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Abstract
The extracellular signal-regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase
(MAPK) that phosphorylates and regulates various transcription factors in response to growth
factors and extra-cellular stresses. To address its biological function during the development of the
peripheral nervous system (PNS), we have engineered a novel model of sympathetic neurons in
which the erk5 gene can be deleted in vitro. Our data provide for the first time genetic evidence
that ERK5 is required to mediate the survival response of neurons to nerve growth factor (NGF).
Increased cell death associated with the loss of ERK5 is caused by elevated expression of the
BH3-only members of the Bcl-2 family, Bad and Bim. Further investigation indicated that ERK5
suppresses the transcription of the bad and the bim genes via Ca++/cAMP response element
binding protein (CREB) and Forkhead box 03a (Foxo3a), respectively. Consistently, we found that
the phosphorylation of both p90 ribosomal S6 kinase (RSK) and protein kinase B (PKB) is
impaired in neurons lacking ERK5. Together these findings reveal a novel signaling mechanism
that promotes neuronal survival during the development of the PNS.
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Introduction
During the development of the brain approximately half of the neurons formed by
neurogenesis die by apoptosis before adulthood due to limiting amounts of trophic factors
(1). The molecular mechanism underlying this neuronal loss has been greatly facilitated by
the phenotypic analysis of nerve growth factor (NGF)-dependent sympathetic neurons
lacking specific members of the Bcl-2 family (2). For example, while Bax is essential for
NGF withdrawal-induced apoptosis (3), there is functional redundancy between the BH3-
only proteins Bad and Bid (4). Unlike bad−/− neurons and bid−/− neurons that do not
exhibit any abnormal phenotype, the targeted deletion of bim partially protects sympathetic
neurons against trophic factor withdrawal (5). Further studies have shown that increased
expression of Bim via the transcription factors c-Jun and Forkhead box 03a (Foxo3a) is
critical to trigger neuronal apoptosis (6, 7).

Similarly, de novo protein synthesis is a prerequisite for trophic factor-induced survival.
This is exemplified in vivo by the decreased number of sensory and sympathetic neurons in
the brain of Ca++/cAMP response element binding protein (creb)−/− mice (8). CREB is a
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pro-survival transcription factor that acts as both an activator and a repressor of gene
expression in the nervous system (9). The transcriptional activity of CREB is increased upon
phosphorylation at serine 133 by numerous protein kinases, including p90 ribosomal S6
kinase (RSK), a downstream target of extracellular-regulated protein kinases 1 and 2
(ERK1/2) and ERK5 (10, 11). The specific requirement of ERK5, but not of ERK1/2, to
activate CREB in distally stimulated NGF-dependent sensory neurons provided the first
evidence that ERK5 was essential for promoting trophic factor-induced neuronal survival
(12). The role of ERK5 in mediating the survival of neurons in the central nervous system
via the activation of the myocyte enhancer factor 2 (MEF2) transcription factor has since
been reported (13, 14).

ERK5 is a non-redundant mitogen-activated protein kinase (MAPK) stimulated in response
to growth factors and cellular stresses via the MAPK kinase 5 (MEK5) (15). Since its
cloning in 1995, the lack of biological tools, including specific inhibitors, have made it one
of the least studied MAPK subfamilies. Consequently, little is known about the downstream
targets of ERK5 and therefore the biochemical mechanisms that mediate the effect of ERK5
remain largely unidentified. To advance the current knowledge, we have developed a novel
model of primary cultures of sympathetic neurons in which the erk5 gene can be deleted in
vitro. Here we provide genetic evidence that ERK5 is required for neuronal survival by
suppressing Bad and Bim expression via CREB and Foxo3a, respectively.

Results
Deletion of the erk5 gene causes apoptosis

The role of ERK5 in NGF-mediated neuronal survival was examined by testing the effect of
erk5 gene deletion in sympathetic neurons. Homozygous erk5loxP SCG neurons were
infected with an adenovirus encoding Cre recombinase (Cre) or the green fluorescence
protein (GFP) (Figure 1a). Immunofluorescence staining confirmed that adenoviruses at 100
multiplicity of infection (MOI) infected neurons with 100% efficiency (Figure 1a). Genomic
PCR analysis using specific primers flanking exon 3 revealed that infection with the Cre
virus at 100 MOI for 24 h induced efficient recombination of the erk5 gene (Figure 1b). This
correlated with the complete loss of the ERK5 protein after 48 h, as observed by
immunoblot analysis of the cell lysates using a specific antibody to ERK5 (Figure 1b). The
retarded migration of ERK5 following SDS-PAGE analysis of wild type extracts was absent
when the cells were incubated with the alkaline phosphatase CIP, suggesting that the upper
band detected by immunoblot corresponded to a phosphorylated form of ERK5 (Figure 1c).
Similarly, the electrophoretic mobility shift was abolished in SCG neurons cultured in the
absence of NGF for 15 and 30 min (Figure 1c). The phosphorylation of ERK5 was restored
30 min after the re-addition of NGF (Figure 1c). Together these results demonstrate that
ERK5 is phosphorylated in SCG neurons incubated with NGF.

SCG neurons are dependent on trophic support for their survival. This is demonstrated by
NGF withdrawal-induced phosphorylation of the pro-apoptotic c-Jun N-terminal protein
kinase (JNK) MAPK (Figure 1d), as well as an increased number of nuclei displaying
segmented and condensed chromatin (supplementary Figure 1a and b). In addition, caspase
3 activity was elevated with a maximum at 24 h after NGF deprivation (supplementary
Figure 1c). Similarly, the absence of ERK5 for 48 h promoted morphological changes in cell
shape (Figure 1e) and in chromatin structure (Figure 1f) typical of apoptotic cells, and
significantly increased caspase 3 activity (Figure 1g). However, in contrast to NGF
withdrawal, the loss of ERK5 did not increase JNK phophorylation (Figure 1d). The level of
apoptotic death associated with ablation of ERK5 in the presence of NGF was comparable to
that observed with the removal of NGF for 18 h (Figure 1f and g). Control experiments
demonstrated that infection of wild type SCG neurons with the Cre virus was not toxic to the
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cells (Figure 1h). Together these results indicate that ERK5 is a crucial mediator of the NGF
pro-survival signal.

ERK1/2 and protein kinase B (PKB, also known as Akt) have previously been implicated in
protecting neurons against stress (17). To establish the relative importance of ERK5,
ERK1/2 and PKB in mediating NGF-dependent neuronal survival, we compared the effect
of ERK5 deletion with the specific inhibition of ERK1/2 and PKB signaling. Incubation of
the cells with either UO126 or wortmannin completely abolished the phosphorylation of
ERK1/2 and of PKB at Thr308, but not that of ERK5, demonstrating the specificity of the
drugs (Figure 2a). Conversely, ablation of ERK5 by infecting erk5loxP SCG neurons with
Cre virus did not affect the phosphorylation of ERK1/2 or PKB at Thr308 (Figure 2a).
Under conditions of adequate trophic support, loss of ERK5 or inhibition of ERK1/2 or PKB
signaling, increased caspase 3 activity to a similar extent (P>0.05) (Figure 2b). In contrast to
our data, several studies have demonstrated that MEK inhibition has minimal effects on
NGF-dependent neuronal survival (18-21). Therefore, to confirm our results, we tested the
effect of PD0325901, a novel non-competitive inhibitor of MEK1 with greater potency than
UO126 (22). Like UO126, we found that PD0325901 specifically inhibited ERK1/2
phosphorylation (Figure 2c) and decreased the survival of SCG neurons incubated with NGF
(Figure 2d). Consistent with the caspase 3 assay (Figure 2b) there was no significant
difference in cell death exhibited by SCG neurons infected with Cre or incubated with
PD0325901 or with wortmannin (Figure 2d). The effect of functional inhibition of ERK5
and ERK1/2, ERK5 and PKB, or ERK5, ERK1/2 and PKB signaling was additive (Figure
2b and d). Together, these results indicate that the ERK5, ERK1/2, and PKB pathways
contribute similarly to the survival of NGF-dependent SCG neurons and that neither of them
can fully substitute for the loss of the others.

ERK5 is required to inhibit Bad and Bim expression
To elucidate the mechanism by which the loss of ERK5 causes neuronal apoptosis we
investigated the regulation of Bad, whose functional inhibition by ERK5 prevents apoptosis
in endothelial cells (23). Immunoblot analysis using a Bad-specific antibody revealed that
the expression of Bad was increased by around 3 fold after ablation of ERK5 (Figure 3a).
Immunofluorescence studies confirmed that Bad was expressed at a much lower level in
control neurons than in neurons lacking ERK5. Indeed, the exposure time used to generate
the images was insufficient to detect Bad in LacZ infected cells (Figure 3b). The staining of
Bad displayed by Cre infected erk5loxP neurons partially co-localized with the
mitochondrial heat shock protein 70 (mHsp70) (Figure 3b). This is consistent with the pro-
apoptotic function of Bad at the mitochondria where it inhibits the activity of anti-apoptotic
Bcl-2 family members (24). Similar increases in the expression of the extra long (EL) and
long (L) Bim isoforms were detected following the loss of ERK5 (Figure 3c). In contrast, no
marked difference was observed in the levels of Bid expression between GFP- and Cre-
expressing erk5loxP SCG neurons up until 72 h post-infection (Figure 3d and data not
shown). Furthermore, the loss of ERK5 did not cause Bid cleavage (data not shown).

To determine the physiological significance of the increase in bad and bim expression we
tested the effect of down-regulating their expression in erk5−/− SCG neurons (Figure 3e and
f). Neurons were infected with adenoviruses encoding GFP or Cre 1 h prior to incubating the
cells with recombinant shRNA lentivirus targeting the murine bad or bim genes. A
recombinant lentivirus encoding unspecific (ctrl) shRNA was used as a control to monitor
the effect of lentivirus infection. Immunoblot analysis indicated that Bad and Bim shRNA
efficiently and specifically prevented the increase in Bad and Bim expression caused by erk5
gene deletion (Figure 3e). The down-regulation of either of these BH3-only proteins
prevented the neuronal death associated with the loss of ERK5 (Figure 3f). Together these
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results demonstrate that Bad and Bim are required to induce the death of neurons lacking
ERK5.

ERK5 controls the transcription of Bad and Bim via CREB and Foxo3a
To determine how ERK5 controls Bad and Bim expression, the level of their transcripts in
SCG neurons expressing GFP or Cre was measured by quantitative real time (RT) PCR
(Figure 4a). The up-regulation of bad mRNA was transient and maximal 18 h after infection
with Cre virus, a time which corresponded to a 70% reduction of the erk5 transcript.
Expression of Cre for 36 h was necessary to detect increased bim mRNA. Control
experiments demonstrated that the transcription of erk5, bad and bim genes was not affected
in wild type SCG neurons infected with the Cre virus (data not shown), strengthening our
conclusion that ERK5 is required to down-regulate the expression of Bad and Bim under
adequate trophic factors conditions.

The transcriptional regulation of Bad and Bim by ERK5 was further examined by luciferase
assay using reporter plasmids containing a fragment of the Bad (Bad-Luc) or of the Bim
(Bim-Luc) promoter (Figure 4b and c). Increased luciferase activity in SCG neurons
following the loss of ERK5 confirmed the negative effect of ERK5 on the bad and bim
promoters (Figure 4b and c). Consistent with the quantitative RT PCR time course analysis
(Figure 4a), Bad-luc was activated in neurons 18 h after infection, while 36 h was necessary
to detect up-regulation of Bim-luc activity.

Increased activity of Bad-luc and Bim-luc was also observed in differentiated PC6.3 over-
expressing a dominant negative (DN) form of ERK5 (Figure 4e and f). Immunoblot analysis
using a phospho-specific antibody against ERK5 confirmed that ectopic expression of DN-
ERK5 blocked the ability of MEK5 to activate ERK5 (Figure 4d). This correlated with
increased Bad and Bim expression. The ability of UO126 and wortmannin to activate Bim-
luc (Figure 4f), but not Bad-luc (Figure 4e), demonstrated that ERK1/2 and PKB contribute
to down-regulating the expression of Bim, but not of Bad, under adequate trophic factor
conditions.

A number of response elements have been identified in the promoters of both the bad and
the bim genes, including putative binding sites for the transcription factors CREB and
Foxo3a, which have both been reported to be downstream targets of the ERK5 signaling
pathway (12, 25). Bad(mt)-luc and Bim(dm)-luc reporter constructs carrying deletions of the
putative CREB and Foxo3a binding sites respectively, were not responsive to the loss of
ERK5 (Figure 4b and c). Together, these results indicated that ERK5 suppresses Bad and
Bim expression via its ability to stimulate CREB and to inhibit Foxo3a activity, respectively.

ERK5 regulates CREB and Foxo3a activity via RSK and PKB
Next we investigated the mechanism by which ERK5 regulated CREB and Foxo3a activity.
A previous study showed that activation of ERK5 in sensory neurons promoted the
phosphorylation of CREB via RSK (12). Consistent with this result, we found that SCG
neurons lacking ERK5 (Figure 5a) or differentiated PC6.3 over-expressing DN-ERK5
(Figure 5b) exhibited impaired phosphorylation of RSK and CREB. Decreased
phosphorylation of CREB in SCG neurons was transient with a maximum at 18 h after erk5
gene deletion. This indicates that CREB can be phosphorylated in the absence of ERK5
independently of RSK. This compensatory signaling mechanism could explain the transient
up-regulation of the bad transcript in SCG neurons following the loss of ERK5 (Figure 4a).

Chromatin immunoprecipitation (ChIP) analysis using an antibody to CREB demonstrated
that CREB interacted with the bad-promoter in differentiated PC6.3 cells incubated with
NGF (Figure 5c and d). The DNA purified from the cells was amplified by semi-quantitative
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(Figure 5c) or by quantitative RT (Figure 5d) PCR. The amount of PCR product was
reduced to that of non-specific binding following expression of DN-ERK5, NGF
withdrawal, or mutation of the putative CRE sites. Together, these data indicate that ERK5
suppresses Bad expression by stimulating the transcriptional activity of CREB via RSK and
by promoting the binding of CREB to the CRE sites in the bad-promoter.

The ability of PKB to prevent increased Bim expression by sequestering Foxo3a in the
cytoplasm upon phosphoryation is one mechanism by which PKB promotes neuronal
survival (6, 26). In a previous study we have demonstrated that, compared to wild type cells,
erk5−/− and mek5−/− fibroblasts treated with sorbitol display reduced PKB activity which is
associated with increased Foxo3a activity (25). Here we found that absence of ERK5 in
SCG neurons (Figure 6a) or ectopic expression of DN-ERK5 in differentiated PC6.3 (Figure
6b) specifically prevented the phosphorylation of PKB at Ser473, but not at Thr308. Based
on evidence that maximal activation of PKB requires dual phosphorylation at Thr308 and
Ser473 (27), this result indicates that the level of PKB activity is lower in neurons lacking a
functional ERK5 pathway. Consistently, ChIP analysis using an antibody to Foxo3a
demonstrated that Foxo3a interacted with the bim-promoter in differentiated PC6.3 cells
expressing DN-ERK5 (Figure 6c). Together, these studies suggest that ERK5 down-
regulates Bim expression in neurons by a mechanism that implicates PKB-dependent
phosphorylation of Foxo3.

Discussion
This study provides genetic evidence that ERK5 mediates the survival response of
developing sympathetic neurons to NGF by suppressing the transcription of both the bim
and bad genes (Figure 7). Our hypothesis that ERK5 prevents Bim expression by inhibiting
Foxo3a is supported by the demonstration that Foxo transcription factors activate the bim
promoter in sympathetic neurons deprived of NGF (6). Our previous study showed that
decreased Foxo3a activity in erk5−/− fibroblasts correlated with a reduced PKB activity
compared to wild type cells (25). Here, we found that the phophorylation of PKB at Ser473,
but not at Thr308, was impaired in neurons 36 h after the loss of ERK5. Together with
recent evidence that the phophorylation of PKB at Ser473 is required for PKB to
phosphorylate Foxo3a (28), this study indicates that ERK5 down-regulates Bim expression
by promoting PKB-dependent inhibition of Foxo3a (Figure 7). It is interesting to note that
the inhibition of PKB signaling by wortmannin further increased the level of neuronal death
caused by the absence of ERK5. This is consistent with the idea that defective Ser473
phosphorylation affects only a subset of PKB substrates in vivo (28).

Other downstream targets of the ERK5-PKB-Foxo3a signaling pathway include FasL (25).
Increased FasL expression enhances apoptosis of ERK5-deficient fibroblasts under
conditions of osmotic stress by promoting Bid cleavage (25). In contrast, the death
promoting fragment tBid was not detected in erk5−/−neurons. Together with evidence that
FasL does not contribute to trophic factor deprivation-induced apoptosis of sympathetic
neurons (4), this observation suggests that increased FasL is unlikely to be implicated in the
death of SCG neurons associated with the loss of ERK5.

Like Bim, we found that increased Bad expression was critical to trigger neuronal apoptosis
following the loss of ERK5. Consistent with our data, a previous study has shown that over-
expression of Bad in sympathetic neurons overcomes the survival effect of NGF (29).
However, the requirement of Bad to mediate the apoptotic response of neurons caused by
the loss of ERK5 appears inconsistent with the functional redundancy of Bad with other
BH3-only proteins in NGF withdrawal-induced neuronal death (4). This discrepancy can be
explained by the fact that, in addition to ERK5, NGF deprivation inhibits ERK1/2 and PKB
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activity (17), and stimulates the JNK signaling pathway (30). This leads to additional
transcriptional and post-translational modifications of members of the Bcl-2 family which
sensitize the cells to apoptotic death. For example, NGF-increased Bcl-2 expression in PC12
cells is blocked following inhibition of ERK1/2 signaling (31). Additionally, upon
phosphorylation by JNK, Bim dissociates from the microtubule-associated dynein motor
complex and translocates to the mitochondria (32, 33). Thus, mitochondrial translocation of
Bim in NGF-deprived neurons exhibiting a low level of Bcl-2 may allow the activation of
Bax independently of Bad. This suggests that the transcriptional up-regulation of the bim
gene may not be sufficient to trigger neuronal death. Consistent with this, we found that
elevated Bim expression in SCG neurons lacking ERK5 and in which the level of Bad is
down-regulated, is not toxic to the cells. In conclusion, our results support the idea that Bad
and Bim are non-redundant BH3-only proteins unless they are post-translationally modified
to increase their pro-apoptotic function.

The mechanism underlying the transcriptional regulation of bad by ERK5 implicates CREB
(Figure 7). This result is strengthened by the finding that CREB binds to the putative Cre
sites in the bad promoter. CREB activity is regulated by two potential mechanisms. The first
is via phosphorylation at Ser133, which increases the transcriptional activity of CREB (34).
Evidence that the phosphorylation of CREB and of RSK was impaired in the absence of
ERK5 indicates that ERK5 represses bad expression via RSK-dependent activation of
CREB. This model is supported by the finding that RSK is a substrate of ERK5 (10) and that
ERK5 contributes to mediating CREB phosphorylation following neurotrophin stimulation
of sensory neurons (12). Furthermore, the decrease in CREB phosphorylation caused by the
loss of ERK5 followed the same transient kinetics as that of the up-regulation of the bad
transcript with a maximum after 18 h. The observation that the level of Bad remains
elevated up until 48 h after Cre infection suggests that additional mechanisms increase the
stability of the protein. The compensatory signaling pathway that partially restores CREB
phosphorylation 24 h after the deletion of the erk5 gene, allowing repression of the bad
trancription to resume, is unlikely to implicate ERK1/2 considering that the activity of the
bad promoter is not affected by UO126. The second mechanism is via the regulation of the
binding of CREB to DNA via S-nitrosylation of nuclear proteins that associate with CREB
target genes, independently of the phosphorylation of CREB at Ser133 (35). Our findings
suggest that ERK5-induced CREB-DNA binding may constitute a mechanism that triggers
CREB to act as a repressor of gene expression.

Although ERK5 is required for mediating the survival of sensory (12) and sympathetic (our
results) neurons in vitro, mice lacking ERK5 in the brain do not display any obvious
developmental defect (36). However, the sympathetic and sensory nervous systems were not
specifically examined in the animal model. Therefore, a more thorough phenotypic analysis
of the mice lacking ERK5 will be required to firmly conclude on the role of ERK5 during
brain development. In contrast, ERK5 was shown to be essential for neural differentiation in
Xenopus early embryonic development (37). This discrepancy between Xenopus and mouse
models may be explained by the activation of redundant signaling mechanisms in more
complex organisms. Although in vitro ERK1/2 and PKB are not able to fully compensate for
the loss of ERK5, activation of ERK1/2 and PKB may be sufficient to sustain the survival of
neurons lacking ERK5 in mice.

The requirement of PKB to maintain SCG neuronal survival in response to NGF has been
reported before (18, 38-40). However one study disputes this conclusion (41). Furthermore,
most studies have found that inhibition of MEK has minimal effects on NGF-dependent
neuronal survival (18-21). One possible explanation for these controversial findings may lie
in the difference in the species from which the neurons were prepared (i.e. rats compared to
mice) and in the conditions of the cell cultures. This includes the number of days SCG
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neurons were kept in vitro prior to experimentation, which can influence the signaling
mechanisms in these postmitotic neurons. In addition, while other studies have used
PD98059 (18-21), we employed UO126 to block ERK1/2 signaling. To confirm our results,
we tested the effect of PD0325901, a novel non-competitive inhibitor of MEK1 with greater
potency (22). Like UO126, we found that PD0325901 decreased the survival of SCG
neurons incubated with NGF. These conflicting results emphasize the advantage of genetic
deletion analyses over the use of selective inhibitors which exhibit variability in their
efficiency to specifically block the transduction of signals.

The additive effect of erk5 gene deletion with inhibition of ERK1/2 and PKB signaling in
vitro suggests that ERK5, ERK1/2 and PKB are components of independent pathways which
contribute to the survival of sympathetic neurons via overlapping mechanisms. For example,
while suppression of bad mRNA expression is specifically controlled by ERK5, bim can be
transcriptionally regulated by ERK5, ERK1/2 and PKB. In addition, ERK1/2 may be
required to maintain Bcl-2 levels (31), and PKB may block the pro-apoptotic function of
Bad by phosphorylation (29, 42). The relative importance of these different survival
mechanisms to prevent neuronal death is likely to vary depending on the type of stress. For
example, ERK1/2, but not PKB, is required to protect SCG neurons against toxic stimuli
(43-45). The importance of ERK5 in preventing sympathetic neuronal death due to injury or
toxicity remains to be tested. In particular, it will be interesting to determine whether the
regulation of the BH3-only protein PUMA, which has been implicated in apoptosis induced
by DNA damage in sympathetic neurons independently of JNK (43, 46), is controlled by
ERK5. Furthermore, phenotypic analysis of the mice lacking ERK5 in the brain will be
required to determine whether ERK5 plays a role in supporting the survival of neurons
under certain pathological situations including aging and neurodegenerative diseases.

Materials and Methods
Cell cultures

Sympathetic neurons were obtained from the superior cervical ganglion (SCG) of wild type,
erk5+/loxP and erk5loxP/loxP new born mice (post natal day 0-2), as previously described
(47). In brief, sympathetic ganglia were trypsinized for 30 min at 37°C. Single-cell
suspensions were purified by preplating for 30 min twice on collagen. Non adherent SCG
neurons were collected by centrifugation and cultured for 3 days on poly-L-lysine and
laminin coated plates in L15 plating medium containing 3% FBS and 50 ng/ml NGF
(Alomone Labs), unless indicated otherwise. All mice employed for this study were hosted
in a pathogen-free facility at the University Manchester. Use of animals followed Home
Office guidelines and received approval by Manchester University's ethical committee.

The PC6-3 subline of the PC12 cell line were cultured on collagen coated plates in
differentiating medium (RPMI containing 1% FBS, 2% horse serum, and 100 ng/ml NGF) to
obtain a neuronal phenotype, as previously described (6).

Genotyping of the cells
SCG neurons were incubated overnight at 55°C with proteinase K. The cell lysates were
treated with phenol/TE/hydroxyquinolone and the genomic DNA was isolated by
precipitation with isopropanol. Genotype determination was performed by PCR using
forward (5′-GCTTCTCCCTGTGATGTGAG-3′) and reverse (5′-
TGAGCTACGGGCTTTCG-3′) primers. 1300 bp and 250 bp fragments were amplified
from the erk5-flox and disrupted allele, respectively.
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Viral infections
The adenoviruses were amplified in HEK-293-T cells and the viral solution was purified on
CsCl gradients. The viral infectivity was determined on HEK-293-T cells. After 3 days in
culture, SCG neurons were infected with recombinant adenovirus at 100 MOI. Where
indicated, recombinant lentivirus at 50 MOI (MissionR shRNA lentiviral transduction
particles, Sigma) was added 1 h later. The cells were cultured in plating medium containing
3% FBS and 50 ng/ml NGF for a further 48 h, unless indicated otherwise.

Immunoblot analysis
Extracts (15-20 μg) were resolved by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE, 12%, 10% or 8% polyacrylamide gel) and electrophoretically
transferred to an Immobilon-P membrane (Millipore, Inc.). Where indicated, the cell lysate
was incubated with CIP for 2 h at 37°C prior to being run on SDS-PAGE. The membranes
were incubated with 3% non-fat dry milk at 4°C for 30 min and then probed overnight with
antibodies to Bad (BD transduction laboratories), Bim (Calbiochem), Bid (R&D Systems),
CREB (Cell Signaling Technology), phospho-CREB at Ser133 (Cell Signaling Technology),
ERK1/2 (SantaCruz), phospho-ERK1/2 at Thr202 and Tyr204 (Cell Signaling Technology),
ERK5 (Upstate Biotechnology), phospho-ERK5 at Thr218 and Tyr220 (Biosource), JNK
(BD Pharmingen), phospho-JNK at Thr183 and Tyr185 (Cell Signaling Technology), PKB
(Cell Signaling Technology), phospho-PKB at Thr308 or Ser473 (Cell Signaling
Technology), RSK (Cell Signaling Technology), phospho-RSK at Thr359 and Ser363 (Cell
Signaling Technology), tubulin (Sigma). Immunecomplexes were detected by enhanced
chemiluminescence with anti-mouse or anti-rabbit immunoglobulin G coupled to
horseradish peroxidase as the secondary antibody (Amersham-Pharmacia).

Immunofluorescence
The cells were fixed in methanol prior to being incubated with specific antibodies to Cre
(Chemicon), to Bad (1:100, BD transduction laboratories) or to the mitochondrial heat shock
protein 70 (mHsp70) (1:200, Cell Signaling Technology). Immune complexes were detected
with secondary anti-mouse and anti-rabbit antibodies conjugated to Texas red (1:500,
Invitrogen) or fluorescein (1:500, Jackson ImmunoResearch), respectively. Nuclei were
stained with DAPI (5 μg/ml). Fluorescence images were viewed with an Olympus Widefield
microscope.

Plasmid constructs
Wild type and double mutant (dm) Bim-luciferase plasmids were provided by J. Ham (6).
Wild type and mutant ERK5 were described before (48). The Bad-luciferase construct was
created by subcloning fragment −3599 to −1031 of the murine bad promoter into pGL3-
basic vector (Promega) using XhoI and HindIII. A mutant (mt) Bad-luciferase construct
carrying deletion of two putative CRE binding sites at −2291 and at −2714 was generated by
overlapping PCR.

Reporter gene expression assay
SCG neurons or PC6.3 cells were transiently transfected using the Metafectene™ reagent
(Biontex) with the Bad-, Bim, or CRE-luciferase reporter plasmids together with or without
an expression vector encoding DN-ERK5. A pRL-Tk plasmid encoding Renilla luciferase
was employed for monitoring transfection efficiency. Aliquots of cell lysates were assayed
for firefly and Renilla luciferase activities according to the manufacturer's instructions
(Promega).
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Apoptosis assays
SCG neurons were incubated with Hoechst 33342 (5 μg/ml) and propidium iodide (5 μg/ml)
to distinguish viable, necrotic and apoptotic cells. Between 100 and 200 neurons per
conditions were scored for apoptosis using a Leica DMIL microscope (Leica, Wetzlar,
Germany). Only neurons that had clearly segmented and condensed chromatin were counted
as apoptotic. For caspase assays cells were lysed in 20 mM HEPES pH 7.5, 100 mM NaCl,
10 mM DTT, 1 mM EDTA containing 0.1% CHAPS and 10% sucrose. Extracts (5-10 μg)
were incubated with 200 μM DEVD-AMC caspase 3 specific fluorogenic substrate for 1 h.
Cleavage of the substrate was measured by spectrofluorometer. LDH activity was measured
using the CytoTox 96® Non-Radioactive Cytotoxicity Assay for Promega. Briefly, a 50 μl
aliquot was removed from the cell medium and incubated with LDH substrate for 30 min at
room temperature in the dark. Stop solution was added to terminate the reaction. The
presence of metabolised substrate was measured at absorbance 490nm. The amount of LDH
detected was proportional to the amount of lysed cells.

Quantitative RT PCR
Total RNA was isolated using the Trizol™ reagent and cDNA synthesis was carried out as
previously described (49). RT quantitative PCRs were performed using the SYBR Green I
Core Kit (Eurogentec). Primers used were: forward primer, 5′-
CTGTGTTCTCTGGCACTCCA-3′ and reverse primer, 5′-TCAGCCACACCCAT
ATCAAA-3′ for erk5; forward primer, 5′-GCCCCTACCTCCCTACAGAC-3′ and reverse
primer 5′-AGGACTTGGGGTTTGTGTTG-3′ for bim; forward primer, 5′-
CTCCACATCCCGGAACTCTA-3′ and reverse primer 5′- TTAAAGGGACACAGC
GATCC-3′ for bad; and forward primer, 5′-CCAACTTGATGTATGAAGGCTTTG-3′ and
reverse primer 5′-AATTGGTCTCAAGTC AGTGTACAGGC-3′ for β-actin to generate
amplicons of 100 bp, 84 bp, 107 bp, and 91 bp, respectively. PCR products were detected in
the ABI-PRISM 7700 sequence detection systems (Applied Biosystems). Results were
analyzed using the 2−ΔΔG methods (50). The level of expression of mRNA was normalized
to β-actin mRNA.

Chromatin Immunoprecipitation assay
PC6.3 cells were transfected with Bad- or Bim-luciferase constructs and subjected to
chromatin immunoprecipitation (ChIP) assay (Active Motif) using a CREB antibody (Santa
Cruz), a Foxo3a antibody (Upstate Biotechnology), or a control antibody (AKT, cell
signaling). Purified immunoprecipitated DNA was subjected to either real time PCR (using
the SYBR Green I Core KIT, Eurogentec) or semi-quantitative PCR using the following
primer sets: promoter region of bad 5′-TTCCTGAGTGGGCCTCATTCCAGCTG-3′ and
5′-CTGTCCTTACACAGTGCCTTC-3′; promoter region of bim 5′-
TGCCACCAAAGATCTCTACC-3′ and 5′-GCATTTCCTCACAGAGTTGG-3′. Input
DNA levels served as loading controls for transfection efficiency

Statistical Analyses
All p values were generated using one or two-way ANOVA analysis, except the data
presented in Figure 3a, c and d, where a paired t-test was employed. Ranges were given
when the data were obtained from two independent experiments (Figures 2d, 3f, S1).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CREB Ca++/cAMP response element binding protein

ERK extracellular signal-regulated protein kinase

Foxo3a Forkhead box O3a

GFP green fluorescence protein

MAPK mitogen-activated protein kinase

MEK MAPK/ERK kinase

NGF nerve growth factor

PKB protein kinase B

RSK p90 ribosomal S6 kinase

SCG superior cervical ganglion
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Figure 1.
erk5 gene deletion sensitizes neurons to apoptosis. Homozygous flox (a-g) or wild type (h)
SCG neurons were not infected or infected with a control adenovirus (GFP) or with an
adenovirus encoding Cre at 100 MOI. The cells were cultured for a further 36 h (a) or 48 h
(b, d-h) in presence of NGF (50 ng/ml), unless indicated otherwise. a, Immunofluorescence
analysis of SCG neurons to detect GFP (green) and Cre (anti-Cre antibody, red) expression
demonstrates that 100% of the cells were infected by the recombinant adenoviruses. DNA
was stained with DAPI (blue). Scale bar, 25 μM. b, (i) Genomic DNA isolated from the
cells was amplified by PCR with primers specific for the erk5 gene. erk5f and erk5-
correspond to the erk5-flox and disrupted allele, respectively; (ii) Proteins were extracted
and analyzed by immunoblot using specific antibodies to ERK5 and to tubulin. c, Extracts
were analyzed for ERK5 expression by immunoblot. The detection of tubulin expression
was performed to monitor protein loading. Where indicated, NGF was removed (− NGF) for
15 min and 30 min and re-added (+ NGF) for 30 min, prior to the cells being harvested. CIP
treatment of the extract prior to analysis is indicated. Similar results were obtained in two
independent experiments. d, Extracts were analyzed for JNK expression and
phosphorylation (P) by immunoblot. Where indicated, NGF was removed (− NGF) for 6 h
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prior to the cells being harvested. Similar results were obtained in two independent
experiments. e, Phase-contrast photomicrographs of representative fields of SCG neurons
expressing GFP or Cre are shown. Scale bar, 25 μM. f, SCG neurons were incubated with
Hoechst 33342 and propidium iodide to distinguish viable, necrotic and apoptotic cells.
Only neurons that had clearly segmented and condensed chromatin were counted as
apoptotic. The classification criteria are shown in supplementary Figure 1. g, h, Caspase 3
activity was measured by caspase assay. In some experiments, NGF was removed (0) for 18
h prior to the cells being harvested (f, g). The data, expressed as the mean +/− standard error
(SE), were generated from three independent experiments performed in duplicate (f-h). *, P
≤ 0.001 indicates a significant difference between GFP and Cre infected neurons. The
electrophoretic mobility shift caused by the phosphorylation of ERK5 is indicated by an
arrow.
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Figure 2.
ERK5, ERK1/2 and PKB are required to support the survival of NGF-dependent SCG
neurons. Homozygous flox SCG neurons were infected with an adenovirus encoding GFP or
Cre. The cells were cultured for a further 48 hours in presence of NGF (50 ng/ml). Where
indicated, the cells were treated with UO126 (10 μM), wortmannin (50 nM), or PD0325901
(25 nM) 6 h after the infection. The drugs were replaced every 12 h for the remaining time
of the infection. a, c, Extracts were analyzed for ERK5, ERK1/2 and PKB expression, and
for phosphorylation (P) of ERK1/2 and of PKB at Thr308 by immunoblot. The
electrophoretic mobility shift caused by the phosphorylation of ERK5 is indicated by an
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arrow. Similar results were obtained in two independent experiments. b, Caspase 3 activity
was measured by caspase assay. The data correspond to the mean ± SE of three independent
experiments performed in duplicate. d, Cell survival was measured by LDH assay. The data
correspond to the mean ± range of two independent experiments performed in duplicate. *, P
< 0.05 indicates a significant difference between GFP and Cre infected neurons or between
Cre infected neurons treated or not with the inhibitors. n. s., indicates no significant
difference (P > 0.05).
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Figure 3.
ERK5 is required to suppress the expression of Bad and Bim. Homozygous flox SCG
neurons were infected with a control adenovirus (GFP or LacZ) or with an adenovirus
encoding Cre. In e and f, the cells were infected 1 h later with lentiviruses encoding control,
bim or bad shRNA. The neurons were cultured for a further 48 hours in presence of NGF
(50 ng/ml). a, c-e, Extracts were analyzed for Bad, Bim and Bid expression by immunoblot.
The detection of tubulin expression was performed to monitor protein loading. Images of
Bad and Bim are from the same samples. Immunoblot signals were quantified with the
ImageQuantifier software (BioImage, Jackson MI). The data correspond to the mean ± SE of
three independent experiments. *, P < 0.001 indicates a significant difference between GFP
and Cre infected neurons; n. s., indicates no significant difference (P > 0.05). b,
Immunofluorescence was performed with specific antibodies to Bad and mitochondrial
mHsp70. Immune complexes were detected with secondary antibodies conjugated to Texas
red (Bad) or fluorescein (mHsp70). DNA was stained with DAPI (blue). Scale bar, 5 μM. f,
Caspase 3 activity was measured by caspase assay. The data correspond to the mean ± range
of two independent experiments performed in duplicate.
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Figure 4.
ERK5 regulates Bad and Bim transcription. a, Homozygous flox SCG neurons were infected
with an adenovirus encoding GFP or Cre. The cells were cultured in presence of NGF (50
ng/ml) for the indicated times. Total RNA was extracted and the amounts of erk5, bad, and
bim transcripts were measured by RT PCR. b, c, Homozygous flox SCG neurons were
transiently transfected with a Bad or a Bim reporter luciferase plasmid and a pRL-Tk
plasmid 20 h or 2 h prior to being infected with an adenovirus encoding GFP or Cre for 18 h
and 36 h, respectively. The transcriptional activity was measured by the Dual-Luciferase
reporter assay system. d-f, PC6.3 cells were transiently co-transfected with a Bad or a Bim
reporter luciferase plasmid and a pRL-Tk plasmid together with (+) or without (−) an
expression vector encoding flag-tagged DN-ERK5. The following day the cells were
cultured in differentiating medium without or with UO126 (10 μM) or wortmanin (50 nM),
for a further 36 hours. The inhibitors were replaced every 12 h. Cell extracts were analyzed
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for the expression of DN-ERK5, Bad and Bim, and for the phosphorylation (P) of ERK5 by
immunoblot (d). The detection of tubulin expression was performed to monitor protein
loading. The transcriptional activity was measured by the Dual-Luciferase reporter assay
system (e, f). All the data correspond to the mean ± SE of three independent experiments
performed in duplicate.
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Figure 5.
ERK5 regulates the transcription of bad via RSK-dependent CREB phosphorylation. a,
Homozygous flox SCG neurons were infected with an adenovirus encoding GFP or Cre. The
cells were cultured in presence of NGF (50 ng/ml) for the indicated times. b-d, PC6.3 cells
were transiently transfected with a wild type or with a CRE-deficient (mt) Bad-luciferase
construct together with (+) or without (−) DN-ERK5. The following day the cells were
cultured in differentiating medium containing NGF (+) for a further 36 hours. Where
indicated, NGF was removed (−) 18 h prior to the cells being harvested. Extracts were
analyzed for the expression and the phosphorylation (P) of RSK and of CREB by
immunoblot (a, b). Chromatin was immunoprecipitated with an antibody to CREB or to an
irrelevant protein (Ctrl) to monitor the non-specific binding to the beads. The precipitated
DNA was amplified by semi-quantitative PCR (c) or by RT PCR (d). Input DNA levels
were used to monitor transfection efficiency. The data correspond to the mean ± SE of three
independent experiments and are normalized to input DNA levels.
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Figure 6.
ERK5 regulates Foxo3a-dependent transcription of bim via PKB. a, Homozygous flox SCG
neurons were infected with an adenovirus encoding GFP or Cre. The cells were cultured in
presence of NGF (50 ng/ml) for the indicated times. b, c, PC6.3 cells were transiently
transfected with (+) or without (−) DN-ERK5. The following day the cells were cultured in
differentiating medium containing NGF for a further 36 hours. Extracts were analyzed for
the expression and the phosphorylation (P) of PKB at Thr308 or at Ser473 by immunoblot
(a, b). Chromatin was immunoprecipitated with an antibody to Foxo3a. The precipitated
DNA was amplified by semi-quantitative PCR (c). Input DNA levels were used to monitor
transfection efficiency. Similar results were obtained in two independent experiments.
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Figure 7.
Regulation of neuronal survival by the ERK5 cascade. The requirement of ERK5 to
phosphorylate PKB at Ser473 prevents the nuclear translocation of the pro-apoptotic
transcription factor Foxo3a and thereby inhibits Bim expression. ERK5 also mediates the
phosphorylation of RSK in response to NGF. In the nucleus, RSK stimulates the
transcriptional activity of CREB. CREB is a pro-survival transcription factor that can inhibit
the transcription of genes responsible for apoptosis including Bad. The binding of CREB to
the CRE sites in the bad-promoter is dependent on ERK5.
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