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BACKGROUND: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme activated by DNA breaks and involved in DNA
repair and other cellular processes. Poly(ADP-ribose) polymerase activity can be higher in cancer than in adjacent normal tissue, but
cancer predisposition is reported to be greater in individuals with a single-nucleotide polymorphism (SNP) V762A (T2444C) in the
catalytic domain that reduces PARP-1 activity.
METHODS: To resolve these divergent observations, we determined PARP-1 polymorphisms, PARP-1 protein expression and activity in
a panel of 19 solid and haematological, adult and paediatric human cancer cell lines.
RESULTS: There was a wide variation in PARP activity in the cell line panel (coefficient of variation, CV¼ 103%), with the lowest and
the highest activity being 2460 pmol PAR/106 (HS-5 cells) and 85 750 pmol PAR/106 (NGP cells). Lower variation (CV¼ 32%) was
observed in PARP-1 protein expression with the lowest expression being 2.0 ng mg�1 (HS-5 cells) and the highest being 7.1 ng mg�1

(ML-1 cells). The mean activity in the cancer cells was 45-fold higher than the mean activity in normal human lymphocytes and the
PARP-1 protein levels were 23-fold higher.
CONCLUSIONS: Surprisingly, there was no significant correlation between PARP activity and PARP-1 protein level or the investigated
polymorphisms, T2444C and CA.
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Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA repair enzyme
that catalyses the poly(ADP-ribosyl)ation of proteins using NADþ

as its substrate. Poly(ADP-ribose) polymerase-1 is activated 100-
fold by DNA strand breaks and has a major role in DNA single-
strand break repair (which is part of base excision repair) (Dantzer
et al, 1999, 2000). Recent data also suggest that PARP-1 is involved
in DNA double-strand break (DSB) repair (von Kobbe et al, 2003);
however, its role in DSB repair remains unclear. As a result of
compromised repair, PARP-1 deficient or inhibited cells are more
sensitive to DNA-damaging agents (g-irradiation, topoisomerase
inhibitors, alkylating agents) (Curtin, 2005). Poly(ADP-ribose)
polymerase-1 has an important function in the fine-tuning of
telomere length (Beneke et al, 2008) and, together with other
PARP-family members, namely PARP-3, PARP-4 and PARP-5,
is present in mitotic apparatus and therefore might be involved
in the regulation of chromosomal separation (Miwa et al, 2006).
As chromosomal missegregation and centrosome amplification
frequently occur in cancer cells, leading to the characteristic
aneuploidy, PARP-1 may protect against carcinogenesis.
Poly(ADP-ribose) polymerase-1 also has an important function
in cell-cycle control, especially after DNA damage (Nozaki et al,
1994). Poly(ADP-ribose) polymerase-1 clearly has the potential to
inhibit the development of cancer, by promoting genomic stability
through DNA repair and cell-cycle control. Consistent with this

view is the finding that individuals with a polymorphism that
confers reduced PARP activity have increased risk of cancer (see
below). In addition, despite a general decline in PARP activity
with age (Grube and Bürkle, 1992; Chevanne et al, 2007) that
may correspond to the increase in cancer incidence with age
(http://info.cancerresearchuk.org/cancerstats/mortality/age/), lym-
phocytes from people who live to a very old age (4100 years)
without developing cancer have higher PARP activity (Muiras et al,
1998). With regard to the association of PARP-1 polymorphisms
with activity and cancer, the T2444C single-nucleotide polymor-
phism (SNP; Cottet et al, 2000) results in an amino-acid substi-
tution, Val762Ala, in the PARP-1 activity domain. The loss of a
methyl group from Val moves the 762 residue further away from
the G888 residue (from 4.01 Å for valine to 5.19 Å for alanine),
which is located in the conserved during evolution region of the
active site called ‘PARP signature’ and crucial for enzyme activity
(Cottet et al, 2000). It has been reported that T2444C SNP reduces
PARP-1 catalytic activity by 30–40% (Lockett et al, 2004; Wang
et al, 2007). The variant form was found to be associated with
prostate cancer (two-fold increase in susceptibility), oesophageal
and lung cancer in Chinese smokers and thyroid carcinoma (Hao
et al, 2004; Lockett et al, 2004; Zhang et al, 2005; Chiang et al,
2008). Other factors may also influence PARP-1 activity, such as
PARP-1 expression. Polymorphisms in the promoter region of
PARP-1 gene may influence PARP-1 protein expression. A micro-
satellite polymorphism in the PARP-1 promoter, consisting of a
variable number of CA repeats has been identified (Fougerousse
et al, 1992). Long microsatellite (CA)n repeats may facilitate the
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formation of DNA racket structures in the promoter region that
bring the TATA boxes into vicinity of the transcription factor-
binding site (Schweiger et al, 1995). Furthermore, the (CA)n

microsatellite is located close to the binding site of the
transcription factor Yin Yang 1(YY1), and this may contribute to
the regulation of PARP-1 expression (Oei and Shi, 2001).

In contrast to the proposed role of PARP-1 activity in inhibiting
cancer development, PARP expression and/or activity is generally
higher in cancer tissue compared with normal tissue. A higher
level of PARP-1 mRNA was observed in malignant lymphoma
cells compared with normal lymph nodes (Tomoda et al, 1991) and
in colorectal adenocarcinoma biopsies compared with adjacent
non-tumour tissues and hyperplastic polyps (Nosho et al, 2006).
Evaluation of PARP-1 protein expression in hepatocellular carci-
noma (HCC) by western blotting revealed that it was significantly
increased in HCC, especially moderately differentiated, compared
with the non-tumour samples (Shimizu et al, 2004). Increased
poly(ADP-ribosyl)ation has also been reported in cancers com-
pared with adjacent tissues, i.e., HCC (Nomura et al, 2000), colon
carcinoma (Hirai et al, 1983), cervical cancer (Fukushima et al,
1981), melanoma and basal cell carcinoma (Ikai et al, 1980). Recent
studies link PARP-1 to inflammation and cancer through the
activation of the stress-inducible transcription complex, NF-kB.
Nuclear factor-kB inhibits apoptosis, stimulates proliferation and
synthesis of proinflammatory mediators, critical components of
tumour progression (Coussens and Werb, 2002). Nuclear factor-kB
activity is elevated in a wide spectrum of cancers and is correlated
with malignancy and progression (Rayet and Gelinas, 1999).
Poly(ADP-ribose) polymerase-1 was found to be essential for
NF-kB transcriptional activation (Hassa and Hottiger, 1999; Oliver
et al, 1999) and the regulation of IR-induced NF-kB activation
(Veuger et al, 2009).

Because of these somewhat opposing observations, that poly-
morphisms associated with reduced PARP-1 activity are associated
with cancer predisposition on the one hand, and increased PARP
activity in tumours on the other, we set out to investigate PARP-1
polymorphisms, expression and activity, using assays validated to
GCLP for clinical trials, in a panel of 19 human cancer cell lines
and one human immortalised cell line. As the majority of reported
studies on human PARP-1 polymorphisms and activity have been
conducted using lymphocytes, half of our panel were of leukaemic/
lymphatic origin and included the immortalised human bone
marrow stromal cells. The remaining cells were from solid tumours
representing common paediatric tumours (a panel of five
neuroblastoma cell lines – the most common extracranial solid
tumour) and adult tumours (three breast cancer cell lines with
different hormone receptor status and one colorectal cell line) as
well as a rarer type (thyroid). We aimed to correlate PARP-1
protein expression with the length of the (CA)n promoter micro-
satellite and PARP activity with PARP-1 protein levels and the
T2444C SNP. We found a significantly higher frequency of the
T2444C polymorphism than that reported in the general popula-
tion, higher levels of PARP expression and activity than those
reported for normal human lymphocytes, and a high variation in
PARP activity (coefficient of variation, CV¼ 103%) and a low vari-
ation in expression (CV¼ 32%) between the cell lines. Unexpect-
edly, there was no correlation of PARP activity with PARP-1
protein expression or the polymorphisms.

MATERIALS AND METHODS

Pre B697 were a generous gift from Prof R Kofler (Innsbruck,
Austria). We obtained all other cell lines from ECACC (Salisbury,
Wilts, UK) or ATCC (Manassas VA, USA). Studies were conducted
using five neuroblastoma cell lines (TR14, NB1691, NGP, LS,
SK-N-BE2C), three breast cancer cell lines (T47D, MCF-7, MDA-
MB-231), eight leukaemia cell lines (Nalm6, Pre B697, HL-60,

K562, CCRF-CEM, Jurkat, Molt-4, TK-6), one Burkitt’s lymphoma
cell line (Raji), thyroid carcinoma cell line (ML-1) and colorectal
carcinoma cell line (LoVo), respectively. We also examined
immortalised bone marrow stromal cell line (HS-5). All cells were
grown in RPMI medium with 10% fetal bovine serum at 371C in an
atmosphere of 5% CO2 in air. Cells were confirmed mycoplasma
negative by regular testing (Mycoalert; Cambrex, Charles City, IA,
USA). All chemicals and reagents were of the highest quality and
supplied by Sigma (Dorset, UK), unless otherwise stated. The
PARP inhibitor AG014699 was supplied by Pfizer GRD (La Jolla,
CA, USA). The 10H mouse monoclonal primary antibody was
generously provided by Prof Alexander Bürkle (University of
Konstanz, Germany).

Measurement of PARP-1 activity

We measured PARP activity by modification of a previously des-
cribed method (Plummer et al, 2005) validated to GCLP standard
and used as a pharmacodynamic end point for clinical trials
(Plummer et al, 2008). Briefly, maximally stimulated PARP activity
was measured in triplicate samples of 2500 cells permeabilised with
digitonin (Sigma, Dorset, UK) in a reaction mixture containing
350mmol l�1 NADþ as substrate and 10 mg ml�1 PARP-1 activating
oligonucleotide (CGGAATTCCG) (Europrim, Invitrogen, Cambridge,
UK) in a reaction buffer of 100 mmol l�1 Tris-HCl, 120 mmol l�1

MgCl2 (pH 7.8) in a final volume of 100 ml at 261C in an oscillating
water bath. The reaction was stopped after 6 min by the addition of
excess PARP inhibitor (400 ml of 12.5 mmol l�1 AG014699) and the
cells were blotted along with a poly(ADP-ribose) standard (Biomol,
Exeter, UK) onto a nitrocellulose membrane (Hybond-N,
Amersham, Little Chalford, UK) using a purpose-built 48-well
manifold. After an overnight incubation with the primary anti-
PAR 10H antibody (1 : 500 in phosphate-buffer solution (PBS)
containing 5% milk (fat free) and Tween-20 (PBS-MT)) at 41C, two
washes in PBS-T, followed by incubation in HRP-conjugated goat
anti-mouse secondary antibody (1 : 1000 in PBS-MT; Dako) for 1 h
at room temperature, and further frequent washes with PBS for 1 h,
the membrane was exposed for 1 min to an enhanced chemi-
luminescence (ECL) reaction solution (Amersham), according to
the manufacturer’s instructions; chemiluminesence was measured
during a 5-min exposure using a Fuji LAS3000 with imaging
software (Fuji LAS Image version 1.1, Raytek, Raytek Scientific,
Sheffield, UK) and analysed using Aida Image Analyzer software
(version 3.28.001, Raytek Scientific, Sheffield, UK). Results were
expressed in LAU/mm2 relative to the number of cells loaded and
subsequently calculated by reference to the poly(ADP-ribose)
standard curve (0– 25 pmol).

Western blot analysis

Briefly, we prepared cell lysates by adding 100 ml of Laemmli buffer
(Laemmli, 1970) with protease inhibitor cocktail (Thermo Fisher
Scientific, Rockford, IL, USA) to the cell pellet, resuspending by
pipetting and leaving on ice for 30 min with a brief mix every 5 min
before sonication on ice for 10 s using 20 m amplitude (Vibracell
Sonicator, Sonics and Materials, Danbury, CT, USA) and heating in
loading dye containing b-mercaptoethanol and bromophenol blue
at 951C for 5 min. Lysates (5 mg of protein per lane) were loaded
onto Tris-HCl 5–20% polyacrylamide gels (Invitrogen, Glasgow,
UK) along with PARP-1 immunoblotting standard and after.

Electrophoresis at 100 V for 2 h (Criterion electrophoresis
apparatus, Bio-Rad, Hercules, CA, USA), the proteins were trans-
ferred for 1 h at 41C into a nitrocellulose membrane (Hybond-C,
Amersham) using a Criterion Blotter (Bio-Rad). After blocking for
1 h in PBS containing 5% milk (fat free) and Tween-20 (PBS-MT),
the membrane was incubated overnight at 41C with shaking with
an anti-PARP-1 C2-10 primary antibody (Trevigen, Gaithersburg,
MD, USA) diluted 1 : 2000 in (PBS-MT), washed 3 times for 15 min
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in PBS/Tween-20 (PBS-T), and then incubated with the HRP-
linked secondary goat anti-mouse antibody (Dako, Ely, UK)
diluted 1 : 1000 in PBS-MT, washed again for 1 h in PBS-T with
changing buffer every 5 min and then dried. The protein was
visualised with the ECL plus detection kit (Amersham) using the
manufacturer’s protocol followed by chemiluminescence detection
as described above. We quantified the PARP-1 expression by
reference to purified recombinant PARP-1 protein (Biomol)
standard curve (0– 40 ng). This assay has also been validated to
GCLP standard for evaluation of patient samples (E Mulligan and
T Zaremba, unpublished data).

T2444C genotyping

We isolated DNA directly from the cell lines using a Blood Mini Kit
(Qiagen, Crawley, West Sussex, UK) according to the manufac-
turer’s instructions and then genotyped 50 ng of genomic DNA by
pyrosequencing using the PSQ96 system (Pyrosequencing, Uppsa-
la, Sweden) as described earlier (Alderborn et al, 2000). Briefly, we
amplified the genomic fragment containing the SNP site by PCR
with a set of sense and antisense primers (50-AGTCTGTCTCATT
CACCAT-30 and 50-ATCCTTGCTGCTATCATC-30) where antisense
was 50-biotinylated (Europrim, Invitrogen). We purified the PCR
products using streptavidin-modified paramagnetic beads (Dynal,
Skoyen, Norway) and determined the nucleotide sequence by
pyrosequencing chemistry of the denatured product.

Microsatellite (CA)n repeats

To determine PARP-1 CA microsatellite genotyping we used
standard protocols and touchdown PCR for amplification, with
annealing temperature of 501C and previously published sense and
antisense primers (50-GATTCCCCATCTCTTTCTTT-30 and 50-AAA
TTGTGGTAATGACTGCA-30). The sense primer was 50-labelled
with the WellRed Beckman fluorescent dye D4 (Proligo, Paris,
France). We added 1 ml aliquots of the PCR product to 30 ml of
formamide and 0.3 ml internal size standard (Beckman Coulter,
High Wycombe, Buckinghamshire, UK) and analysed them in
denaturating gels (Beckman Coulter) by capillary electrophoresis
system CEQ8000 (Beckman Coulter).

Statistical analysis

We analysed each sample in triplicate in three independent
experiments and expressed the data as the mean value ±s.d. We
applied a base-10 logarithmic transformation to PARP activity and
expression. We examined the association between PARP activity
and expression by Pearson’s correlation analysis using GraphPad
Prism4 software (GraphPad, La Jolla, CA, USA). We calculated
P-values for genotype frequencies analysis by the Freeman– Halton
extension of Fisher’s exact test (VassarStats, online software,
Poughkeepsie, NY, US) and for difference in PARP-1 expression
and activity between the cell lines by Student’s t-test (GraphPad).

RESULTS

PARP active site SNP T2444C (Val762Ala)

Analysis of the T2444C (Val762Ala) SNP in all cancer cell lines
revealed that most of the cell lines have the wild genotype T/T
(80%). The leukaemia cell line, Pre B697, and the colorectal
carcinoma cell line, LoVo, have a heterozygote genotype (T/C),
whereas LS and Jurkat cells have a homozygote SNP (C/C)
(Table 1). Analysis of the frequencies of the active site T2444C SNP
showed that the frequency of the variant allele is significantly
higher (P¼ 0.02; Freeman–Halton extension of Fisher’s exact test)
than in the general Caucasian population (73% T/T, 25% T/C, 2%
C/C; Lockett et al, 2004).

(CA)n microsatellite instability in PARP-1 promoter region

It has been proposed that the long CA polymorphism in the
promoter region of PARP-1 gene may result in an increased PARP-
1 expression. We therefore investigated the length of this
microsatellite repeat sequence in our cell line panel. As established
earlier (Pascual et al, 2003), we grouped the CA microsatellite into
two alleles:

S (short)�(CA)11�12 and L (long)�(CA)13�20. We found the
following genotype frequencies: 61% SS (TK-6, HS-5, MDA-MB-
231, MCF-7, Pre B697, Naml6, CCRF-CEM, K562, TR14, NB1691,
Jurkat), 28% SL (ML-1, T47D, Molt-4, HL-60, SK-N-BE2C), 11% LL
(Raji, LoVo) (Table 1). It was not possible to establish the CA
repeat length for LS and NGP cells. Analysis of the length of the
CA microsatellite revealed that most of the cell lines have
short repeats, and the genotype frequencies are not significantly
different (Freeman –Halton extension of Fisher’s exact test;
P¼ 0.6) from those in PBMC from healthy volunteers (60% were
SS, 20% SL and 20% LL) (Zaremba et al, 2008).

PARP-1 expression

We measured the PARP-1 protein expression in the cell lines by
semiquantitative western blot (Figure 1A). Analysis of pooled data
from replicate experiments revealed a 3.5-fold difference in the
PARP-1 expression level between the lowest (2.0 ngmg�1 protein
for HS5 cells) and the highest (7.1 ng mg�1 protein for ML-1 cells)
with the mean PARP-1 expression being 4.8±1.5 ng mg�1 protein
(mean±s.d.) (Figure 1B) and CV¼ 32%. Two breast cancer cell
lines (T47D, MDA-MB-231) and the bone marrow stromal cell line
(HS-5) showed lower expression levels of PARP-1 compared with
the other cell lines (omean�s.d.), whereas two neuroblastoma cell
lines (NB 1691, SK-N-BE2C), two leukaemia cell lines (Nalm6,
PreB) and thyroid carcinoma cell line (ML-1) showed higher
expression levels (4meanþ s.d.). We did not find any significant
association between the level of PARP-1 expression and the length
of CA repeats (SS vs SL; P¼ 0.98; Student’s t-test) (Figure 1C).

Table 1 PARP-1 expression, activity and genotype in a panel of different
cancer cell lines

Cell line
(CA)n

genotype
T2444C

genotype
PARP-1
expression

PARP
activity

Pre B697 SS T/C High High
NGP — T/T Medium High
TR14 SS T/T Medium High
NB1691 SS T/T High Medium
SK-N-BE2C SL T/T High Medium
Nalm-6 SS T/T High Medium
K562 SS T/T Medium Medium
HL-60 SL T/T Medium Medium
Molt-4 SL T/T Medium Medium
MCF-7 SS T/T Medium Medium
Raji LL T/T Medium Medium
LoVo LL T/C Medium Medium
LS — C/C Medium Medium
MDA-MB-231 SS T/T Low Medium
T47D SL T/T Low Medium
ML-1 SL T/T High Low
CCRF-CEM SS T/T Medium Low
TK6 SS T/T Medium Low
Jurkat SS C/C Medium Low
HS-5 SS T/T Low Low

Abbreviations: Promoter polymorphism SS–short alleles (CA)11 – 12/(CA)11 – 12,
SL – short/long alleles (CA)11 – 12/(CA)13 – 20, LL – long/long alleles (CA)13 – 20/
(CA)13 – 20; for active site T2444C SNP C/C is a variant/variant. Low-medium-high
classification based on mean±s.d.
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PARP activity

Measurement of PARP activity in the cell line panel revealed a wide
variation between the cell lines (CV¼ 103%). HS5 cells had the
lowest activity (2460 pmol PAR/106 cells) and the NGP cells had the
highest activity (85 750 pmol PAR/106 cells) with the mean activity
across the panel being 18 069±18 679 pmol PAR/106 cells
(mean±s.d.) (Figure 2B). This variation is significantly greater
than the PARP-1 expression (CV¼ 32%). To see if PARP activity
was dependent on the level of protein expression, we compared
the activity and expression data (Figure 3). Pearson’s correlation
analysis showed that there was no significant correlation between
activity and expression (R2¼ 0.09, P¼ 0.2) (Figure 3).

DISCUSSION

By measuring selected polymorphisms in the PARP-1 gene as well as
PARP-1 protein levels and activity in a panel of human cancer cell
lines, we hoped to uncover new evidence of the relationship between
genotype, expression and activity and also to gain further under-
standing of the relationship between PARP-1 and cancer formation.
Analysis of the genotype frequencies of the active site T2444C SNP

(80% T/T, 10% T/C and 10% C/C) revealed that the frequency of the
variant allele is significantly higher than in the general population
(Freeman–Halton extension of Fisher’s exact test; P¼ 0.02). This is
consistent with earlier studies indicating that individuals with the
variant polymorphism are at higher risk of developing cancer (Hao
et al, 2004; Lockett et al, 2004; Zhang et al, 2005). However, although
the variant polymorphism was associated with reduced PARP-1
activity in normal cells, this was not the case in our panel of cancer
cells. Although the LS neuroblastoma cells with the C/C genotype
had the lowest PARP activity among all analysed neuroblastoma cell
lines and Jurkat (leukaemic) cells also had the C/C SNP and low
PARP activity, four other cell lines with very low PARP activity,
namely, two leukaemia cell lines CCRF-CEM and TK6, thyroid
carcionoma cell line ML-1 and immortalised bone marrow stromal
cells HS-5, did not possess variant allele of T2444C. Therefore, due to
the small sample number, we did not find any significant correlation
between PARP-1 activity and T2444C genotype (Figure 2C).

The length of the CA microsatellite in the promoter has not only
been implicated in transcription of PARP-1 but has also been
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Figure 1 PARP-1 expression in the cell line panel. (A) Upregulation of
PARP-1 expression in tumour cell lines detected by western blot analysis.
(B) Semiquantitative analysis of the results of replicate experiments of the
kind shown in A: Columns, mean of samples analysed in triplicate in three
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protein levels (expressed as log10) in relation to (CA)n microsatellite
polymorphisms; SS – short alleles (CA)11 – 12/(CA)11 – 12, SL – short/long
alleles (CA)11 – 12/(CA)13 – 20, LL – long/long alleles (CA)13 – 20/(CA)13 – 20.
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described as the haplotype defining variant of the whole PARP-1
promoter polymorphism (Pascual et al, 2003). Previous studies
showed that a long CA microsatellite is related to autoimmune
diseases, namely, rheumatoid arthritis and coeliac disease (Pascual
et al, 2003; Rueda et al, 2005). This evidence implicates PARP-1
primarily in inflammatory processes leading to the development of
immunological disorders, but these may also lead to promotion and
development of cancer by NF-kB dependent or independent
mechanisms. Our study is the first investigation of a role for the
CA microsatellite in PARP-1 expression in cancer cells. Studies on the
length of the CA microsatellite revealed that most of the cell lines have
short repeats, and the genotype frequencies are not significantly
different (P¼ 0.6; Freeman–Halton extension of Fisher’s exact test)
from those in PBMC from healthy volunteers (Zaremba et al, 2008).
Overall, our data show significant upregulation (approximately 23-
fold higher) of PARP-1 expression in the cancer cell lines compared
with human lymphocytes from healthy volunteers and cancer patients
(Zaremba et al, 2008). Our finding is in accordance with earlier
studies showing increased expression of PARP-1 in cancer, as
described in the Introduction section. Poly(ADP-ribose) polymerase-
1 protein expression varied between the cell lines; however, we did
not find any correlation between the level of PARP-1 expression and
length of the CA-repeats (Figure 1C).

We found that on average the cell lines had a 45-fold higher
activity than the mean activity measured in PBMC from healthy
volunteers and cancer patients (403.5±617.3 pmol PAR/106 cells;
Zaremba et al, 2008). This finding is in accordance with earlier
studies described in the Introduction section showing increased
PARP activity in tumours. There was a large variation in PARP-1
activity between different cell lines (CV¼ 103%), which was much
greater than the variation in expression (CV¼ 32%). Furthermore,

our results show that there is no statistically significant positive
correlation between PARP-1 expression and PARP-1 activity in the
panel overall (Figure 3A) or when comparing cells from the same
tissue of origin, e.g., the five neuroblastoma cell lines (Figure 3B).
This contrasts to earlier data showing correlation of PARP activity
with PARP-1 protein expression in five colon cancer cell lines
(Tentori et al, 2006). The lower than expected activity in cells with
high levels of expression (e.g., ML-1) could not be explained by
the T2444C SNP and indeed the cells with the variant allele did
not appear to have lower activity than expected on the basis
of expression (Table 1). Interestingly, the immortalised human
marrow stromal cells, HS-5, had the lowest PARP-1 protein
concentration and the lowest PARP activity, suggesting that the
super-high levels of expression and activity may be specifically
associated with malignant progression.

Our data show that PARP activity is not determined by the level
of the enzyme and/or a polymorphism in the DNA sequence
encoding the enzyme active site. This suggests that PARP-1 activity
is regulated by either posttranslational modification and/or
endogenous activation or repression. The assay we used in this
study, by the use of an oligonucleotide, measures total stimulatable
PARP activity and therefore cellular events that might activate
PARP-1 endogenously, such as oxidative DNA damage, will not
contribute to the variation in activity observed. There are
numerous factors that might have an impact on PARP-1 activity;
DNA-PK may activate PARP-1 by phosphorylation (Ruscetti et al,
1998) or suppress PARP activity through sequestration of DNA
ends that serve as an important stimulator for both enzymes
(Ariumi et al, 1999). Inactive DNA-PK has also been shown to
suppress the activity of PARP-1, an effect that was not due to
substrate competition, as DNA ends were provided in excess
(Veuger et al, 2004). ERK1/2 kinase has also been reported to
phosphorylate and activate PARP-1 (Kauppinen et al, 2006). There
is a strong evidence in the literature showing that PARP expression
and activity are affected by differentiation and cell proliferation
with generally higher PARP activity and expression in proliferating
cells (Wein et al, 1993). Negroni and Bertazzoni (1993) showed
that growing HeLa cells and mitogen-stimulated human lympho-
cytes have very similar levels of PARP-1 mRNA, whereas in
quiescent lymphocytes the value was 20-fold lower. More recently,
Carbone et al (2008) showed that PARP-1 activity was induced by
mitogen stimulation and contributed to the G0– G1 cell-cycle
transition by the induction of immediate-early genes such as c-
Myc and c-Fos. Another study revealed that PARP-1 expression
gradually increases in nonatypical and atypical endometrial
hyperplasia compared with normal endometrial epithelium
(Ghabreau et al, 2004). Published data indicate that increased
proliferation is a major determinant of PARP-1 expression and
activity. Indeed, we cannot exclude the possibility that the lower
PARP-1 protein and activity seen in the immortalised non-cancer
HS-5 cells was merely due to the fact that this was also relatively
slow growing cell line in our panel. Similar observation can be
made for two slow growing cancer cell lines – Jurkat and ML-1
(doubling time 48 h) – which had very low PARP activity in our
panel of cells. However, TR14 and Pre B697 cells were also slow
growing (doubling time 72 and 30– 40 h, respectively) but had high
PARP-1 activity (both cell lines) and expression (Pre B697) so
proliferation rate may contribute to, but not be the most important
determinant of, PARP activity. Clearly, regulation of PARP-1
activity is complex and reflects phenotypic and behavioural
changes within the cell that may make a greater contribution than
either genotype or protein expression. Our study is the first to
directly compare PARP-1 polymorphisms, cellular levels of PARP-
1 protein and PARP activity in a systematic way. This reveals that
PARP activity depends on other factors beside the level of protein
and the active site SNP. Further studies to determine the factors
that regulate the activity of this critical DNA repair enzyme are
ongoing.
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Figure 3 Correlation between PARP-1 protein levels and PARP activity.
(A) On the graph cell lines with variant genotype for T2444C SNP are
indicated by squares and triangles. (B) Correlation between PARP-1
expression and activity in five neuroblastoma cell lines.
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