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    Introduction 
 Amyloid- �  (A � ) is thought to be the principle cause of the 

pathogenesis and progression of the neuron and memory loss 

associated with Alzheimer ’ s disease (AD; for review see  Barnham 

et al., 2006 ). Substantial evidence suggests that A � -induced 

neuronal apoptosis is central to the progression of AD ( Abad 

et al., 2006 ;  Biswas et al., 2007 ). This has prompted investiga-

tion of the potential for caspase family cystein proteases, which 

are activated during apoptosis and execute various apoptotic 

processes to serve as therapeutic targets in the treatment of neuro-

degenerative diseases ( Sanges et al., 2006 ;  Emamaullee et al., 

2007 ). Among the 14 caspase isoforms known to be expressed 

in mammals, the ER-resident caspase-12 was initially identifi ed 

as a mediator of A �  neurotoxicity, and its conserved pathway, 

termed  “ ER stress, ”  has been implicated in the pathogenesis of 

such neurodegenerative ailments as Huntington ’ s disease, prion 

disease, and AD ( Nakagawa et al., 2000 ;  Kouroku et al., 2002 ; 

 Hetz et al., 2003, 2007 ;  Hoozemans et al., 2007 ). However, the 

functional role of caspase-12 in humans remains to be further 

clarifi ed. Human caspase-12 has no role in apoptotic pathways 

( Saleh et al., 2004 ) and it is still controversial that human cas-

pase-12 acts as a functional counterpart of mouse caspase-12. 

Interestingly, the amino acid sequence of mouse caspase-12 has 

a 61% identity with human caspase-4, which is involved in 

apoptosis induced by ER stress ( Hitomi et al., 2004 ) in the 

 interleukin-1 – converting enzyme homologous region. Thus, a 

fuller understanding of the mechanisms involved in regulating 

ER stress, caspase-12 activity, and their roles in A �  neurotoxicity 

would be highly desirable. 

 The ubiquitin/proteasome system (UPS) is involved in 

many biological pathways, including regulation of the cell cycle 

and modulation of the degradation of short-lived and regulatory 

proteins (for review see  Rubinsztein, 2006 ). Protein degrada-

tion by the UPS proceeds through two successive steps: (1) 

ubiquitination, i.e., conjugation of ubiquitin to a target protein 
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Tg2576 mouse brain than in their wild-type littermates ( Fig. 1 A ). 

Interestingly, the E2-25K/Hip-2 immunoreactivity colocalized 

with that of caspase-12 around amyloid plaques, but not with 

that of caspase-2, which is also known to mediate A �  neuro-

toxicity ( Troy et al., 2000 ). In addition, Western blotting showed 

that levels of both caspase-12 and E2-25K/Hip-2 were increased 

in the brains of 6- and 9-mo-old double transgenic mice ex-

pressing Swedish mutant A �  precursor protein (APPswe) and 

exon 9 – deleted presenilin 1 (PS1dE9;  Fig. 1, B and C ). These 

results imply there is concerted regulation of caspase-12 and 

E2-25K/Hip-2 in the brains of these AD model mice. 

 We then examined the expression and activation of cas-

pase-12 in rat B103 neuroblastoma cells stably expressing the 

antisense E2-25K/Hip-2 cDNA (B103/E2-25K-AS cells;  Fig. 2 A , 

left). As compared with control cells, mixed populations of 

B103/E2-25K-AS cells showed reduced expression of caspase-12 

but no changes in the expression of caspase-2 and -8 ( Fig. 2 A , 

right). Treatment with A �  induced the accumulation and pro-

teolytic processing of caspase-12 in control cells, but these 

effects were substantially reduced in B103/E2-25K-AS cells. 

Conversely, ectopic expression of E2-25K/Hip-2 effi ciently in-

duced proteolytic activation of caspase-12 in B103 cells ( Fig. 2 B ). 

Collectively, these results suggest that A � -induced accumu-

lation and the proteolytic activation of caspase-12 protein may 

be mediated by E2-25K/Hip-2. RT-PCR analysis showed that 

the basal levels of caspase-12 mRNA in B103/E2-25K-AS cells 

were also somewhat lower than in control cells ( Fig. 2 C , left) 

and that caspase-12 mRNA was apparently induced by A �  in 

control cells but not in B103/E2-25K-AS #1 cells ( Fig. 2 C , 

right). When reporter assays were performed with pGL3-3.0 

(5 �  fl anking region + 1 ’  intron + 2 ’  exon) and pGL3-0.8 (1 ’  intron + 

2 ’  exon;  Oubrahim et al., 2005 ), the promoter activity of 

caspase-12 was weak in B103 cells (twofold higher than control) 

compared with NIH 3T3 cells (sevenfold higher than control; 

via the sequential actions of ubiquitin-activating (E1), ubiquitin-

conjugating (E2), and ubiquitin-ligating (E3) enzymes; and 

(2) degradation, i.e., recognition of the Lys48 polyubiquitin 

chain by 26S proteasome and degradation of the target protein 

with generation of free ubiquitin by ubiquitin-recycling enzymes. 

Malfunction of the UPS leading to accumulation of aggrega-

tion-prone proteins is thought to be involved in some neuro-

degenerative diseases including AD ( Al-Ramahi et al. 2006 ; 

 Kristiansen et al., 2007 ; for review see  Rubinsztein, 2006 ). Indeed, 

it was proposed that E2-25K/Hip-2, an E2 ubiquitin-conjugating 

enzyme, acts as an essential mediator of A �  neurotoxicity by 

promoting the inhibition of proteasome ( Song et al., 2003 ; for 

review see  Song and Jung, 2004 ). Furthermore, other evidence 

has shown that the inhibition of proteasome activity promotes 

ER stress ( Nishitoh et al., 2002 ), suggesting that altered regula-

tion of proteasome activity and ER stress may be associated 

with A �  neurotoxicity. However, a critical mediator coordi-

nating ER stress and caspase-12 activity in A �  neurotoxicity 

remains unknown. Here we show that E2-25K/Hip-2 regulates 

the activation of caspase-12 and ER stress responses during A �  

neurotoxicity, and that E2-25K/Hip-2 – defi cient cortical neurons 

cultured from E2-25K/Hip-2 knockout mice lack A � -induced 

ER stress responses, including accumulation of caspase-12, and 

are resistant to A �  toxicity. 

 Results 
 Regulation of caspase-12 expression 
by E2-25K/Hip-2 during A �  toxicity 
 To assess the relationship between E2-25K/Hip-2 and caspase-12, 

we initially performed an immunohistochemical analysis of the 

brains of Tg2576 mice ( Hsiao et al., 1996 ). We found that, as 

with E2-25K/Hip-2 ( Song et al., 2003 ), there was much greater 

expression of caspase-12 in the hippocampal region of the 

 Figure 1.    Colocalization and increased expression of caspase-12 and E2-25K/Hip-2 in the brains of Tg2576 and APPswe/PS1dE9 mice.  (A) Hippocam-
pal region of 21-mo-old Tg2576 mice and age-matched littermates were immunostained using anti – E2-25K/Hip-2, anticaspase-12 (middle and bottom), 
and anticaspase-2 (top) antibodies and examined under a fl uorescence microscope. Asterisks indicate amyloid plaques. (B) Whole brains from APPswe/
PS1dE9 (APP/PS) mice and wild-type (WT) littermates were harvested at the indicated ages and examined by Western blotting with anti – E2-25K/Hip-2, 
anticaspase-12, and anti –  � -tubulin antibodies. (C) Caspase-12 and E2-25K/Hip-2 signals at 9 mo in B were quantifi ed by densitometry using the histogram 
feature in Photoshop. Bars depict means  ±  SD ( n  = 3). P-values were calculated using  t  tests and are versus control.   
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tion of caspase-12, but not the expression of at least some ER 

stress markers. 

 Given our fi nding that the expression and activation of 

caspase-12 is regulated by E2-25K/Hip-2, we were eager to 

know whether caspase-12 is a downstream mediator of E2-25K/

Hip-2 in the cell death ( Fig. 3 ). As compared with the rela-

tively weak proapoptotic activities of E2-25K/Hip-2 (32%) 

and caspase-12 (26%) alone, coexpressed E2-25K/Hip-2 and 

caspase-12 acted synergistically to efficiently induce apop-

tosis (76%) in B103 cells ( Fig. 3 A ). In addition, ectopic ex-

pression of a caspase-12 active site mutant (Cys298 → Ser) 

signifi cantly suppressed apoptosis triggered by E2-25K/Hip-2. 

Also, caspase-12 knockout mouse embryonic fi broblasts (MEFs; 

C12 [ � / � ]) were resistant to cell death induced by the over-

expression of E2-25K/Hip-2 but not to cell death induced by 

caspase-8, whereas wild-type and caspase-11 knockout MEFs 

(C11 [ � / � ]) remained sensitive to E2-25K/Hip-2 ( Fig. 3 B ). 

This suggests caspase-12 is a critical mediator of E2-25K/

Hip-2 – mediated cell death. 

 E2-25K/Hip-2 – mediated stabilization 
of caspase-12 protein via UPS 
 We next investigated how E2-25K/Hip-2 induces the accumula-

tion of caspase-12 protein. Although we found that both caspase-12 

mRNA and protein were regulated by E2-25K/Hip-2, we mainly 

 Oubrahim et al., 2005 ) and the promoter activity of caspase-12 in 

pGL3-0.8 was slightly increased by E2-25K/Hip-2 (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200711066/DC1). 

However, a quantitative comparison of our Western and RT-PCR 

analyses revealed that the reduction in caspase-12 protein was 

greater than that in caspase-12 mRNA in B103/E2-25K-AS 

cells ( Fig. 2 C , left), suggesting that E2-25K/Hip-2 regulates 

caspase-12 at both the mRNA and protein levels. 

 Caspase-12 is a downstream mediator 
of E2-25K/Hip-2 in ER stress – induced 
cell death 
 Because caspase-12 is known to play an essential role in 

the apoptosis induced by ER stress, we examined the involve-

ment of E2-25K/Hip-2 in that process. Treating cells with 

thapsigargin or tunicamycin, which cause ER stress, induced 

cell death in  > 80% of control B103 cells but in a much smaller 

percentage of B103/E2-25K-AS cells ( Fig. 2 D , left). Our Western 

analyses showed that thapsigargin and tunicamycin induced 

proteolytic activation of caspase-12 in control cells ( Fig. 2 D , 

right), but levels of both procaspase-12 and activated cas-

pase-12 were reduced in B103/E2-25K-AS cells. In contrast, 

GADD153/CHOP, an ER stress marker ( Rao et al., 2002 ), was 

induced equally in both cell lines. E2-25K/Hip-2 thus appears 

to contribute to ER stress – induced cell death and the activa-

 Figure 2.    E2-25K/Hip-2 is required for the ex-
pression and activation of caspase-12 during A �  
toxicity.  (A) Knockdown (KD) of E2-25K/Hip-2 
expression reduces A � -induced expression and 
activation of caspase-12 protein. B103 cells 
were transfected with pcDNA3 (Mock) or anti-
sense (AS) E2-25K/Hip-2 cDNA (pAS-E2-25K/
Hip-2) and enriched by incubation with G418 
for 10 d (Mixed). The level of E2-25K/Hip-2 
expression was examined by Western analysis 
(left). Cells were incubated with 5  μ M A �  1-42  for 
48 h in serum-free culture medium, after which 
cell extracts were analyzed by Western blotting 
with anticaspase-2, -8, and -12 and anti – 
 � -tubulin antibodies (right). (B) Forced expression 
of E2-25K/Hip-2 induces proteolytic activation 
of caspase-12. B103 cells were transfected 
with pcDNA3 or pE2-25K/Hip-2 for 48 h 
and analyzed by Western blotting using the 
indicated antibodies. (C) E2-25K/Hip-2 regu-
lates the expression of both caspase-12 mRNA 
and protein. B103 cells stably transfected 
with pcDNA3 (Mock) or pAS-E2-25K/Hip-2 
(#1 and #3) were isolated using single-cell clon-
ing methods. Expression of caspase-12 and 
E2-25K/Hip-2 was analyzed by Western blot-
ting or RT-PCR in the stable cell lines (left) and 
in the cells left untreated or exposed to 5  μ M 
A �  for 36 h (right). (D) E2-25K/Hip-2 KD cells 
are resistant to cell death induced by ER stress. 
Mock and stable E2-25K/Hip-2-AS cell lines 
(#1 and #3) were incubated with 0.1% vehicle 
(DMSO), 1  μ M thapsigargin (Tg), or 2  μ g/ml 
tunicamycin (Tuni.) for 24 h. Cell viability was 
then determined by trypan blue exclusion ( n  = 3). 
Bars depict means  ±  SD (left). Cell extracts 
were prepared and analyzed with Western 
blotting using the indicated antibodies (right). 
Asterisk indicates the processed form (p20 + 
p10) of caspase-12.   
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 We used in vitro ubiquitination assays to further charac-

terize E2-25K/Hip-2 – dependent regulation of caspase-12 protein. 

Incubating ubiquitin with purifi ed GST – E2-25K/Hip-2 in the 

presence of E1, ATP, and an ATP regeneration system led to the 

appearance of polyubiquitin ( Fig. 4 D , left), which confi rmed 

that the purifi ed GST-E2-25K/Hip-2 protein is active and able 

to generate polyubiquitin. GST and GST-fused E2D (GST-E2D), 

another E2 ubiquitin-conjugating enzyme, served as negative con-

trols. Incubating B103 cell extract supplemented with ubiqui-

tin, E1, ATP, and an ATP regeneration system with either the 

purifi ed GST – E2-25K/Hip-2 or MG132 led to the accumula-

tion of caspase-12 protein, but not caspase-3 ( Fig. 4 D , middle 

and right) or I � B �  (not depicted). The stability of caspase-12 

protein thus appears to refl ect the ability of E2-25K/Hip-2 to 

generate polyubiquitin, which likely interferes with the degra-

dation of caspase-12 through the regulation of UPS. We then 

determined the subregion of caspase-12 required for MG132-

induced accumulation by using full length, prodomain-deleted 

mutant ( � Pro), prodomain (Pro), or the large subunit (p20) of 

caspase-12. Compared with Pro,  � Pro and p20 fragments are 

highly stabilized in the cells exposed to MG132 (10- and 7-fold 

each; Fig. S4, available at http://www.jcb.org/cgi/content/full/

jcb.200711066/DC1). 

 Modulation of ER stress responses and 
calpainlike activity by E2-25K/Hip-2 
 Caspase-12 can be activated by calpain during ER stress 

( Nakagawa et al., 2000 ;  Nakagawa and Yuan, 2000 ), which 

prompted us to test whether E2-25K/Hip-2 is also involved in 

the regulation of calpain activity. Treatment with A �  induced 

the accumulation of the ER stress marker GADD153/CHOP in 

control B103 cells, but not in B103/E2-25K-AS cells ( Fig. 5 A ). 

In addition, a reporter assay using grp78 promoter luciferase 

showed that the overexpression of E2-25K/Hip-2, but not 

caspase-12, increased luciferase activity about threefold ( Fig. 5 B ), 

indicating that E2-25K/Hip-2 is required for the induction of 

ER stress markers by A � . 

 Using fl uorogenic enzymatic assays, we consistently found 

that A �  induced calpainlike activity in control cells ( Fig. 5 C ), 

but not in B103/E2-25K-AS cells (#1 and #3). In addition, cal-

painlike activity was also induced by the ectopic expression 

of E2-25K/Hip-2, but not by the expression of E2-25K/Hip-2 – 

 � tail mutant ( Fig. 5 D ), which lacked the ability to inhibit pro-

teasome activity ( Song et al., 2003 ). Furthermore, E2-25K/Hip-2 – 

induced cell death was signifi cantly attenuated by incubating 

the cells with calpeptin or z-LLY, calpainlike protease inhibitors 

( Fig. 5 E ), or by the overexpression of calpastatin, an endog-

enous inhibitor of calpain, with the reduction in the numbers 

of calpain activity-positive cells ( Fig. 5 F ). E2-25K/Hip-2 thus 

appears to mediate the induction of calpainlike activity by A � , 

which may lead to activation of caspase-12. 

 As oxidative stress is another potent regulator of ER stress 

and a downstream mediator of A � , we also investigated the regu-

lation of E2-25K/Hip-2 and caspase-12 expression. We found 

that treating B103 cells with ascorbic acid, an antioxidant, but not 

Bapta-AM, a calcium chelator, reduced A � -induced expression 

of E2-25K/Hip-2 and neurotoxicity ( Fig. 6 A , top). Also, treatment 

focused on the stabilization of the protein because the regula-

tion at the protein level was more pronounced and the higher 

molecular mass forms of caspase-12 protein were found to 

accumulate in the brains of 9-mo-old APPswe/PS1dE9 dou-

ble transgenic mice (Fig. S2, available at http://www.jcb.org/

cgi/content/full/jcb.200711066/DC1). E2-25K/Hip-2 is an E2 

ubiquitin-conjugating enzyme capable of inhibiting protea-

some activity ( Song et al., 2003 ). We therefore hypothesized 

that caspase-12 may be regulated by protein degradation via 

proteasome. Western analysis showed that in contrast to caspase-3 

and -8, there was substantial dose-dependant accumulation of 

caspase-12 protein in B103 cells incubated with the protea-

some inhibitor MG132, but not with the lysosomal inhibitor 

NH 4 Cl ( Fig. 4 A  and Fig. S3). In contrast, the level of caspase-12 

mRNA was unchanged in cells exposed to MG132 ( Fig. 4 A ). 

Immunoprecipitation analysis using antiubiquitin antibody 

confi rmed that the accumulated forms of caspase-12 protein in 

cells exposed to MG132 were ubiquitinated ( Fig. 4 B ). In ad-

dition, an exogenous caspase-12 – GFP fusion protein was sta-

bilized in HEK293 cells incubated with MG132 ( Fig. 4 C ). 

Also, the level of caspase-12 – GFP fusion protein was increased 

by the coexpression with wild-type E2-25K/Hip-2, but not 

with E2-25K/Hip-2 Ser86 → Tyr (S86Y) or Cys92 → Ser (C92S) 

mutant ( Fig. 4 C ), which lacked the capacity to inhibit protea-

some function ( Song et al., 2003 ). These results suggest that 

the degradation of caspase-12 protein is regulated by UPS and 

that E2-25K/Hip-2 stabilizes caspase-12 protein by inhibiting 

proteasome activity. 

 Figure 3.    Caspase-12 is a downstream molecule of E2-25K/Hip-2.  
(A) Effects of wild-type caspase-12 and an active site mutant (C298S) on 
E2-25K/Hip-2 – induced cell death. B103 cells were transiently transfected 
with pE2-25K/Hip-2, pEGFP (Mock), pCaspase-12 – GFP (C12), or pCas-
pase-12(C298S) – GFP (C298S), as indicated. Total amounts of plasmid 
DNA used were equalized by addition of pcDNA3. After 48 h, cell viabil-
ity was determined based on the morphology of GFP-positive cells under a 
fl uorescence microscope (* and **, P  <  0.001;  t  test). (B) Caspase-12 de-
fi ciency reduces E2-25K/Hip-2 – mediated cell death. Wild-type (WT), C11 
( � / � ), and C12 ( � / � ) MEFs were transfected with pEGFP and either 
pcDNA3 (Mock), pE2-25K/Hip-2 (E2-25K), or pCaspase-8 (Casp8). After 
48 h, cell viability was assessed as described in A. Bars depict means  ±  
SD ( n  = 3).   
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7-d-old E2-25K/Hip-2 knockout ( � / � ) mice than wild-type 

(+/+) mice ( Fig. 7 A ), and that the levels of caspase-12 mRNA 

were reduced in the brains of 9-mo-old E2-25K/Hip-2 – defi cient 

mice ( Fig. 7 B ). Expression of both caspase-12 mRNA and pro-

tein thus appears to be regulated by E2-25K/Hip-2 in mice. 

 Bearing that in mind, we prepared in vitro cultures of pri-

mary cortical neurons from E2-25K/Hip-2 wild-type (+/+), hetero-

zygotic (+/ � ), and homozygotic ( � / � ) embryos at embryonic 

day 15 and examined their sensitivity to A �  neurotoxicity. 

We found that E2-25K/Hip-2 ( � / � ) neurons were completely 

resistant to A � , whereas E2-25K/Hip-2 (+/ � ) neurons showed 

partial resistance ( Fig. 7 C ). In addition, immunocytochemical 

analysis revealed that caspase-12 and GRP78 proteins, which 

showed marked accumulation in E2-25K/Hip-2 (+/+) cortical 

neurons exposed to A � , were not induced by A �  in E2-25K/

Hip-2 ( � / � ) neurons ( Fig. 7 D ), which confi rms that E2-25K/

Hip-2 is indeed an essential regulator of caspase-12 and ER 

stress during A �  neurotoxicity. 

 Discussion 
 The neurotoxicity of A �  is a fundamental contributor to the 

pathogenesis and progression of AD (for review see  Barnham 

et al., 2006 ). To better understand A �  neurotoxicity, we  examined the 

with H 2 O 2  induced the accumulation of E2-25K/Hip-2 ( Fig. 6 A , 

bottom) and caspase-12 ( Fig. 6 C ). In addition, H 2 O 2 -induced 

 accumulation and activation of caspase-12 were suppressed in 

B103/E2-25K/Hip-2-AS cells ( Fig. 6 C ), and there was a con-

comitant inhibition of cell death ( Fig. 6 B ). Further, H 2 O 2 -induced 

accumulation of GADD153 observed in control B103 cells was 

also suppressed in E2-25K/Hip-2-AS cells ( Fig. 6 C ). These re-

sults suggest that E2-25K/Hip-2 is required for cell death trig-

gered by H 2 O 2 -derived reactive oxygen species (ROS), which are 

also generated by A � , further supporting our proposal that E2-25K/

Hip-2 mediates ER stress responses. 

 E2-25K/Hip-2 – defi cient cortical neurons 
are resistant to A �  neurotoxicity 
 To evaluate the role of E2-25K/Hip-2 in the regulation of caspase-12 

and ER stress during A �  neurotoxicity in vivo, we used a 

general protocol from BayGenomics to generate E2-25K/Hip-2 –

 defi cient mice from embryonic stem cells in which a gene trap 

was inserted into the E2-25K/Hip-2 gene (Fig. S5, available 

at http://www.jcb.org/cgi/content/full/jcb.200711066/DC1). 

The genotypes of the gene-trap insertion and depletion of E2-25K/

Hip-2 expression were confi rmed using genomic DNA-PCR, 

RT-PCR, and Western analyses ( Fig. 7 A ). We found that the levels 

of caspase-12 protein were signifi cantly lower in the brains of 

 Figure 4.    Stabilization of caspase-12 protein by E2-25K/Hip-2 via the UPS.  (A) Proteasome-dependent degradation of caspase-12. B103 cells were in-
cubated for 12 h with MG132, after which cell extracts were analyzed by Western blotting with anticaspase-3, -8, and -12 and anti –  � -tubulin antibodies, 
and by RT-PCR using oligonucleotides specifi c for caspase-12 and  � -actin. (B) Detection of ubiquitinated caspase-12. B103 cells were incubated with 
5  μ M MG132 for 12 h and cell extracts were prepared for Western blotting (Total) or subjected to immunoprecipitation (IP) using anti-HA (negative control) 
or antiubiquitin (Ub) antibody. The immunoprecipitates were analyzed by Western blotting with anticaspase-12 (top left) and anti – mouse IgG (bottom left) 
antibody; the latter showed the presence of equal amounts of IgG heavy chain (HC). (C) Stabilization of exogenous caspase-12 – GFP (C12-GFP) fusion 
protein by ectopic expression of E2-25K/Hip-2, but not by its mutants. HEK293 cells were cotransfected for 24 h with pCaspase-12 – GFP and either 
pcDNA3, pE2-25K/Hip-2 (W), or pE2-25K/Hip-2 mutant (S, S86Y; or C, C92S), and then cultured in the presence or absence of 0.1  μ M MG132. Cell 
extracts were then analyzed by Western blotting with anti-GFP and anti – E2-25K/Hip-2 antibodies. (D) In vitro stabilization of caspase-12 protein by puri-
fi ed GST – E2-25K/Hip-2 protein. (Left) In vitro polyubiquitination by purifi ed GST – E2-25K/Hip-2 protein. GST-fused proteins (GST, GST – E2-25K/Hip-2, and 
GST-E2D) were purifi ed from  Escherichia coli  and preincubated with ubiquitin, E1, ATP, and an ATP regeneration system for 90 min at 37 ° C. The reaction 
products were analyzed by Western blotting with anti-GST antibody for the purifi ed proteins (top) and antiubiquitin antibody for ubiquitination (bottom; see 
Materials and methods). (middle) GST – E2-25K/Hip-2 – induced in vitro accumulation of caspase-12. B103 cell extracts were prepared, supplemented with 
ubiquitin, E1, ATP, and an ATP regeneration system, and left untreated or incubated with either 5  μ M MG132, GST, GST – E2-25K/Hip-2, or GST-E2D for 
2 h at 37 ° C. The reaction products were analyzed by Western blotting. (right) The caspase-12 signals on Western blots were quantifi ed by densitometry 
using the histogram function in Photoshop. Bars represent means  ±  SD ( n  = 3; *, P  <  0.01 vs. control). White lines indicate that intervening lanes have 
been spliced out.   
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mediates the induction of two ER stress markers, GADD153/

CHOP and GRP78, as well as the activation of calpain ( Fig. 8 ). 

In particular, experiments performed with E2-25K/Hip-2 knockout 

cortical neurons confi rmed the essential role of E2-25K/Hip-2 

in A � -induced accumulation and activation of caspase-12 for 

neurotoxicity. Interestingly, the accumulation of caspase-12 

protein occurred via proteasome inhibition by E2-25K/Hip-2, 

which also ubiquitinates UBB +1 , causing the inhibition of 

proteasomeal activity in a dose-dependant way (for review see 

 Song and Jung, 2004 ;  van Tijn et al., 2007 ). Though the accu-

mulation of caspase-12 protein through proteasome inhibition 

is strongly plausible, it is still possible that E2-25K/Hip-2 may 

also accumulate caspase-12 protein by generating K63-linked 

ubiquitin chain (for review see  Lim et al., 2006 ). In contrast, the 

accumulation of caspase-12 mRNA was not observed in cells 

functional interactions of E2-25K/Hip-2, caspase-12, and ER 

stress, and we report here that E2-25K/Hip-2 regulates the ac-

cumulation and activation of caspase-12 in vitro and in vivo as 

a necessary step leading to A � -induced neuronal cell death. It is 

also clear that E2-25K/Hip-2 plays a central role in ER stress –

 associated cell death triggered by A �  and H 2 O 2 : E2-25K/Hip-2 

 Figure 5.    Contribution of E2-25K/Hip-2 to A � -induced ER stress re-
sponses and calpainlike activity.  (A) Inhibition of A � -induced expression of 
GADD153 in E2-25K/Hip-2 KD cells. Mock and E2-25K/Hip-2-AS (#1) 
cells were incubated with A �  for 48 h, after which cell extracts were exam-
ined by Western blotting with anti-GADD153 and anti –  � -tubulin antibodies. 
(B) Induction of GRP78 promoter activity by the ectopic expression of 
E2-25K/Hip-2. B103 cells were cotransfected with pGrp78-luciferase 
reporter and pcDNA3 (Mock), pE2-25K/Hip-2 (E2-25K), or pCaspase-12 – 
GFP (C12), and analyzed for luciferase activity as described in Mate-
rials and methods. (C and D) Induction of calpainlike protease activity by 
E2-25K/Hip-2. Calpainlike protease activity was measured using a fl uo-
rogenic substrate ([t-BOC-Leu-Me]2-R110; see Materials and methods) in 
Mock and E2-25K/Hip-2-AS cell lines (#1 and #3) after incubation with 
5  μ M A �  for 48 h (C) and in B103 cells transfected for 24 h with pE2-25K/
Hip-2 or pE2-25K/Hip-2 –  � tail (D). (E) Suppression of E2-25K/Hip-2 neuro-
toxicity by calpain inhibitors. B103 cells were cotransfected with pEGFP 
and pE2-25K/Hip-2 for 48 h in the presence or absence of calpeptin or 
z-LLY, after which cell viability was determined based on the morphology of 
GFP-positive cells under a fl uorescence microscope (* and **, P  <  0.001). 
(F) Inhibition of E2-25K/Hip-2 – induced cell death and calpain activa-
tion by calpastatin. B103 cells were transfected with pDsReD (Mock) or 
pDsRed-E2-25K/Hip-2 together with either pcDNA3 or pCalpastatin. 
After 48 h, cells were incubated with a fl uoregenic calpain substrate, 
7-amino-4-chloromethylcoumarin (t-BOC-Leu-Met; 1  μ M), for 30 min. 
The cells showing shrinked morphology for dying cells (red fi lter; open bar) 
and/or calpain activity-positive fl uorescence (Hoescht fi lter; closed bar) 
were counted under a fl uorescence microscope as described in E ( n  = 3). 
Error bars represent SD.   

 Figure 6.    ROS induce caspase-12 via E2-25K/Hip-2 during A �  neuro-
toxicity.  (A) The induction of E2-25K/Hip-2 by A �  is mediated via ROS. 
B103 cells were incubated with 5  μ M A �  1-42  in the presence or absence 
of 300  μ M ascorbic acid (Asc.) or 3  μ M Bapta-AM (Bapta; top). B103 
cells were incubated for 48 h with the indicated concentrations of H 2 O 2  
in serum-free DME and analyzed by Western blotting with anti – E2-25K/
Hip-2 antibody (bottom). (B) E2-25K/Hip-2 KD cells are resistant to 
H 2 O 2  toxicity. B103 cells stably transfected with pcDNA3 (Mock) or 
pAS-E2-25K/Hip-2 (#1 and #3) were left untreated or incubated for 
48 h with 1  μ M H 2 O 2  in serum-free DME, after which cell viability was 
assessed by trypan blue exclusion ( n  = 3). Bars depict means  ±  SD. 
(C) Induction of caspase-12 and GADD153 by H 2 O 2  is mediated by 
E2-25K/Hip-2. B103 cells stably transfected with pcDNA3 (Mock) or 
pAS-E2-25K/Hip-2 (#1) were incubated for 48 h with 1  μ M H 2 O 2  in 
serum-free DME, after which cell extracts were prepared and analyzed 
by Western blotting with anticaspase-12, anti-GADD153, and anti –  
� -tubulin antibodies.   
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proteolytic activation during A �  neurotoxicity. In that sense, 

calpain inhibitors suppressed A �  neurotoxicity. Similar accu-

mulation and activation of caspase-12 was observed in neuronal 

cells exposed to oxidative stress. However, calpain inhibitors 

still partially suppressed E2-25K/Hip-2 – induced cell death, indi-

cating that an additional regulator (e.g., Jun N-terminal kinase) 

also functions as a downstream mediator of E2-25K/Hip-2 dur-

ing cell death ( Song et al., 2003 ). 

 We found that treating cultured cells with A �  led to 

E2-25K/Hip-2 – dependent up-regulation of two ER stress markers, 

GADD153/CHOP and GRP78, as well as caspase-12, suggest-

ing E2-25K/Hip-2 is an upstream regulator of ER stress in A �  

neurotoxicity ( Fig. 8 ). If so, the observed accumulation of 

caspase-12 in the brains of APP transgenic mice might be induced 

by the increased expression of E2-25K/Hip-2, which would be 

expected to further increase neuronal susceptibility to cell death 

or stress. We believe that E2-25K/Hip-2 may induce ER stress 

via generating unanchored polyubiquitin, which is able to in-

hibit proteasome activity in vitro like polyubiquitinated UBB +1  

( Song et al., 2003 ;  van Tijn et al., 2007 ; for review see  Song and 

Jung, 2004 ). That said, it is noteworthy that the contributions of 

E2-25K/Hip-2 to the induction of GADD153/CHOP in cells ex-

posed to various ER stress signals differ. For instance, E2-25K/

Hip-2 is required for the induction of GADD153/CHOP by A �  

and ROS, but not by tunicamycin or thapsigargin, implying that 

E2-25K/Hip-2 might be more specifi c to ER stress response 

caused by A �  than by tunicamycin or thapsigargin. Thus, a pos-

sible model is that E2-25K/Hip-2 may be situated upstream of 

intracellular calcium destabilization or at the accumulation of 

exposed to MG132, though the promoter activity of caspase-12 

(pGL3-08) was weakly induced by coexpression of E2-25K/Hip-2. 

Thus, the regulation of caspase-12 mRNA by E2-25K/Hip-2 is 

separated from its proteasome inhibitory activity. 

 Although caspase-12 is a proximal caspase and is an im-

portant mediator of apoptosis triggered by ER stress, we believe 

its accumulation may not, itself, be suffi cient to induce cell 

death. When we overexpressed caspase-12 in various cell types, 

including fi broblasts and neuronal cells, it was much less effec-

tive in inducing cell death than other proximal caspases, such 

as caspase-8, -9, and -10 (unpublished data). To be effective, ap-

parently, caspase-12 needs to interact with one or more activators. 

In our study, E2-25K/Hip-2 was able to induce both calpain-

like activity and effi cient proteolytic processing of caspase-12. 

One possible explanation is that the inhibition of proteasome 

activity by E2-25K/Hip-2 leads to an accumulation of misfolded 

proteins within cells, which in turn induces ER stress, includ-

ing the activation of calpain. Consistent with that idea, it has 

been shown that the inhibition of proteasome activity by aggre-

gation-prone proteins or proteasome inhibitors does indeed 

induce ER stress ( Kouroku et al., 2002 ;  Nishitoh et al., 2002 ; 

 Nawrocki et al., 2005 ). Still, the details of the molecular path-

way downstream of E2-25K/Hip-2 leading to induction of cal-

painlike activity remain unclear. 

 Along with those of an earlier paper showing that calpain 

directly activates caspase-12 ( Nakagawa et al., 2000 ), our pre-

sent fi ndings suggest that calpainlike activity is required for 

proteolytic activation of caspase-12. This means that E2-25K/

Hip-2 regulates both the accumulation of caspase-12 and its 

 Figure 7.    Down-regulation of caspase-12 and resistance of E2-25K/Hip-2 – defi cient primary cortical neurons to A �  toxicity . (A) Generation of E2-25K/
Hip-2 – defi cient mice. E2-25K/Hip-2 – defi cient mice were generated from XK109 embryonic stem cells manipulated using the gene-trap method. Genomic 
DNA and mRNA were purifi ed from the tails of E2-25K/Hip-2 – trapped mice and analyzed using genomic DNA-PCR and RT-PCR (Tail). Brain extracts 
were prepared from postnatal E2-25K/Hip-2 wild-type (+/+), heterozygotic (+/ � ), and homozygotic ( � / � ) mice and analyzed by Western blotting with 
anti – E2-25K/Hip-2 and anticaspase-12 antibodies (Brain). (B) Reduction of caspase-12 mRNA in the brains of 9-mo-old E2-25K/Hip-2 – defi cient mice. 
Total RNA was analyzed with RT-PCR using synthetic oligonucleotides for E2-25K/Hip-2 and caspase-12, as described in Materials and methods. 
(C) Resistance of E2-25K/Hip-2 – defi cient cortical neurons to A �  toxicity. Primary cortical neurons from E2-25K/Hip-2 wild-type (+/+), heterozygotic (+/ � ), 
and homozygotic ( � / � ) embryos at embryonic day 15 were cultured for 3 d and incubated with A �  for 2 d. Cell morphology was observed (top) and 
cell viability was examined after staining with Calcein-AM ( n  = 3; bottom). Bars depict means  ±  SD. (D) Lack of A � -induced increase of caspase-12 
and GRP78 in E2-25K/Hip-2 – defi cient neurons. Primary cortical neurons cultured from E2-25K/Hip-2 wild-type (+/+) and homozygotic ( � / � ) embryos 
at embryonic day 15 were left untreated or incubated for 48 h with A � , immunostained using anti-GRP78 (left) and anticaspase-12 (right) antibodies, 
and examined under a confocal microscope (see Materials and methods). Nuclei were stained with hoechst dye; arrowheads indicate the induction of 
each protein.   



JCB • VOLUME 182 • NUMBER 4 • 2008 682

 Materials and methods 
 Proteasome and calpain inhibitor 
 Proteasome inhibitor MG132 (Sigma-Aldrich), calpain inhibitors z-LLY 
(EMD), and calpeptin (EMD) were purchased. 

 Plasmid construction and RT-PCR 
 pE2-25K/Hip-2 and its mutants ( � tail, deletion of tail region; S86Y, Ser →
 Tyr; C92S substitution, Cys → Ser) were described previously ( Song et al., 
2003 ). pCaspase-12 – GFP and its active site mutant (C298S) have also 
been described previously ( Nakagawa et al., 2000 ). E2-25K/Hip-2 cDNA 
was subcloned into pcDNA3 in an antisense orientation (pAS-E2-25K/Hip-2). 
To coexpress with calpastatin, E2-25K/Hip-2 was cloned into the EcoRI 
and BamHI sites of pDsReD-C2 (Clontech Laboratories, Inc.) using synthetic 
oligonucleotides mRed-Hip-2-5 �  (5 � -GCGAATTCTATGGCCAACATCGCG-
GTG-3 � ) and mRed-Hip-2-3 �  (5 � -GCGGATCCTCAGTTACTCAGAAGCAA-3 � ). 
Human calpastatin cDNA cloned in pCMV-SPORT6 vector was purchased 
from Korea Research Institute of Bioscience and Biotechnology. 

 Total RNA was purifi ed and reverse transcribed as described previ-
ously ( Song et al., 2003 ). Levels of E2-25K/Hip-2, caspase-12,  � -actin, 
and glyceraldehyde-3-phosphate dehydrogenase mRNA were analyzed 
using PCR with gene-specifi c synthetic oligonucleotides. 

 Cell culture, DNA transfection, and assessment of cell death 
 Wild-type MEFs, caspase-11 ( � / � ) MEFs, and caspase-12 ( � / � ) MEFs 
were provided by J. Yuan (Harvard Medical School, Boston, MA). MEFs, 
B103 cells (rat neuroblastoma), and HEK293 cells (human embryonic kid-
ney cells) were cultured in DME supplemented with 10% (vol/vol) fetal bo-
vine serum. Cells were transfected using Lipofectamine Reagent (Invitrogen) 
according to the manufacturer ’ s protocol, after which their viability was as-
sessed based on the morphology of GFP-positive cells viewed under a fl uo-
rescence microscope (DMRBE; Leica), trypan blue exclusion assays, and 
live/dead cell assays (Invitrogen). 

 Preparation and treatment with A �  1-42  peptide 
 Commercially available A �  1-42  was purchased from Sigma-Aldrich and 
dissolved to a concentration of 500  μ M in phosphate-buffered saline. 
The A �  1-42  stock solution was incubated for 1 wk at 4 ° C and divided into 
small aliquots for storage at  � 70 ° C. Cells were incubated with A �  1-42  or 
other cell death – inducing drugs including tunicamycin (Sigma-Aldrich) and 
thapsigargin (Sigma-Aldrich) in serum-free DME. 

 Luciferase and  � -galactosidase ( � -gal) assays 
 B103 cells were cotransfected with Grp78-luciferase reporter plasmid, cyto-
megalovirus  � -gal, and effecter plasmids. After 32 h, the cells were har-
vested and the luciferase activities in the cell extracts were determined 
using a Luciferase assay system (Promega). To measure  � -gal activity, cell 
extracts were mixed with equal amounts of  � -gal buffer (2 × ) containing 
200 mM sodium phosphate, pH 7.3, 2 mM MgCl 2 , 100 mM  � -mercapto-
ethanol, and 1.33 mg/ml  O -Nitrophenyl- � -D-galactopyranoside, and incu-
bated for 1 h at 37 ° C. The absorbance at 420 nm was then measured 
using a microplate reader (Bio-Rad Laboratories). 

 Enrichment of antisense E2-25K/Hip-2 cDNA-transfected cells 
 B103 cells were transfected with pAS-E2-25K/Hip-2 or pcDNA3 for 24 h 
and incubated with 800  μ g/ml G418 sulfate (Invitrogen) for 10 d to gener-
ate a stable mixed cell population. Single-cell clones (E2-25K-AS #1 and 
#3) were isolated using standard cell cloning methods and examined for 
expression of E2-25K/Hip-2 using Western analysis. 

 Transgenic mice 
 Tg2576 transgenic mice (13 – 22 mo of age) were used in our study. Each 
expressed human APP 695 containing the double K670N/M671L mutation 
(huAPP695.K67ON/M671L) found in a large Swedish family with early 
 onset AD ( Hsiao et al., 1996 ). Double transgenic mice expressing APPswe 
and PS1dE9 exon 9 – deleted PS1dE9 (The Jackson Laboratory) were pur-
chased and bred to generate transgenic mice and wild-type littermates. 

 Antibody generation, Western blotting, and immunocytochemistry 
 Generation of anti – E2-25K/Hip-2 and anticaspase-8 antibodies was de-
scribed previously ( Kim et al., 2002 ;  Song et al., 2003 ). Anti –  � -tubulin (Sigma-
Aldrich), anticaspase-2 (Santa Cruz Biotechnology, Inc.), anticaspase-3 
(Biomeda), anticaspase-12 (Santa Cruz Biotechnology, Inc.), and anti-GFP 
(Santa Cruz Biotechnology, Inc.) antibodies were purchased. Cells were 
lyzed in sampling buffer (10% glycerol, 2% SDS, 62.5 mM Tris-HCl, and 

unfolded proteins found in the case of A �  neurotoxicity ( Fig. 8 ; 

 Nakagawa et al., 2000 ;  Ferreiro et al., 2006 ). 

 It has been proposed that oxidative stress contributes to 

the progression of pathological processes in neurons, including 

AD ( Manton et al., 2004 ; for review see  Huber et al., 2006 ). 

We found that E2-25K/Hip-2 accumulated in B103 cells exposed 

to ROS and that antioxidants, which suppress A �  neurotoxicity 

( Hensley et al., 1994 ;  Bruce et al., 1996 ), inhibited the accumu-

lation of E2-25K/Hip-2. The regulation of E2-25K/Hip-2 ex-

pression may thus be involved in mediating oxidative damage 

underlying neuronal pathology. Recently, E2-25K/Hip-2 was 

proposed to be involved in the aggregation of polyglutamine-

expanded Huntingtin with proteasome inhibitory activity ( de Pril 

et al., 2007 ). Thus, it would be interesting to know whether 

E2-25K/Hip-2 is associated with the pathogenesis of other neuro-

degenerative ailments, including Huntington ’ s and Parkinson ’ s 

disease, because malfunction of the UPS, its diminished activ-

ity, and generation of ROS are common phenomena in neuro-

degenerative diseases (for review see  Song and Jung, 2004 ; 

 Halliwell, 2006 ). 

 A � -induced, E2-25K/Hip-2 – dependent regulation of 

caspase-12 and ER stress was confi rmed in E2-25K/Hip-2 – 

defi cient neurons. Despite the important role of E2-25K/Hip-2 in 

the regulation of ER stress, E2-25K/Hip-2 – defi cient ( � / � ) mice 

were well bred and healthy until the age of 9 mo. The absence of 

any detectable defects during the development of these mice sug-

gests that the function of E2-25K/Hip-2 might be compensated 

for during that period by other E2s, like Mdm2, which interacts 

with several E2s to ubiquitinate tumor suppressor p53 ( Saville 

et al., 2004 ). Alternatively, E2-25K/Hip-2 may be mainly associ-

ated with neuronal pathogenesis. Although a human homologue 

of caspase-12 is in debate, our identifi cation of E2-25K/Hip-2 as an 

upstream regulator of ER stress suggests that E2-25K/Hip-2 could 

serve as a plausible therapeutic target for the treatment of AD. 

 Figure 8.    Schematic diagram showing the regulation of caspase-12 and 
ER stress by E2-25K/Hip-2 during A �  neurotoxicity.  The gray box depicts 
the inhibitory effect of E2-25K/Hip-2 on the proteasome activity via the 
accumulation of polyubiquitin (Poly Ub) and ubiquitinated UBB +1  (Ubs-
UBB +1 ;  Song et al., 2003 ). Unanchored polyubiquitin is able to interact 
with proteasome in vitro ( Piotrowski et al., 1997) , which is similar to the 
proteasome inhibition by Ubs-UBB +1  ( van Tijn et al., 2007 ). A �  stimulates 
the expression of E2-25K/Hip-2 via oxidative stresses (ROS) and E2-25K/
Hip-2 stimulates up-regulation of caspase-12 mRNA and protein. E2-25K/
Hip-2 also mediates the induction of GRP78 and calpainlike activity, which 
is believed to activate caspase-12 during A �  neurotoxicity.   
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Hip-2 (E2-25K/Hip-2-5 �  and E2-25K/Hip-2-3 � ) and  � -gal. The absence of 
E2-25K/Hip-2 expression in homozygous mice was confi rmed by Western 
analysis of the proteins extracted from the brains of 5-d-old mice. 

 Primary culture of cortical neurons 
 E2-25K/Hip-2 heterozygous mice were interbred to generate homo-
zygous, heterozygous, and wild-type embryos. Cortical tissues from em-
bryonic day 14.5 embryonic brains were dissociated by incubation 
with 0.01% trypsin-EDTA (Invitrogen) and plated on culture dishes coated 
with poly- L -lysine (0.01% in 100 mM borate buffer, pH 8.5). Details of 
the procedures were described previously ( Song et al., 2003 ). Cortical 
neurons from each embryo were plated separately and their genotypes 
were examined by Western blotting and genomic PCR. Neurons were 
 cultured for 3 d before treatment with A �  in the serum-free minimum es-
sential medium. 

 Online supplemental material 
 In Fig. S1 the reporter assay showed that the promoter activity of caspase-12 
in pGL3-0.8 was slightly increased by E2-25K/Hip-2. Western analysis 
showed that the higher molecular mass forms of caspase-12 protein ac-
cumulated in the brains of 9-mo-old APPswe/PS1dE9 double transgenic 
mice (Fig. S2), and that caspase-12 protein accumulated in B103 cells 
incubated with the proteasome inhibitor MG132 (Fig. S3). Further, in 
Fig. S4 DPro and p20 fragments of caspase-12 were highly stabilized 
in the cells exposed to MG132 (10- and sevenfold each). Fig. S5 shows 
the genomic locus of the gene-trap insertion in E2-25K/Hip-2 – defi cient 
mice. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200711066/DC1. 

Supplemental materials and methods
Lysosomal inhibitor. Lysosome inhibitor ammonium chloride (NH 4 Cl; Sigma-
Aldrich) was purchased.

Plasmid construction. Serial deletions of caspase-12 were generated 
by PCR using synthetic oligonucleotides (C12full 5 � KpnI [5 � -GGTACCCG-
CATGGCGGCCAGGAGGACACAT-3 � ], C12full 3 � KpnI [5 � -GGTACCCG-
CATTCCCGGGAAAAAGGTAGAA-3 � ], C12 � pro 5 � HindIII [5 � -AAGCTTC-
GCATGTGTCCACGTGATCAGT-3 � ], C12 � pro 3 � HindIII [5 � -AAGCTTCG-
CATTCCCGGGAAAAAGGTAGAA-3 � ], C12pro 5 � HindIII [5 � -AAGCTTC-
GCATGGCGGCCAGGAGGACACAT-3 � ], C12pro 3 � HindIII [5 � -AAGCTT-
CAGTGTATCTTGGACTTCTGA-3 � ], and C12p20 3 � KpnI [5 � -GGTACCC-
GCATCAGCAGTGGCTATCCC-3 � ]), after which the PCR products were 
subcloned into pcDNA3-HA. Caspase-12 promoter constructs (pGL3-3.0 
and pGL3-0.8) were previously described ( Oubrahim et al., 2005 ).
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2%  � -mercaptoethanol, pH 6.8), after which aliquots of lysate containing 
equal amounts of protein were subjected to SDS-PAGE and Western analy-
sis as described previously ( Kim et al., 2002 ). Primary neurons were ana-
lyzed with immunocytochemistry using anti-GRP78 (dilution 1:200; Santa 
Cruz Biotechnology, Inc.) and anticaspase-12 (dilution 1:50) primary anti-
bodies and Alexa Fluor 488 –  or 555 – conjugated secondary antibodies 
(1:1,000; Invitrogen) as described previously ( Song et al., 2003 ). 

 Histology and immunohistochemistry 
 12- μ m-thick frozen brain sections, which were taken from the human Swed-
ish mutant amyloid precursor protein (huAPP695.K670N/M671L) trans-
genic Tg2576 and their littermate mice at the age of 21 mo, were fi xed 
with 4% PFA and blocked with 3% normal serum and 0.3% Triton X-100 in 
phosphate-buffered saline, pH 7.4. After coincubation with rabbit anti – 
E2-25K/Hip-2 antibody (dilution, 1:200) and rat anticaspase-12 antibody 
(1:25), the sections were reacted with Alexa Fluor 488 –  or 555 – conjugated 
secondary antibody (1:1,000). For the double fl uorescent immunostaining 
with rabbit anti – E2-25K/Hip-2 antibody and rabbit anticaspase-2 anti-
body (1:100), we treated the primary antibodies with Zenon Alexa Fluor 
rabbit IgG labeling kit (Invitrogen) before the reaction with the tissue sec-
tions. All stained samples were mounted using a mounting medium for 
fl uorescence (VECTASHIELD; Vector Laboratories). 

 Microscopy 
 Immunohistochemical studies were photographed under a fl uorescence 
microscope (Eclipse 80i with Plan Apo VC 100 × /1.40 Oil WD 0.13. lens; 
Nikon) using the manufacturer ’ s acquisition system (DS-Fi1/DS-U2 digital 
camera and NIS-Elements F 2.20 program). Fluorescence (IX71S1F-3 with 
two objective lenses [LCPlanFl, 40 × /0.60 Ph2 and 20 × /0.45 Ph1]; Olym-
pus) and confocal microscopes (UltraVIEW ERS FRET-EH with an oil immer-
sion objective lens [DIC-H, 100 × /1.40]; PerkinElmer] were used for analysis 
of the immunostained samples. Images were captured using each manufac-
turer ’ s acquisition system (DP20 digital camera and DP ver.3.1.1.208 man-
ager program [Olympus]; UltraVIEW LCI [PerkinElmer]). All stained samples 
were examined at room temperature and Photoshop (Adobe) was used to 
make combinatory fi gures (color contrast, medium). 

 In vitro degradation assay 
 Various GST-fused proteins cloned into pGEX4T-1 (GST – E2-25K/Hip-2 
[provided by S. Kang, Korea University, Seoul, Korea] and GST-E2D) were 
expressed in DH5 �  cells and purifi ed using glutathione – Sepharose 4B (GE 
Healthcare). For in vitro degradation assays, B103 cells (5  ×  10 7 ) were 
harvested and lyzed in tris-based buffer (10 mM Tris-HCl, 0.05% NP-40, 
150 mM NaCl, 3 mM MgCl 2 , 0.5 mM PMSF, 1 mM EDTA, 1 mM ATP, and 
1 mM DTT). Cell extract was incubated for 2 h at 37 ° C in the presence or 
absence of GST-fused proteins preincubated with purifi ed ubiquitin (Sigma-
Aldrich), ubiquitin-activating enzyme E1 (Macrogen), and 10 mM ATP. Pro-
tein degradation was then analyzed by Western blotting. 

 Measurement of calpainlike protease activity 
 The rhodamine 110-based substrate, (t-BOC-Leu-Met)2-R110, and chloro-
methylcoumarin-based substrate, CMAC-(t-BOC-Leu-Met; Invitrogen), were 
used as a calpain substrate to assess calpainlike protease activity in intact 
cells. When (t-BOC-Leu-Met)2-R110 was used, B103 cells were sedimented 
and resuspended in Hepes-buffered saline (5 mM Hepes and 0.15 NaCl, 
pH 7.35) containing 2 mM EDTA (Hepes-buffered saline – EDTA) to a 
density of  � 0.5 � 10 7  cells/ml. Cells diluted by 100 ×  were incubated 
with 10  μ M of substrate for 20 min at 37 ° C. After washing twice with 
HBSS-EDTA, the fl uorescence emitted by the cells was measured using a 
fl uorescence microplate reader (FL-600; BioTek Instruments, Inc.). In the 
case of CMAC-(t-BOC-Leu-Met), B103 cells were incubated with 1  μ M of 
substrate for 30 min and examined under a fl uorescence microscope using 
a Hoescht fi lter. 

 Generation of E2-25K/Hip-2 – defi cient mice 
 E2-25K/Hip-2 gene-trapped embryonic stem cells (XK109) were provided 
by BayGenomics of the International Gene Trap Consortium. Mice hetero-
zygotic for E2-25K/Hip-2 were generated by following the protocol pro-
vided by BayGenomics. Insertion of the gene-trap vector was confi rmed by 
Southern blotting using NEBlot Phototope (New England Biolabs, Inc.) with 
a  � -gal probe recommended by BayGenomics. Genotypes were analyzed 
using genomic PCR with synthetic oligonucleotides for  � -gal ( � -gal-5 � , 
5 � -TTATCGATGAGCGTGGTGGTTATGC-3 � ;  � -gal-3 � , 5 � -GCGCGTACATC-
GGGCAAATAATATC-3 � ) and  � -actin. The expression of E2-25K/Hip-2 was 
examined using RT-PCR with synthetic oligonucleotides derived from E2-25K/
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