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The purpose of this study was to determine the ability of regions identified with 
bony landmarks on CT imaging to accurately represent active bone marrow when 
compared to FLT PET imaging. These surrogate regions could then be used to 
create a bone marrow sparing radiation therapy plan when FLT PET imaging is 
not available. Whole body (WB) FLT PET images were obtained of 18 subjects 
prior to chemoradiation therapy. The FLT image of each subject was registered to 
a CT image acquired for that subject to obtain anatomic information of the pelvis. 
Seventeen regions were identified based on features of the pelvic bones, sacrum, 
and femoral heads. The probability of FLT uptake being located in each of 17 dif-
ferent CT-based regions of the bony pelvis was calculated using Tukey’s multiple 
comparison test. Statistical analysis of FLT uptake in the pelvis indicated four 
distinct groups within the 17 regions that had similar levels of activity. Regions 
located in the central part of the pelvis, including the superior part of the sacrum, the 
inner halves of the iliac crests, and the L5 vertebral body, had greater FLT uptake 
than those in the peripheral regions (p-value < 0.05). We have developed a method 
to use CT-defined pelvic bone regions to represent FLT PET-identified functional 
bone marrow. Individual regions that have a statistically significant probability of 
containing functional bone marrow can be used as avoidance regions to reduce 
radiation dose to functional bone marrow in radiation therapy planning. However, 
because likely active bone marrow regions and pelvic targets typically overlap, 
patient-specific spatial detail may be advantageous in IMRT planning scenarios 
and may best be provided using FLT PET imaging.
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I.	 Introduction

Overall survival of pelvic cancer patients depends on control of systemic disease. If local radia-
tion therapy depletes bone marrow function to such an extent that systemic therapies must be 
withheld, chances of metastatic failure increase significantly. This may be more significant for 
this group of patients because approximately one-third of hematopoietically active adult bone 
marrow is located in the pelvic region.(1,2) Strategies to minimize toxicities would benefit a 
range of pelvic cancer patients including gynecologic, anal, rectal, and prostate patients. New 
chemoradiation combinations improve outcomes for these disease sites, but come at the cost of 
higher levels of hematologic toxicity.(3-10) Hematologic toxicity is a major contributor to missed 
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chemotherapy cycles in cervical cancer patients and has also been shown to be independently 
predictive of worse progression-free and overall survival for these patients.(11) Little data are 
available as to what extent hematologic toxicity contributes to shortened or suspended che-
motherapy administrations in other pelvic disease sites.  However, limiting treatment-related 
toxicities for all pelvic cancer patients increases the likelihood that patients could complete the 
prescribed course of therapy and return to their nominal activities. In addition, reduced toxicities 
offer the potential option of dose escalation, when warranted, to improve therapy outcomes.

To successfully limit hematologic toxicities for pelvic cancers, strategies must be developed 
to limit radiation dose to the highly proliferative compartments of the pelvic bone marrow. 
However, the complex structure of the pelvis makes it difficult to assess the efficacy of radia-
tion therapy (RT) planning strategies to avoid areas critical to hematopoiesis.(12,13) Current 
strategies that rely on CT data alone used intensity-modulated radiation therapy (IMRT) to 
spare peripheral portions of the pelvic bones(12-14) or dose to the pelvic bones as a predictor 
of hematologic toxicity as a surrogate for dose to active bone marrow.(15-17) Uptake of [18F]
fluorothymidine imaged with positron emission tomography (FLT PET) can be an accurate 
and sensitive tool for identifying actively proliferating bone marrow in order to incorporate 
these areas as avoidance regions in radiation therapy plans.(18,19) However, FLT is not yet an 
FDA-approved radiopharmaceutical and, therefore, is not readily available at most institutions. 
The combination of FLT PET and CT imaging may add to current CT-based techniques and 
expand the potential benefits of bone marrow sparing radiation therapy plans to a larger group 
of patients. An alternative CT-based method could be to create probabilistic maps of marrow 
function based strictly on bony anatomy (e.g., radiation therapy simulation CT). This anatomic 
strategy would subdivide the bony pelvis into regions that have a greater probability of con-
taining active bone marrow based on FLT uptake. This method would offer the possibility of 
locating and sparing active bone marrow using the radiation therapy CT image alone, negating 
the need for further procedures or diagnostic radiation exposure. The purpose of this study 
was to determine the ability of regions identified using CT imaging to accurately predict the 
location of active bone marrow when compared to FLT PET for the majority of patients. These 
surrogate regions could then be incorporated into the IMRT optimization process to create a 
bone marrow sparing radiation therapy plan.

 
II.	 Materials and Methods

A. 	 FLT PET imaging to quantify cell proliferation in the pelvic bone marrow
FLT is a thymidine analog which is retained in the cell through phosphorylation by thymidine 
kinase 1 (TK1).

(20) TK1 is a key enzyme in the synthesis of DNA and shows markedly enhanced 
activity during the S-phase of the cell cycle. FLT uptake in tissue is considered a marker of 
active cellular proliferation and DNA replication, although FLT is not incorporated into the 
DNA.(21) 

FLT PET datasets were obtained within 30 days prior to initiation of chemoradiation 
therapy from subjects enrolled in either a previous study of head and neck cancer patients 
(NCT00721799) or cervical cancer patients (NCT01075412) at our institution, and analyzed 
retrospectively. Acquisition of FLT PET images was previously described by Menda et al.(22) 
Briefly, FLT was produced based on the method described by Machulla et al.(23) Images of the 
head and neck cancer subjects were acquired on an ECAT EXACT HR+ PET scanner (Siemens 
Medical Solutions USA, Inc. Knoxville, TN) operated in the three-dimensional mode after intra-
venous infusion (over 2 min) of FLT (2.6 MBq/kg (0.07 mCi/kg), maximum dose = 185 MBq 
(5 mCi)). Whole-body (WB) images from the base of skull to mid-femur were obtained at 74 ± 
7 min postinfusion. Data from 12 subjects, who had both WB FLT PET images and WB FDG 
PET images with an attenuation correction CT (AC CT) extending to mid-femur, were used for 
this study. Attenuation correction was used for both PET images, but was CT-based only for the 
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WB FDG PET image. As a result, the AC CT was used to provide anatomic information, since 
no other CT information of this region was acquired. Images of six cervical cancer subjects 
were obtained on a PET/CT scanner (Siemens Biograph 40 PET/CT Scanner) from base of 
brain to the proximal thighs (3 min/bed position) at approximately 60–70 min postadministra-
tion of FLT (2.6 MBq/kg (0.07 mCi/kg), maximum dose = 185 MBq (5 mCi)). A simulation 
CT of the pelvis was also acquired for these subjects as part of the radiation therapy planning 
process. This simulation CT was used to provide anatomic information for these subjects. All 
CT and FLT PET images were transferred to the Pinnacle Treatment Planning system v9.2 
(Philips Medical Systems, Fitchburg, WI) for analysis. Of the 18 total subjects from both the 
head and neck and cervical cancer studies, 11 were male and 7 were female. The mean age for 
all subjects was 53 years, with a range of 39 to 71 years.

B. 	 Identification of bone regions within the pelvis
FLT PET images for 18 subjects were registered to the available CT on the treatment planning 
system. The FLT PET image from the head and neck cancer study was registered to the FDG 
PET AC CT manually focused in the pelvic region. The FLT PET image from the cervical cancer 
study was registered to the simulation CT by utilizing the transformation from the registration 
of its AC CT to the simulation CT which was also focused in the pelvic region. A coregistered 
FLT PET and corresponding CT image for one subject is shown in Fig. 1.

The bony pelvis for each subject was divided into 17 regions using bony landmarks identi-
fied on each subject’s CT image. Figure 2(a) shows these regions for one subject. The extent 
of the bony pelvis was defined by the superior edge of the L5 vertebral body to the level of the 
inferior edge of the ischial tuberosity. Regions 1, 2, 6, and 7 were defined by the iliac crests, 
with an inferior border defined by the inferior edge of the S-I joint and separated by a line that 

Fig. 1.  Axial, sagittal, and coronal views of the registered FLT PET and CT images for one subject. Color wash represents 
increasing FLT uptake from purple to red and blue approximately equal to SUV 2.
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cuts the anterior and posterior regions at midacetabulum and the pelvic iliac narrowing. Regions 
3 and 8 are defined from the inferior edge of the S-I joint to the superior edge of the femoral 
head. Regions 4, 5, 9, and 10 are defined from the superior edge of the femoral head through 
the ischium separated by the line of the obturator foramen. Regions 16 and 17 were defined by 
the femoral heads to the inferior edge of the ischial tuberosity. Region 11 was defined by the L5 
vertebral body. Regions 12, 13, and 14 were defined by the superior portion of the sacrum to the 
inferior edge of the S-I joint and separated into three parts by the sacral foramina. Finally, region 
15 was defined by the region inferior to the S-I joint to the inferior edge of the sacrum.

C. 	 Statistical analysis of FLT PET uptake in bone regions
First, mean FLT standard uptake value (SUV) in each region was obtained by dividing the 
mean voxel value calculated in the treatment planning system by the voxel value/SUV cal-
culated based on injection activity, body weight, and time for each subject. Statistical testing 
was then performed using SAS software (Cary, NC). A Tukey’s multiple comparison test was 
used to compare FLT SUV means calculated in the individual CT identified pelvic regions to 
one another. This test was used to determine if the SUV means differed between regions while 
controlling for multiple tests. An individual region was compared against all other regions for 
a particular subject and against that region across subjects. P-values were used to determine 

Fig. 2.  The 17 bone regions (a) identified on one subject’s pelvis; the bone regions (b) grouped by similarity in FLT uptake. 
The subject average SUV mean is largest in the group identified in white. The group identified in grey has the second 
largest average SUV mean. The group identified in black has the smallest average SUV mean.
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which regions had similar SUV means. Pairs with an adjusted p-value < 0.05 were considered 
to be significantly different and pairs with a p-value > 0.5 were considered to be similar. The 
similarity threshold was arbitrarily chosen. 

 
III.	Res ults 

Statistical analysis of FLT uptake in the 17 bone regions comparing each region to all the other 
regions for each subject indicated a pattern in FLT uptake and provides a method to predict 
the most likely location of significant uptake in the bony pelvis. This analysis resulted in the 
following groups of bone regions based on similarity (p-value > 0.5): Group 1 contains regions 
2, 7, 11, 12, 13, and 14; Group 2 contains regions 3, 5, 8, and 10; Group 3 contains regions 1, 
4, 6, and 9; and Group 4 contains regions 15, 16, and 17. Region 15 had the lowest mean SUV 
of all regions, but was grouped with regions 16 and 17 since all three are significantly lower 
than those regions in Group 3 and are not significantly different (p-value > 0.05).

Group 1 consisted of the upper central region of the pelvis including the superior portion of 
the sacrum, the inner halves of the iliac crests, and the L5 vertebral body. Group 2 consisted 
of the lower central region of pelvis including the central halves of the ischial tuberosities. 
Groups 3 and 4 consisted of the more peripheral regions of the pelvis including the outer rims 
of the iliac crests, the outer halves of the ischial tuberosities, and the femoral heads, with the 
exception being region 15 containing the sacrum inferior to the S-I joint. The mean SUV for 
each region was averaged across all 18 patients. Table 1 shows the average FLT SUV means 
ranked in order from highest to lowest. Group 1 contained the six regions with the largest 
average SUV means which ranged from 3.3 to 3.7. Group 2 contained the four regions with 
the next largest average SUV means ranging from 2.6 to 2.9. Group 3 contained average SUV 
means ranging from 2.2 to 2.3, and Group 4 contained average SUV means ranging from 1.2 
to 1.7. This indicates that the majority of FLT uptake occurs in the central region of the pelvis, 

Table 1.  Pelvic bone regions ranked by mean FLT SUV averaged over 18 subjects.

	Rank	 Region	 Average FLT SUV	 Standard Deviation

Group 1 
	 1	 11	 3.71	 1.00
	 2	 12	 3.65	 0.93	
	 3	 14	 3.57	 0.90	
	 4	 2	 3.52	 0.87	
	 5	 7	 3.49	 0.98	
	 6	 13	 3.28	 0.82	

Group 2 
	 7	 3	 2.93	 1.08	
	 8	 8	 2.92	 1.08	
	 9	 5	 2.69	 0.65	
	 10	 10	 2.64	 0.59
	

Group 3 
	 11	 9	 2.26	 0.85	
	 12	 1	 2.24	 0.63	
	 13	 4	 2.23	 0.84	
	 14	 6	 2.16	 0.57
	

Group 4 
	 15	 16	 1.69	 1.10	
	 16	 17	 1.68	 1.11	
	 17	 15	 1.23	 0.56
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excluding the sacrum below the S-I joint. If region groups with an average SUV mean less than 
2.3 can be considered to contain insignificant amounts of active bone marrow, then Groups 3 
and 4 could be combined into a broader group that would have the least amount of active bone 
marrow. Figure 2(b) shows the location of Group 1 (white), Group 2 (grey), and Groups 3 and 
4 (black) for one subject.

 
IV.	D ISCUSSION

The utility of FLT PET to identify active bone marrow throughout the body has been demon-
strated for the purposes of identifying hematologic disorders,(18) but a population-based analysis 
of normal active bone marrow could have potential utility in radiation treatment planning. 
Statistical analysis using a region-by-region comparison indicated four multiregion groups 
whose regions were statistically the same in regard to FLT SUV mean. These groups also cor-
responded in rank order of average FLT SUV mean, with Group 1 having the largest average 
FLT SUV mean, followed by Groups 2, 3, and 4. The location of these groups indicates that 
the upper central region of the pelvis has the greatest likelihood of containing more FLT uptake 
and, therefore, active bone marrow, than the other regions of the pelvis. 

Grouping regions of bone that can be readily identified using only a radiation therapy simu-
lation CT offers the potential for clinically useful bone marrow sparing without the need for 
additional imaging studies. FLT PET offers a more precise and patient-specific methodology of 
locating active bone marrow in the pelvis, but FLT is not yet a readily available FDA-approved 
PET radiopharmaceutical. CT-defined bone regions, validated with FLT PET uptake analysis, 
offer a more readily available method to locate the most probable location of active bone marrow 
to use in intensity-modulated radiation therapy (IMRT) planning in order to reduce hematologic 
toxicity in patients with pelvic cancers. These data indicate that regions can be prioritized into 
three major groups based on marrow FLT uptake. The most central regions have the greatest 
likelihood for containing active bone marrow, and the more peripheral regions have the greatest 
likelihood for containing relatively less active bone marrow.

A CT-defined bone region-based approach could alleviate the problem of the limited avail-
ability of FLT, and the time and expense of additional imaging for the sole purpose of identifying 
bone marrow. However, the location of the active bone marrow indicated by our results presents 
another problem in a radiation therapy planning scenario. Pelvic tumors are centrally located 
and would, therefore, be in close proximity to the pelvic bone regions with the largest amount 
of active marrow. In a previous study evaluating the ability to reduce planned radiation dose to 
FLT-identified active bone marrow, the volumes of active bone marrow receiving 10 and 20 Gy 
could be reduced by 10%–30% without significantly compromising target constraints or other 
organ at risk (OAR) objectives.(19) Bone marrow dose reductions were calculated based on the 
entire volume of FLT SUV 2, 3, and 4 within the pelvis. Therefore, it is difficult to know where 
the dose reduction occurred within the volume. CT-defined bone regions and groups represent-
ing active bone marrow allow for guidance volumes for IMRT optimization based on bone 
alone, but there will be locations within those regions that do not contain as much active bone 
marrow. It may be that those regions with smaller volumes of active bone marrow contribute 
most to the possible total active bone marrow dose reduction. This problem may be somewhat 
alleviated by developing dose objectives based on analysis using FLT uptake change, which 
could then be translated to a bone region model. Still, there would be uncertainties in uptake 
based on interpatient variability that could not be predicted and taken into account.

Other methods exist for identifying active bone marrow, such as sulfur colloid SPECT(24) 
imaging and a combination of fat quantification MR imaging and FDG PET imaging.(25) Both 
of these methods are more readily available than FLT PET imaging. However, sulfur colloid 
SPECT imaging lacks the quantitative abilities of PET imaging, and the combination of fat 
quantification MR and FDG PET regions adds an extra degree of complexity to the identification 
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process with the need for two sets of images. Fat quantification protocols are not necessarily 
standardized or readily available on many clinical MR scanners. Both of these methods also 
require extra imaging time and radiation dose to the patient, similar to FLT PET imaging. Unlike 
FLT PET, these imaging techniques are less straightforward in identifying proliferating bone 
marrow than the DNA synthesis that uptake by FLT into cells represents. No correlation has 
been reported between FLT PET and either sulfur colloid SPECT imaging or fat quantification 
MR and FDG PET imaging. Correlation of both sulfur colloid SPECT and the combination of 
MR and FDG PET imaging to FLT PET imaging could help to establish the reliability of each 
method, and provide other tools that could be used to identify pelvic bone marrow for patient-
specific bone marrow sparing radiation therapy planning.

 
V.	C onclusions

Using only the primary planning CT for identifying active pelvic bone marrow to incorporate 
into IMRT planning is potentially feasible based on our statistical analysis of FLT uptake in 
18 subjects. FLT PET imaging provides better spatial sensitivity for identifying bone marrow, 
but is limited in that it is not readily available in a clinical setting, and requires extra imaging 
time and radiation exposure. The use of bone region surrogates identified on a simulation CT 
offers a better probability of sparing active bone marrow than using the entire pelvic bone, but 
may still be limited by the overlap of pelvic radiation therapy targets.
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