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Abstract

Background

The aim of this study is to find the potential survival related DNA methylation signature capa-

ble of predicting survival time for acute myelocytic leukemia (AML) patients.

Methods

DNA methylation data were downloaded. DNA methylation signature was identified in the

training group, and subsequently validated in an independent validation group. The overall

survival of DNA methylation signature was performed. Functional analysis was used to

explore the function of corresponding genes of DNA methylation signature. Differentially

methylated sites and CpG islands were also identified in poor-risk group.

Results

A DNA methylation signature involving 8 DNA methylation sites and 6 genes were identified.

Functional analysis showed that protein binding and cytoplasm were the only two enriched

Gene Ontology terms. A total of 70 differentially methylated sites and 6 differentially methyl-

ated CpG islands were identified in poor-risk group.

Conclusions

The identified survival related DNA methylation signature adds to the prognostic value of

AML.
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Introduction

Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy characterized

by a vast proliferation of immature myeloid blasts that accumulate in the bone marrow and

blood. AML is closely correlated to cytokine networks of proliferation, differentiation and apo-

ptosis of leukemic cells [1]. AML is caused by different factors including radiation, mutations

and carcinogens [2–5]. The disease can progress quickly and can become fatal in a short period

of time without treatment. Known prognostic factors of AML include age, mutations, complex

karyotype, the antecedent hematologic disease, presence of elevated white blood cell counts

and prior chemo or radiotherapy for another malignancy [6]. Intensive chemotherapy is ini-

tially effective in most patients with AML, however, the surviving LIC clones repopulate the

disease and lead to subsequent disease relapse and poor prognosis [7]. In addition, the treat-

ment of elderly patients and patients with relapsed refractory remains a challenge [8–10].

Therefore, an improved understanding of the molecular mechanisms underlying of AML

could be helpful to improve the treatment efficacy to prolong the survival time for patients.

DNA methylation is an important epigenetic mechanism in regulating gene expression

[11]. It is pointed out that epigenetic disturbances have been involved in the pathogenesis of

leukemia [12]. Jiang Y et al found that progression from myelodysplastic syndrome to AML

was correlated to increased aberrant DNA methylation [13]. Previous studies have investigated

genome-wide methylation in AML [14]. In AML, the presence of common methylation pat-

terns in p15 and E-cadherin has been described [15, 16]. In addition, methylation of secreted

frizzled related protein (sFRP)1, sFRP12, sFRP13 and sFRP15with corresponding transcrip-

tional silencing has been found in AML cell lines [17]. The survival analysis showed that

GATA binding protein 4 (GATA4) promoter methylation was significantly associated with

shorter overall survival of pediatric AML [18]. Thus it can be seen that DNA methylation may

play a crucial role in the development of AML. In this study, we aimed to find potential sur-

vival-related DNA methylation signature in AML, which may pave the way for the develop-

ment of novel tumor markers and therapeutic targets for AML.

Materials and methods

DNA methylation data retrieval and analysis

DNA methylation data were downloaded from the TCGA dataset (http://tcga-data.nci.nih.

gov/tcga). The data was derived from blood of AML. Among which, there were 195 samples

with DNA methylation information. There were 188 samples with follow-up information.

Finally, we selected 182 samples with both DNA methylation information and follow-up infor-

mation. In order to improve data accuracy, the DNA methalytion sites were first preprocessed.

DNA methalytion sites on sex chromosomes were excluded. Considering the heterogeneity of

blood, based on the DNA methylation data, blood components were then predicted using the

R packages in RefFreeEWAS. Finally, all samples were divided into the training group (127

cases) and validation group (55 cases) randomly. There were no overlapped cases between two

groups. The chi-square test and t-test were used to analyze the statistical difference of clinical

index between the two groups. And there was no significant difference in age, race, gender,

vital status, survival time and disease risk result between the two groups. The clinical charac-

teristics of these two groups were shown in Table 1.

Identification of survival related DNA methylation sites

In order to select the survival associated DNA methylation sites, all DNA methylation sites

were analyzed by the single factor Cox proportional hazard (CoxPH) regression after
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adjustment of age, race, gender, blood constituent and cytogenetic risk. Similarly, after further

adjustment of age, race, gender, blood constituent and cytogenetic risk, the multi-factor

CoxPH regression analysis was used for identification of DNA methylation signature in the

survival evaluation. The statistical significance was set at p<0.001. In order to investigate the

characteristic of DNA methylation signature, the Illumina Infinium HumanMethylation450

BeadChips Assay was utilized for DNA methylation sites annotation.

Functional analysis of survival related DNA methylation signature genes

In order to study the biological function of survival-related DNA methylation signature genes,

the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis were performed by using the online software GeneCodis3 (http://genecodis.cnb.csic.

es/analysis). And the threshold of false discovery rate (FDR) < 0.05 was set as the criteria of

statistical significance.

Survival time analysis of DNA methylation signature in the training group

and validation group

The risk score (RS) of identified DNA methylation signature was calculated by the following

equation:

Risk Score ðRSÞ ¼
XN

i¼1

ðMethi � CiÞ

N presents the number of DNA methylation; Methi presents the spectrum of ith DNA methyl-

ation site; Ci represents regression coefficient of ith DNA methylation site in the multi-factor

CoxPH regression analysis. Kaplan-Meier survival curves were drawn and compared among

subgroups using log-rank tests.

In addition, the receiver operating characteristic (ROC) analysis was performed to assess

the 5 years’ survival value of DNA methylation signature by using pROC package in R

Table 1. The clinical characteristics for training group and validation group.

Clinical index Training group (n = 127) Validation group (n = 55) P value

Age Mean ± SD 55.28346±16.05244 55.65455±16.52632 0.8886992

Median 59 58

Race Asia, Black or African 1 1 0.4152429

American 6 5

White 119 48

NA 1 1

Gender Female 54 29 0.268031

Male 73 26

Vital status Alive 50 14 0.1017496

Dead 77 41

Survival time Mean ± SD 543.4724± 601.9671 570.3091 ±539.5071 0.7667396

Median 334 365

Disease risk Favorable 26 9 0.7268791

Intermediate/Normal 73 33

Poor 25 13

NA: Not applicable.

https://doi.org/10.1371/journal.pone.0199689.t001
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language. The area under the curve (AUC) under binomial exact confidence interval was cal-

culated and the ROC curve was generated.

Identification of risk related DNA methylation sites

In order to identify the risk-related DNA methylation sites between patients with poor-risk

(38 cases) and favorable-risk (35 cases), the related DNA methylation data were downloaded.

We selected CpG sites based on differential methylation value calculated as mean (β case)

− mean (β normal) (Δβ) combined with the false discovery rate (FDR) values. Finally, the

threshold of |Δβ|>0.2 and FDR<0.05 was set as the criteria of statistical significance.

Results

Survival related DNA methylation signature

After original data preprocess, a total of 3884 DNA methylation sites were identified in the

training group. These DNA methylation sites were used for the single factor and multi-

factor CoxPH regression analysis. The result showed that 8 DNA methylation sites were identi-

fied. 8 DNA methylation sites were located in 4 CpG islands (chr12:81102034–81102716,

chr17:78863569–78863813, chr3:10183305–10183941 and chr6:29600192–29600661) and 6

genes (MYF6, RPTOR,MMP10, SH3PXD2B,VHL and GABBR1). The annotation of 8 DNA

methylation sites was shown in Table 2.

Functional annotation of survival related DNA methylation signature

genes

In order to further study the biological function of survival-related DNA methylation signature

genes (MYF6, RPTOR,MMP10, SH3PXD2B,VHL and GABBR1), GO and KEGG functional

annotation were performed. The result showed that only 2 GO terms were obtained. Protein

binding was the most significantly enriched molecular function (FDR = 0.0103025) involving

RPTOR,VHL and SH3PXD2B; cytoplasm (FDR = 0.00664319) was the most significantly

enriched cellular component involving RPTOR,GABBR1,VHL and SH3PXD2B. Enriched GO

terms of survival related DNA methylation signature genes were shown in Table 3.

Survival time analysis of DNA methylation signature

In order to explore the association between the risk score and identified DNA methylation sig-

nature, the clustering analysis map of methylation value in the DNA methylation signature

sites was performed (Fig 1). In the risk score calculation, the patients were dichotomized into

either low risk or the high risk group. In the training group, a highly significant difference was

Table 2. The annotation of 8 DNA methylation sites.

Site Strand Gene Gene context CpG island CpG island context

cg26400830 F

cg20171297 R MYF6 1stExon; 5’UTR chr12:81102034–81102716 N_Shore

cg09891288 R RPTOR Body; Body chr17:78863569–78863813 Island

cg02061229 R MMP10 Body

cg19979108 R SH3PXD2B Body

cg20916523 R VHL Body; Body chr3:10183305–10183941 S_Shore

cg21644740 F GABBR1 Body; Body chr6:29600192–29600661 N_Shore

cg26182859 R

https://doi.org/10.1371/journal.pone.0199689.t002
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observed between the high risk and the low risk group (p = 1.1e-06), which was shown in Fig

2. When the same DNA methylation signature equation was applied to the validation group, a

similar significant difference was also observed between the high risk and the low risk group

(p = 0.054), which was shown in Fig 3. Additionally, we performed 5 years’ survival analysis of

DNA methylation signature by ROC and calculated the AUC to assess the discriminatory abil-

ity of DNA methylation signature in the training and validation group, respectively (Figs 4 and

5). The AUC of the DNA methylation signature in the training group was 0.8441558, and the

validation was 0.8170732. Our result suggested that the DNA methylation signature could be

the prognosis model for predicting the survival situation of AML.

Identification of risk related DNA methylation sites

In order to identify the DNA methylation sites between patients with poor-risk and favorable-

risk, the differentially methylated sites and CpG islands were analyzed based on the threshold

of |Δβ|>0.2 and FDR<0.05. The result showed that 70 differentially methylated sites (64

hypermethylation and 6 hypomethylation sites) and 6 differentially methylated CpG islands (3

hypermethylation and 3 hypomethylation CpG islands) were identified. The top 20 differen-

tially methylated sites in the poor-risk and favorable-risk group were shown in Table 4.

Discussion

AML is the most common form of adult leukemia and the survival rate is very low [19–21].

Therefore, it is urgent to understand the pathological mechanism and find potential survival

Table 3. Enriched GO terms of survival related DNA methylation signature genes.

Items Items_Details P value FDR Genes

GO:0005515 protein binding (MF) 0.00515125 0.0103025 RPTOR,VHL,SH3PXD2B
GO:0005737 cytoplasm (CC) 0.00664319 0.00664319 RPTOR,GABBR1,VHL,SH3PXD2B

FDR: false discovery rate

MF: molecular function

CC: cellular component

https://doi.org/10.1371/journal.pone.0199689.t003

Fig 1. The clustering analysis map of methylation value in the DNA methylation signature sites. Diagram presents

the result of a two-way hierarchical clustering of DNA methylation sites and risk score. The clustering is constructed

using the complete-linkage method together with the Euclidean distance. Each row represents a DNA methylation site,

and each column, a risk score value. The risk score clustering tree is shown on the right. The colour scale illustrates the

relative value of the risk score: red, below the reference channel; green, higher than the reference.

https://doi.org/10.1371/journal.pone.0199689.g001

DNA methylation prognostic signature in acute myelocytic leukemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0199689 June 22, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0199689.t003
https://doi.org/10.1371/journal.pone.0199689.g001
https://doi.org/10.1371/journal.pone.0199689


related genes in the development of AML. In this study, we found a DNA methylation signa-

ture involving MYF6, RPTOR,MMP10, SH3PXD2B,VHL and GABBR1, which could be a valu-

able tool in guiding treatment decisions for AML.

Myogenic factor 6 (MYF6, also called MRF4 or Herculin) is expressed in skeletal muscle

and is related to myogenesis [22–25]. It is found that the MYF6 is a differentially methylation

gene in plasma cf-DNA in the different stage of hepatocellular carcinoma development [26].

In addition, the methylation frequency of MYF6 in stage I non-small cell lung cancer is obvi-

ously higher than that of non-cancerous lung disease control, which suggested that MYF6
could offer a specificity and a sensitivity in the stage I non-small cell lung cancer diagnosis

[27]. Thus it can be seen that MYF6methylation was associated with the development of can-

cer. In this study, we first found the DNA methylation of MYF6 in the blood of AML. Our

result showed that MYF6was significantly associated with survival time of AML and could be

a diagnostic and prognostic marker of AML.

Regulatory associated protein of MTOR complex 1 (RPTOR) is a signal transduction gene

important for hematopoiesis [28]. RPTOR, mechanistic target of rapamycin kinase and MTOR

associated protein (mTOR), LST8 homolog (MLST8) constitute the core subunits of the mam-

malian TORC1 complex which play an important role in controlling cell growth, survival and

metabolism and is often deregulated in cancer [29–32]. It is reported that RPTOR is hyper-

methylated in human hepatocytes [33]. Previous reports have demonstrated that RPTOR is

Fig 2. Kaplan-Meier curves showing AML patients dichotomized based on risk score in the training group. High

risk is defined as a risk score� the median, and low risk is defined as a risk score< the median in the training group.

https://doi.org/10.1371/journal.pone.0199689.g002
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methylated gene in breast tumors [34, 35]. This suggested that RPTORmethylation may play

an important role in the process of cancer. In the present study, we found that RPTORwas

methylated in the blood of AML and significantly associated with the survival time of AML

patients. Our result suggested that RPTOR played a crucial role in AML and may be a diagnos-

tic and prognostic marker in the process of AML.

Matrix metallopeptidase 10 (MMP10), an enzyme promoting angiogenesis, promotes

cell growth and invasion, and exerts anti-apoptotic property in vitro [36, 37]. It is noted that

MMP10 is essential to the tumor microenvironment. In colorectal cancer, MMP10 is up-regu-

lated in cancerous tissue and adversely associated with patients survival [38, 39]. In cutaneous

melanoma, MMP10 is potentially modified by modification of histone acetylation [40]. In

head and neck squamous cell cancer, MMP10 is a differentially methylated gene in radiation-

sensitive and -resistant tumors [41]. In immature teratomas, reduced methylation of MMP10
significantly enriched in axonal guidance signaling pathway [42]. Previous reports indicated

that the epigenomics changes of MMP10, especially DNA methylation may be involved in

the occurrence of cancer. Herein, we found the methylation of MMP10 in the blood of AML.

Moreover, MMP10was related to the survivability of AML patients. Our result may provide a

new field in the diagnosis and prognosis of AML.

Fig 3. Kaplan-Meier curves showing AML patients dichotomized based on risk score in the validation group. High

risk is defined as a risk score� the median, and low risk is defined as a risk score< the median in the validation

group.

https://doi.org/10.1371/journal.pone.0199689.g003
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SH3 and PX domains 2B (SH3PXD2B) is associated with growth and production. It is

found that SH3PXD2B is involved in the protein binding, cytoplasm and cell junction in hepa-

tocellular carcinoma [43]. In addition, SH3PXD2B positively regulates the differentiation of

fat cell and shows differences in DNA methylation in gene body or intergenic region [44, 45].

However, there are no reports about the relationship between SH3PXD2Bmethylation and

cancer. In this study, we first found methylated SH3PXD2B in the blood of AML. Moreover, it

was observably associated with the survival time of AML patients. In a word, SH3PXD2Bmay

play a crucial role in AML and could be a diagnostic and prognostic marker in the develop-

ment of AML.

The gene product of the Von Hippel-Lindau tumor suppressor (VHL) plays a key role in reg-

ulation of metabolic genes expression, erythropoiesis, angiogenesis, proliferation and apoptosis.

VHL-associated tumors are highly vascularized and overproduce VEGF [46]. It is indicated

that VHL promoter hypermethylation may play an important role in pheochromocytoma and

abdominal paraganglioma development [47]. Herman and Zhong et al found that VHLwas a

methylated gene in renal carcinoma cell lines [48, 49]. Hypomethylation of VHL has been

reported in head and neck cancer and lung squamous carcinoma [50, 51]. Thus, VHL functions

Fig 4. 5 years’ ROC curves of DNA methylation signature in the training group. The ROC curves were used to

show the diagnostic ability of DNA methylation signature with 1-Specificity and sensitivity. The x-axis shows

1-specificity and y-axis shows sensitivity.

https://doi.org/10.1371/journal.pone.0199689.g004
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as a methylated gene in different cancers. It is pointed out that the mutations in the VHL gene

are involved in the pathogenesis of AML [46]. Herein, we also found the relationship between

VHL and AML. Our result showed that VHLwas methylated and was significantly associated

with survival time of AML patients.

Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1) encodes the G protein-cou-

pled receptor that can form the heterodimer with GABAB receptor 2, which triggering the

proliferation, differentiation and migration of cancer cells. It is showed that multiple loci of

GABBR1within 6p21.3 are related to nasopharyngeal carcinoma [52, 53]. GABBR1 is a different

methylated gene in plasma cf-DNA in different early stage of hepatocellular carcinoma develop-

ment [26]. In addition, GABBR1 is associated with the survival time of patients with gastric can-

cer [54]. It is also a survival-associated methylation marker for oral squamous cell carcinoma

[55]. Thus it can be seen that GABBR1methylation play a crucial role in various cancers. In the

present study, we found that GABBR1was methylated and associated with AML survival. It sug-

gested that GABBR1may be a survival-associated methylation marker for AML.

Previous studies have reported that the 5-year survival rate was 55% for patients with favor-

able cytogenetics, 24% for patients with intermediate risk, and 5% for patients with poor-risk

Fig 5. 5 years’ ROC curves of DNA methylation signature in the validation group. The ROC curves were used to

show the diagnostic ability of DNA methylation signature with 1-Specificity and sensitivity. The x-axis shows

1-specificity and y-axis shows sensitivity.

https://doi.org/10.1371/journal.pone.0199689.g005

DNA methylation prognostic signature in acute myelocytic leukemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0199689 June 22, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0199689.g005
https://doi.org/10.1371/journal.pone.0199689


cytogenetics [56]. Thus it can be seen that the survival time was associated with AML risk. In

this study, we identified numbers of survival-associated differentially methylated genes such as

LRPAP1, MAEA and TNF between poor-risk and favorable-risk patients.

LDL receptor related protein associated protein 1 (LRPAP1) is a gene that involved in the

cell proliferation in cancer [57]. It is noted that LRPAP1 is a biologically relevant gene found in

leukemia and was associated with different biological processes including cell apoptosis, sig-

naling pathway and cell cycle checkpoint [58, 59]. Macrophage erythroblast attacher (MAEA)

is a 36-kD transmembrane protein that expressed by erythroblasts and macrophage cells and

plays a crucial role in hematopoiesis [60, 61]. It is reported that MAEA is a differentially meth-

ylated gene in Type-2 diabetes and idiopathic pulmonary fibrosis [62, 63]. Tumor necrosis fac-

tor (TNF) is a proinflammatory cytokine. It has been identified that TNF is elevated in serum

of patients with aplastic anemia and myelodysplastic syndromes, suggesting that the hemato-

poietic repressive activity of TNF may contribute to the cytopenic phenotype of these patients

[64–67]. Interestingly, TNF levels are significantly higher in the peripheral blood of AML

patients of M3, M4, and M5 subtypes when compared with healthy donors [68]. Furthermore,

the increased level of TNF is associated with poor prognosis of patients with AML, especially

older adults [7, 69–71]. Our result further indicated the important role of LRPAP1, MAEA and

TNF in AML.

Conclusions

In a word, we have identified and successfully validated a DNA methylation signature in

patients with AML. This signature adds to the potential predictive role in the survival time of

Table 4. The top 20 differentially methylated sites in the poor-risk and favorable-risk group.

Site Gene Island Δβ FDR

cg27321949 LRPAP1 chr4:3516456–3516844 0.597435476 4.82581E-17

cg04857395 LRPAP1 chr4:3516456–3516844 0.603433175 4.82581E-17

cg25278298 MAEA chr4:1303490–1303835 0.41009799 6.33572E-17

cg24973755 MAEA chr4:1304768–1305114 0.539319729 6.33572E-17

cg06466348 ADCY7 0.529336818 4.87433E-16

cg09936008 ZNF213 chr16:3190765–3191389 0.522768451 3.94334E-15

cg01360627 TNF chr6:31548436–31549277 0.556695472 5.62805E-15

cg18349022 ZNF498 0.574523405 6.55958E-15

cg13458384 SARDH chr9:136567684–136568146 0.410375297 1.34354E-14

cg17741993 TNF chr6:31548436–31549277 0.587861991 1.34354E-14

cg25197194 CCDC48 0.55303526 3.2255E-14

cg26996656 0.558266306 3.37347E-14

cg17427926 LOC283999 chr17:76228110–76228380 0.468902001 8.05456E-14

cg02340818 KIAA1688 chr8:145806258–145806713 0.480393004 9.56514E-14

cg06250720 0.483657658 1.96516E-13

cg11227278 KLHL29 chr2:23749086–23749291 0.509376312

cg17115419 0.493501781

cg27049094 HK2 0.567439864

cg01824603 ARHGEF10 0.511145159

cg25605731 CALR chr19:13056458–13057125 0.588599806

Δβ: mean (β case) − mean (β normal)

FDR: false discovery rate

https://doi.org/10.1371/journal.pone.0199689.t004
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AML patients. Utilization of a prognostic DNA methylation signature would enrich for poten-

tially sensitive patients, thereby improving clinical outcome for future patients with AML.

However, there is a limitation to our study. In the present study, we didn’t perform the deeper

mechanism study based on the identified methylated genes. Some animal model and cell

experiments are further needed to explore the potential mechanism of AML.
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