delta and gamma bands showed a similar set of distinguish-
able pairs when p < 0.001 . Sringaram reflected the sig-
nificant distinction from other Rasa s across bands, and in 
the delta band it showed a classification accuracy of above 
90% ( p < 0.001 ) with other Rasa s except for Bibhatsam. 

Bibhatsam formed a discrimination group ( p < 0.001 ) with 
Santam, Veeram, Karunayam, and Sringaram, with accura-
cies of 88%, 82%, 85%, and 82%, respectively. Theta band 
showed distinguishable pairs of Sringaram with six other 
Rasa s with accuracy approximately above 90%, except for 
Bibhatsam and Bhayanakam. The alpha band for Sringa-
ram formed only two discriminating pairs ( p < 0.001 ) 
with Santam and Hasyam. For Sringaram, beta and gamma 
bands showed a similar relationship as depicted in the 
delta band. In the beta band, Bibhatsam formed two pairs 
( p < 0.001 ) with Hasyam and Adbhutam. Gamma band 
revealed the same pairs as delta. Bhayanakam with Karu-
nayam depicted significant discrimination across the delta, 
beta, and gamma bands. In Table 2, the classifier’s perfor-
mance is shown for delta and gamma bands.

We projected the feature matrix to a lower-dimensional 
space, which made it easier for interpretation. We applied 
an unsupervised t-SNE dimensionality reduction technique 
on the obtained distinguishable pairs ( p < 0.001 ) in the 
delta, and gamma bands. We observed clear separation in 
some pairs as shown in Fig.  8. For example, Sringaram’s 
data points clustered mostly in a corner of the 2-dimen-
sional feature space separated from the other Rasa s. Sec-
ondly, Karunayam with Bibhatsam and Bhayanakam 
reflected a clear separation of data points in delta and 
gamma bands. Similarly, Bibhatsam showed spatial separa-
tion with Santam and Veeram Rasa s. We rendered the 2D 
view using t-SNE, but there might be better separability in 
the higher dimensions.

Key finding: Slow wave (delta band) and fast wave (beta 
and gamma bands) formed maximum distinguishable 
pairs.

5.2 � Interpreting outcome of classifiers using network 
metrics

In this section, we aim to obtain an intuitive understand-
ing of the classification results obtained in the previ-
ous sub-sections by analyzing the network properties of 
the different brain networks. In this pursuit, we take two 
approaches, one where the network metrics are averaged 
across Rasa s for each frequency bands, and second, where 
the network metrics are averaged across frequency bands 
for each Rasa.

(See figure on next page.)
Fig. 5  A connection between two Rasa s represents an indistinguishable pair. The top and bottom rows represent the connections obtained with 
a p-value greater than 0.1 and 0.5, respectively. Indistinguishable pair implies that the model was unable to distinguish between characteristics 
of Rasa s. [From the top, in the anticlockwise direction the Rasa s are in order: Santam (pink), Hasyam (red), Bibhatsam (green), Sringaram (yellow), 
Adbhutam (cyan), Bhayanakam (orange), Karunayam (purple), Veeram (blue), and Raudram (dark green).]
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Fig. 5  (See legend on previous page.)
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5.2.1 � Analyzing frequency bands after averaging network 
metrics across Rasas

For each frequency band, we averaged the magnitude of 
network metrics over all Rasa s. The averaged metrics are 
shown in Table  3, with maximum and minimum values 
across the bands shown in bold fonts. From these values, 
we examine the similarities and differences between bands. 
Gamma band showed the minimum average degree, fol-
lowed by the delta and beta bands. The maximum degree 
is observed in theta and alpha bands. Gamma had the 
minimum average edge weight, whereas alpha had the 
maximum value. The network density was minimum in 
the gamma band, followed by delta, beta, alpha, and theta 
bands. Delta band had the minimum average clustering 
coefficient, whereas the maximum was in the alpha band. 
Similar observations were repeated for the rest of the net-
work metrics. Delta or gamma band indicated the mini-
mum magnitudes of network metrics, whereas alpha or 
theta band maintained the maximum value. There were 
only two exceptions where the role was reversed—gamma 
band showed a maximum, and theta band a minimum. In 
contrast, average node and edge betweenness centrality 
(NBC, EBC) showed a descending order of magnitudes 
from gamma, delta, beta, alpha, and theta bands. We drew 
the top 5% of the network connections in Fig. 9.

Key finding: Delta and gamma bands have lower magni-
tudes of network metrics, whereas theta and alpha bands 
retained higher magnitudes, except for NBC and EBC.

5.2.2 � Analyzing Rasa s after averaging network metrics 
across frequency bands

For each Rasa , the magnitude of network metrics after 
averaging over the five frequency bands is shown in 
Table  4, with the minimum and maximum values high-
lighted in bold. The minimum and maximum aver-
age degrees were indicated by Sringaram (16.28) and 
Raudram (24.04). The maximum degree was found in 
three sets that had magnitude above 50, 60, and 70. Srin-
garam had the least maximum degree of 56.11, Bibhat-
sam (64.02) and Bhayanakam (67.31) formed another 
group of above 60. Hasyam (70.01), Adbhutam (71.87), 
Santam (73.4), Karunayam (73.83), Veeram (73.98), and 
Raudram (74.76) were above 70. The average edge weight 
between 0.40 and 0.46 comprised Karunayam (0.424), 
Santam (0.429), Hasyam (0.442), Veeram (0.449), and 
Raudram (0.45). Adbhutam (0.46), Bhayanakam (0.47), 
and Bibhatsam (0.50) observed within 0.52. And the max-
imum was for sringaram (0.58). Density ranges from 0.17 
to 0.19 included Raudram (0.189), Santam (0.182), Karu-
nayam (0.181), Hasyam (0.1789), Adbhutam (0.1787), 
and Veeram (0.1782). Bhayanakam (0.16), Bibhatsam 
(0.15), and Sringaram (0.12) had the least three values. 
For the remaining metrics (before ADC, as shown in 
Table 4), we found that Sringaram had minimum magni-
tude, whereas Raudram and Karunayam had maximum. 
In contrast, average node and edge betweenness centrali-
ties showed minimum values for Raudram and maximum 
for Sringaram.

Fig. 6  The top and bottom rows represent the Venn diagrams obtained with a p-value greater than 0.1 and 0.5, respectively. The presence of more 
than one Rasa in a set indicates similar indistinguishable connections

(See figure on next page.)
Fig. 7  A connection between two Rasa s represents a distinguishable pair. The top and bottom rows represent the connections obtained with a 
p-value less than 0.01 and 0.001, respectively. Distinguishable pair implies that the model was able to distinguish between characteristics of Rasa s. 
[From the top, in the anticlockwise direction the Rasa s are in order: Santam (pink), Hasyam (red), Bibhatsam (green), Sringaram (yellow), Adbhutam 
(cyan), Bhayanakam (orange), Karunayam (purple), Veeram (blue), and Raudram (dark green).]
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Fig. 7  (See legend on previous page.)
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Key findings:

•	 Ten out of fourteen network properties suggested 
that the Rasa s Sringaram and Raudram limit the 
magnitude of network features. Based on this, we 
inferred a magnitude scale as shown in Fig. 10, where 
Sringaram determined the one side limit of the scale, 
while Raudram maintained the other side.

•	 In contrast to other network metrics, node, and edge 
betweenness centralities are maximum in the Sringa-
ram and minimum in Raudram.

•	 The network properties of Bibhatsam and Bhay-
anakam were nearly close to each other.

6 � Discussion
Higher frequency has been consistently reported to 
be crucial for the classification of different emotions 
[66–68]. In the previous study for the classification of 

happiness and sadness, the gamma band has been the 
optimal band for generating discriminating features [15]. 
A recent study [33] presents that the beta and gamma 
are more effective brain rhythms in identifying emotions 
than the theta and alpha. Furthermore, some neurosci-
ence studies reveal that neural encodings of emotional 
information are stored primarily in higher frequency 
bands [69, 70]. Another recent paper by Yang and col-
leagues reports that long-distance connections noted in 
the high-frequency bands, especially in the high gamma 
bands, showed significant differences among emotional 
states [9]. Brain activities in the high-frequency band (> 
30Hz) are known to be associated with emotional inte-
gration and play a role in cognitive control of emotions 
[71, 72]. Several studies have looked at those high-fre-
quency responses to affective pictures, most of which 
reported enhanced responses to negative images [73–75]. 
Zheng and colleagues observe that the delta band per-
formed better than the theta and alpha bands for emotion 

Fig. 8  Network features of a distinguishable pair ( p < 0.001 ) are projected in lower-dimensional 2D space using t-SNE. The top and bottom rows 
represent the features extracted from delta and gamma bands, respectively

Table 2  The classifier’s performance is evaluated using accuracy, precision, recall, and F1-Score

p-value is obtained by permutation test

Class1 Class2 Band Accuracy Precision Recall F1-Score p-value

Bibhatsam Santam Delta 0.875 0.9 0.85 0.8666 0.00009

Bibhatsam Veeram Delta 0.825 0.8833 0.8 0.81 0.0006

Bibhatsam Karunayam Delta 0.85 0.8833 0.85 0.8433 0.0002

Bhayanakam Karunayam Delta 0.85 0.8833 0.85 0.8433 0.0009

Bibhatsam Santam Gamma 0.85 0.9 0.84 0.84 0.00009

Bibhatsam Veeram Gamma 0.825 0.8833 0.8 0.81 0.0002

Bibhatsam Karunayam Gamma 0.875 0.9666 0.8 0.8466 0.0004

Bhayanakam Karunayam Gamma 0.8 0.8 0.9 0.8233 0.0006



Page 15 of 20Pandey et al. Brain Informatics            (2022) 9:15 	

recognition of three categories (positive, neutral, and 
negative) [76]. They observe this outcome from the fea-
tures of differential asymmetry and rational asymmetry. 
Delta band is less studied in the literature, and a recent 
study on event-related emphasizes the research on delta 
activity patterns and alterations in delta energy, which 
might improve our understanding of emotional process-
ing by focusing on the slow waves (delta band) [19].

Interestingly, our result on the alpha band resonated 
with the previous research on Indian Rasa s [32]. This 
study reports that the community structure of differ-
ent Rasa networks in the alpha band is the most simi-
lar. Similar observation about the indistinguishability 
of (two) emotions in alpha band was also reported in 
[77]—a study aimed at discriminating multiple emo-
tional states using EEG data collected from subjects 
watching emotion-inducing video clips. According to 

Fig. 9  Connectivity graphs of Rasa s depict 5% of the strong connections across bands. The node’s size indicates the degree, and the width and 
color of the edges denote the connection strength measured using wPLI index (averaged over all the 20 participants). Blue and red colors indicate 
the minimum and maximum strength, respectively. The visualizations are generated using the ’BrainNet Viewer’ (www.nitrc.org/projects/bnv/)

Table 3  Frequency bands after averaging across all Rasas

Maximum and minimum values are highlighted

Band AD MD AEW MEW D ACC​ GE LE NC M T ADC NBC EBC

Delta 19.1262 63.4888 0.4605 0.7311 0.1506 0.2593 0.5050 0.4550 4.2611 0.0110 0.2434 0.1506 0.0087 0.0019

Theta 29.5588 75.3388 0.5033 0.7966 0.2327 0.3262 0.5625 0.5495 4.2444 0.0119 0.3319 0.2327 0.0071 0.0012
Alpha 26.1502 75.8944 0.5395 0.8440 0.2059 0.3955 0.5444 0.5956 4.2777 0.0270 0.3609 0.2059 0.0077 0.0014

Beta 20.9482 70.3 0.4262 0.7958 0.1649 0.3873 0.5137 0.5708 4.2388 0.0191 0.3453 0.1649 0.0086 0.0019

Gamma 12.6756 62.3611 0.416 0.8448 0.0998 0.3253 0.4661 0.4872 3.9333 0.0239 0.2392 0.0998 0.0101 0.0030
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another recent study, emotional stimulus processing is 
associated with a decrease of power in the alpha and 
beta bands across studies and task conditions [78].

Most EEG studies include 15-20 participants because of 
the complexity in EEG setup and data collection. There-
fore, with a small number of samples, some techniques 
are proposed to identify the significance of the Machine 
Learning performance estimates. The recent article [79] 
highlights the strong biases observed using solely K-fold 
cross-validation, and therefore it is significant to use 
rigorous methods for analysis. Hence, our study mainly 
used fivefold cross-validation with permutation test of 
10,000 rounds that produced robust and unbiased per-
formance estimates regardless of the sample size. Based 
on our results from classifiers and magnitudes of network 
metrics, we observe that Bhayanakam (fear) and Bibhat-
sam (disgust) exhibited high similarity. They both signify 
unpleasant emotions as per the circumplex model. Rus-
sell and James proposed a circumplex model for emo-
tions classification [80]. This is more related to dimension 
space theory, which refers to emotion as continuous and 
relevant [81]. The circumplex model describes emotion 
into two dimensions: pleasure and activeness, as shown 
in Fig.  11. Activeness is categorized into mild and high 
intensity, while pleasure is classified into pleasant and 
unpleasant. Based on the results of previous research 

conducted in various countries and regions, this model is 
mostly accurate and consistent [82, 83].

A summary of our results obtained on distinguish-
able pairs in different frequency bands is presented 
in Table  5. We observe that Bibhatsam (disgust), an 
unpleasant emotion, was distinguishable from Santam 
(peace) and Veeram (heroic), both pleasant emotions, 
in the delta and gamma bands. We also find that Bib-
hatsam (disgust) and Karunayam (sorrow), both repre-
senting unpleasant emotions, formed a distinguishable 
pair. On noticing the activeness scale, however, Bibhat-
sam and Karunayam indicate high and mild intensity 
emotions, respectively, and hence this pair although 
similar on the pleasant dimension, it is dissimilar on 
activeness scale. In beta band, Hasyam (comic) and 
Adbhutam (astonishment) were distinguished from 
Bibhatsam. Similarly, Bhayanakam and Karunayam 
formed a distinguishable pair in delta, beta, and 
gamma bands, indicating high and mild intensity.

7 � Limitations and future scope
We would like to mention a few limitations of this 
study. Our results are based on the scalp electrodes, 
which do not have clearly defined source mapping 
inside the brain, and therefore we confine the findings 

Table 4  Average network metrics for each Rasa obtained after averaging across all bands

Maximum and minimum values are highlighted

Rasa AD MD AEW MEW D ACC​ GE LE NC M T ADC NBC EBC

Raudram 24.0454 74.76 0.4527 0.8040 0.1893 0.3630 0.5334 0.5653 4.18 0.0099 0.3235 0.1893 0.0079 0.0016
Santam 23.2392 73.4 0.4291 0.7757 0.1829 0.3586 0.5298 0.5589 4.08 0.0108 0.3217 0.1829 0.0081 0.0017

Karunayam 23.0126 73.83 0.4245 0.7712 0.1812 0.3601 0.5290 0.5564 3.97 0.0070 0.3201 0.1812 0.0082 0.0017

Hasyam 22.7248 70.01 0.4425 0.7894 0.1789 0.3548 0.5241 0.5534 4.12 0.0177 0.3136 0.1789 0.0083 0.0018

Adbhutam 22.6998 71.87 0.4608 0.8037 0.1787 0.3529 0.5239 0.5446 4.15 0.0089 0.3155 0.1787 0.0083 0.0018

Veeram 22.6351 73.98 0.4492 0.8048 0.1782 0.3608 0.5263 0.5594 4.17 0.0136 0.3170 0.1782 0.0082 0.0018

Bhayanakam 20.6726 67.31 0.4749 0.8079 0.1627 0.3262 0.5108 0.5180 4.28 0.0146 0.3025 0.1627 0.0086 0.0019

Bibhatsam 19.9148 64.02 0.5010 0.8190 0.1568 0.3139 0.5052 0.5007 4.28 0.0215 0.2897 0.1568 0.0088 0.0020

Sringaram 16.2820 56.11 0.5878 0.8463 0.1282 0.2582 0.4827 0.4274 4.49 0.0631 0.2336 0.1282 0.0096 0.0025

Fig. 10  Network Rasa scale: Sringaram and Raudram form the limiting boundaries for the magnitude of network properties, and all the other Rasa s 
fall within those limits. (*) over a set of Rasa s denotes that their order is not necessarily the same as shown, and it may slightly vary with frequency 
bands. For some network metrics, they may share the properties or may differ. Bibhatsam and Bhayanakam are consistently close to each other 
across network metrics and also across the bands
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in the signal space rather than source space. We used 
a single set of film clips (corresponding to different 
Rasa s) which was selected based on the ranking from 
a group of participants who confirmed the evoking of 
these particular emotions. The study could be carried 
out on more such film clip sets for nine Rasa s. Hence, 
this study motivates building a benchmark dataset of 
audio-visual stimuli corresponding to Rasa s for EEG 
studies. We acknowledge that thresholding on p-value 
can also vary based on pairs. However, the main objec-
tive of the article is to present the significance of bands 
by utilizing network features. Hence, future works 
would have ample opportunity to see the pair-wise 
differences and similarities in more depth, includ-
ing the role of network features. The EEG experiment 
involved only Indian students, hence there is a scope 

for extending the Rasa analysis on different races 
as well, and explore the similarities and differences 
(if any) from the results reported in this paper. This 
research contributes to the pioneering work on Indian 
Rasa s, reporting network-based similarity and differ-
ences in brain responses collected through EEG.

8 � Conclusion
In this work, we computed the functional connectiv-
ity networks, corresponding to nine Rasa s, that repre-
sented the correlations between the activities of brain 
regions while a person was watching emotional movie 
clips. In order to identify distinguishable and indistin-
guishable pairs of Rasa s, the network features from the 
corresponding functional networks were employed for 
the classification task. Our binary classification result 
(accuracy) between a given Rasa pair, were re-affirmed 
with a permutation test. The two key findings of our 
study are as follows: 

1.	 Slow (delta band) and fast (beta and gamma bands) 
brain waves generated the maximum number of dis-
tinguishable pairs.

2.	 Theta and alpha rhythms exhibited higher number of 
indistinguishable Rasa s pairs.

Our classification results also highlighted the role of 
frequency bands in examining the differences between 
emotions. We found that the delta, beta, and gamma 
produced the maximum number of distinguishable 
pairs, whereas theta and alpha waves resulted in more 
indistinguishable pairs, for which the classifiers failed 
to generate discrimination with statistical significance. 
In addition, to gain interpretability of the obtained two 
groups of frequency bands, we analyzed network prop-
erties and observed that the magnitudes of the delta, 
beta, and gamma networks were mostly lower than 
theta and alpha bands.

In the delta band, a pair between Bibhatsam and San-
tam obtained the maximum accuracy of 87.5% with 
precision, recall, and f1-score of 0.9, 0.85, and 0.86, 
respectively. A pair between Bibhatsam and Karunay-
ama showed an accuracy of 85% with precision, recall, 
and f1-score of 0.88,0.85, and 0.84, respectively, and 
similar performance was achieved for Bhayanakam 
and Karunayam. The classification accuracy between 
Bibhatsam and veeram was 82.5% with precision, 
recall, and f1-score of 0.88, 0.85, and 0.84, respec-
tively. We obtained a similar relationship as the delta 
in the gamma band, with the highest accuracy of 87.5% 
between Bibhatsam and Karunayama with precision, 
recall, and f1-score, of 0.96,0.8,0.84, respectively. Bib-
hatasam and Santam showed an accuracy of 85%. In the 

Fig. 11  A circumplex model of emotions classification. The model 
has two dimensions encompassing pleasure and activeness

Table 5  Distinguishable pairs (p < 0.001) of Rasa s in different 
frequency bands

Rasa 1 Discriminated ( Rasa s 2) Band

Bibhatsam Santam, Veeram and Karunayam Delta and Gamma

Bibhatsam Hasyam and Adbhutam Beta

Bhayanakam Karunayam Delta, Beta and Gamma

Sringaram All Delta, Beta and Gamma

Sringaram except Bibhatsam and Bhay-
anakam

Theta

Sringaram Santam and Hasyam Alpha
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beta band, we obtained a maximum accuracy of 85% 
between Bibhatsam and Hasyam. Among all Rasa s, we 
obtained a maximum classification accuracy of 97% in 
the delta band between Sringaram and Adbhutam, fol-
lowed by beta and gamma bands with 95% and 94% 
with Raudram and Santam, respectively.

Based on the magnitudes of the network metrics, 
we observe that the Raudram (for 10 network met-
rics) and Sringaram (for all network metrics) Rasa s are 
the extreme emotions, i.e., one of them has a minimum 
(maximum) value, while the other has a maximum (mini-
mum) magnitude. The other seven Rasa s, lie in the range 
set by these two for all the network metrics. Based on this 
observation, we approximate a Rasa scale, where they are 
placed next to each other on a one-dimensional line. The 
ordering goes as Sringaram, Bibhatsam, Bhayanakam, 
Adbhutam, Veeram, Hasyam, Karunayam, Santam, 
Raudram, where the last six can interchange their posi-
tions depending on the frequency bands.
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