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A B S T R A C T

Background: Coronary calcification impairs stent delivery and optimal expansion, a significant predictor of subsequent stent thrombosis and restenosis. Current calcium
ablative technologies may be limited by guidewire bias and periprocedural complications. Intravascular lithotripsy (IVL) delivers acoustic pressure waves to modify
calcium, enhance vessel compliance, and optimize stent deployment. The Disrupt CAD III study demonstrated high (92.4%) procedural success and low (7.8%) 30-day
major adverse cardiac event (MACE) rates following IVL, but longer term follow-up is required to determine the durability of clinical benefit and the late impact of
optimized stent implantation associated with IVL. This analysis evaluates 1-year outcomes from the Disrupt CAD III study.

Methods: Disrupt CAD III (NCT03595176) was a prospective, single-arm approval study designed to assess the safety and effectiveness of IVL as an adjunct to coronary
stenting in de novo, severely calcified coronary lesions (n ¼ 384). MACE was defined as the composite of cardiac death, myocardial infarction (MI), or ischemia-driven
target vessel revascularization; target lesion failure was defined as cardiac death, MI, or ischemia-driven target lesion revascularization (ID-TLR).

Results: At 1 year, MACE occurred in 13.8% of patients (cardiac death: 1.1%, MI: 10.5%, ischemia-driven target vessel revascularization: 6.0%) and target lesion failure
occurred in 11.9% (ID-TLR: 4.3%), both driven by non-Q-wave MI (9.2%). Stent thrombosis (definite or probable) occurred in 1.1% of patients (including 1 event
[0.3%] beyond 30 days).

Conclusions: Disrupt CAD III represents the largest long-term (1-year) analysis of coronary IVL to date. IVL treatment prior to coronary stent implantation in severely
calcified lesions was associated with low 1-year rates of MACE, ID-TLR, and stent thrombosis.
Introduction

Percutaneous coronary intervention (PCI) with drug-eluting stent
(DES) implantation is the most frequent mode of coronary artery revas-
cularization. Advanced age and an increasing frequency of diabetes
mellitus, hypertension, and renal insufficiency contribute to an
increasing prevalence and severity of coronary artery calcification,1–3 the
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presence of which is associated with worse outcomes.3–7 Coronary artery
calcification may limit stent delivery and prevent optimal stent expan-
sion,8 the absence of which is a powerful predictor of subsequent stent
thrombosis (ST) and restenosis.7,9–13

The Disrupt CAD III study reported favorable early safety and effec-
tiveness results following intravascular lithotripsy (IVL) pretreatment of
severely calcified coronary stenoses prior to DES implantation. High rates
ajor adverse cardiovascular events; OCT, optical coherence tomography; PCI,
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of procedural success with low rates of angiographic and clinical proce-
dural complications were observed. In the optical coherence tomography
(OCT) substudy of Disrupt CAD III, the large minimal stent area (MSA)
and degree (%) of stent expansion achieved despite the severity of target
lesion calcification were associated with low rates of major adverse
cardiovascular events (MACE) at 30 days.14 However, longer term
follow-up is required to determine the durability of clinical benefit and
the late impact of optimized stent implantation associated with IVL. In
this context, we report the 1-year outcomes from the Disrupt CAD III
study.

Methods

Study design and oversight

The present report represents the prespecified 1-year analysis from the
Disrupt CAD III study. The Disrupt CAD III (NCT03595176) study design,
major inclusion and exclusion criteria, endpoints, definitions, and 30-day
results have been previously described in detail.14,15 In summary,
Disrupt CAD III was a prospective, single-arm, multicenter, clinical study
designed to evaluate the safety and effectiveness of coronary IVL as an
adjunct to stent deployment in severely calcified de novo coronary lesions.
Disrupt CAD III was designed to support US regulatory approval for the
Shockwave IVL system and was carried out under an investigational device
exemption from the US Food and Drug Administration. The study protocol
was approved by the institutional review board at each participating cen-
ter, and all patients signed written, informed consent. The sponsor
(Shockwave Medical Inc) funded the study and participated in site selec-
tion and management as well as in data collection and analysis. The
principal investigators and study chair had unrestricted access to the data,
prepared the manuscript, controlled the decision to publish, and vouch for
the accuracy and completeness of the reported data.

Study patients

Disrupt CAD III enrolled 431 patients at 47 sites in 4 countries (United
States, United Kingdom, France, and Germany) between January 2019
and March 2020. Among those were 47 roll-in patients, leaving 384
patients in the intention-to-treat dataset for analysis.14 Patients pre-
senting with stable or unstable angina or silent ischemia and severely
calcified de novo coronary artery lesions undergoing PCI were eligible for
enrollment. Target lesions not previously treated with any interventional
procedure were by visual assessment required to be less than 40 mm in
length with a reference vessel diameter of 2.5 to 4.0 mm and with
diameter stenosis of �70% and <100% or �50% and <70% with evi-
dence of ischemia by noninvasive stress testing or by functional testing at
the time of coronary angiography (instantaneous wave free ratio <0.90
or fractional flow reserve �0.80).

Study device and procedure

The IVL system and coronary IVL catheter and their technique for use
have been described.14–17 The coronary IVL system includes 2 lithotripsy
emitters incorporated into the shaft of a 12-mm-long rapid exchange
balloon catheter available in 2.5-, 3.0-, 3.5-, and 4.0-mm diameters. Each
catheter can provide up to 80 total IVL pulses, and the balloon position
can be adjusted with overlap to provide complete coverage of longer
lesions. Following IVL, noncompliant (NC) balloon dilatation was per-
formed in lesions with residual stenosis �50%, after which DES were
implanted. High-pressure (>16 atm) postdilatation with an NC balloon
was then routinely performed. Dual antiplatelet therapy was prescribed
per current guidelines for a minimum of 6 months unless chronic oral
anticoagulation was also administered in which case aspirin could be
discontinued within 30 days after PCI.18 Follow-up was performed by
clinic or telephone visit at 30 days and at 6, 12, and 24 months and is
presently complete for all patients through 12 months.
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Data management

Independent angiographic tomography and OCT core laboratories
(Cardiovascular Research Foundation) performed quantitative and
qualitative analysis of all images. Severe calcification was defined an-
giographically as radiopaque densities noted either without cardiac
motion involving both sides of the arterial wall extending 15mm or more
or by intravascular imaging (intravascular ultrasound or OCT) as a cal-
cium angle of 270� or more. Calcium length (calcified segment length)
was defined as the total length of visible continuous fluoroscopic calcium
within the lesion and reference vessel segments. All MACE, target lesion
failure (TLF), and ST events were adjudicated by an independent clinical
events committee (CEC, Cardiovascular Research Foundation). An inde-
pendent data safety monitoring board (Cardiovascular Research Foun-
dation) reviewed data related to safety, data integrity, and overall
conduct of the study on a periodic basis, and each time recommended the
study continue without modification.

Study endpoints

The study endpoints have been previously described.14,15 The pri-
mary effectiveness endpoint was procedural success. The primary study
safety endpoint was freedom from MACE at 30 days. The primary safety
and effectiveness endpoints as well as in-hospital and 30-day outcomes
have been previously reported and are presented here for context.14 All
1-year outcome measures were secondary endpoints. MACE was defined
as the CEC-adjudicated composite of cardiac death, any myocardial
infarction (MI), or ischemia-driven target vessel revascularization
(ID-TVR). TLF was defined as cardiac death, target vessel MI (TV-MI), or
ischemia-driven target lesion revascularization (ID-TLR). Periprocedural
MI was defined as peak post-PCI CK-MB level >3� the upper limit of
normal (ULN), identical to the MI definition from the predicate ORBIT II
study that was used for US regulatory approval of orbital atherectomy.19

Nonprocedural MI was defined by the Fourth Universal Definition of MI
(UDMI).14,15 Sensitivity analyses included MACE at 1 year using alter-
native contemporary periprocedural MI definitions, specifically the
Fourth UDMI Type 4a (cardiac troponin [cTn] level >5� the 99th

percentile of the upper reference limit with either new ischemic ECG
changes, new pathological Q waves, evidence of new loss of viable
myocardium or angiographic findings consistent with a procedural
flow-limiting complication),20 and the Society for Cardiovascular Angi-
ography and Interventions definition (CK-MB level �10� ULN or cTn
�70� ULN).21

Statistical analysis

All principal analyses were performed in the intent-to-treat popu-
lation. In-hospital and 30-day results are presented as binomial pro-
portions with the number of events previously reported.14 Continuous
data are presented as mean � standard deviation, and categorical
variables are presented as percentages and frequencies. Kaplan-Meier
estimates were used to construct survival curves for time-to-event
variables at 1 year, with no prespecified formal hypothesis testing for
outcomes at 1 year. Level of statistical significance was defined as P <

.05 without adjustment for multiplicity. The following subgroups were
evaluated for consistency of MACE and TVR at 1 year: age, sex, diabetes
mellitus, renal insufficiency, prior coronary artery bypass graft, refer-
ence vessel diameter, lesion length, and bifurcation lesions. The inde-
pendent predictors of MACE and ID-TVR at 1 year were determined by
multivariable logistic regression using stepwise selection with a P < .1
threshold for entry into the model and a P < .05 level of significance to
stay in the final model. Covariates were selected a priori from historical
relatedness to adverse events after calcified lesion PCI. Covariates
entered into each model appear in the footnote of the corresponding
results table. All statistical analyses were carried out using SAS soft-
ware, version 9.4 (SAS Institute).



Fig. 1. Patient flow through 1 year. The first subject enrolled at each site was considered a roll-in patient and was not included in the ITT analysis cohort. ITT,
intention-to-treat; IVL, intravascular lithotripsy.
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Results

Patients and procedures

From January 2019 to March 2020, 431 patients were enrolled at 47
sites in 4 countries. Among these were 47 roll-in patients, leaving 384
patients in the intention-to-treat dataset for primary and secondary
endpoint analyses. Baseline and procedural characteristics have been
previously reported14; mean age was 71.2� 8.6 years, 76.6% were male,
diabetes mellitus was present in 40.1%, and renal insufficiency (esti-
mated glomerular filtration rate <60 mL/min/1.73 m2) was present in
26.4% of patients (Supplemental Table S1 and Table 2). By quantitative
coronary angiography, the average target lesion length was 26.0 � 11.7
mm, the calcified arterial segment length was 47.9� 18.8 mm, and 100%
of lesions were classified as severely calcified by the angiographic core
laboratory (Supplemental Table S1). Procedural details have been pre-
viously reported (15) and are shown in Supplemental Table S2.
Follow-up through 1 year was complete in 97.1% of patients (Fig. 1).

One-year outcomes

The composite endpoint of MACE occurred in 13.8% of patients
(including cardiac death in 1.1%, MI in 10.5%, and ID-TVR in 6.0%)
(Fig. 2, Table 1). All-cause mortality within 1 year occurred in 7 patients
(1.8%), one of whom did not receive IVL therapy. Sensitivity analyses
using alternative periprocedural MI definitions resulted in a similar
1-year MACE rate using the Fourth UDMI20 (14.3%) and a lower rate
using the Society for Cardiovascular Angiography and Interventions
definition for clinically relevant MI21 (8.5%). The 1-year ID-TLR rate was
4.3%, and ST (definite or probable) occurred in 1.1% of patients, with
only one event beyond 30 days (late ST rate of 0.3%).

Subgroup analyses demonstrated significantly greater MACE at 1
year in lesions �25 mm versus <25 mm in length (17.6% vs 9.0%, P ¼
.02). The increased MACE rate in the long-lesion cohort was driven
primarily by non–Q-wave MI (NQWMI), which accounted for 75.8% of
3

all MACE in this cohort. MACE and ID-TVR rates at 1 year were similar
in all other clinical and angiographic subgroups (Table 2). Predictors of
MACE and ID-TVR at 1 year are shown in Table 3. Univariate analysis
results for MACE and ID-TVR at 1 year are shown in Supplemental
Tables S3 and S4. By multivariable logistic regression, bifurcation
lesion, prior MI, and current/former smoker were the only independent
predictors of MACE at 1 year, whereas prior MI was the only predictor
of ID-TVR at 1 year.

Discussion

Themajor findings from the Disrupt CAD III study at 1-year follow-up,
the largest and longest clinical follow-up to date of patients with severely
calcified lesions treated with coronary IVL prior to DES implantation, are
as follows: First, lesion preparation with IVL prior to stent placement in
severely calcified coronary lesions resulted in favorable 1-year rates of
MACE, TLF, ID-TLR, ID-TVR, and ST. Second, MACE and ID-TVR rates
were similar in most of the subgroups analyzed. Lesions with length �25
mm had higher 1-year rates of MACE than shorter lesions, principally due
to increased rates of NQWMI. Finally, bifurcation lesions, prior MI, and
history of smoking were independent predictors of MACE at 1 year.

Percutaneous treatment of severely calcified coronary lesions remains
a challenge and may be associated with early complications (perforation,
dissection) as well as inadequate lesion preparation leading to stent
underexpansion and suboptimal MSAs9,22 which are powerful predictors
of long-term adverse clinical outcomes including ST, angiographic, and
clinical restenosis.9,23–25 As a result, prior studies have demonstrated that
adverse clinical events accrue over time following treatment with either
first- or second-generation DES implantation in moderately or severely
calcified lesions.7,9 In the largest and longest (5-year follow-up)
patient-level meta-analysis to date evaluating the impact of target
lesion calcification on clinical outcomes following DES implantation,
severe lesion calcification was associated with a 44% relative increase in
cardiac death, a 23% relative increase in target vessel MI, and a 21%
increase in TLF compared with noncalcified lesions.7 In the Disrupt CAD



A B

C D

Fig. 2. Clinical outcomes through 1 year. Cumulative event rates through 1 year in patients enrolled in the Disrupt CAD III study. (A) MACE, (B) cardiac death, (C)
myocardial infarction, and (D) ischemia-driven target vessel revascularization. MACE, major adverse cardiac event.

Table 1
Clinical outcomes through 1-year follow-up.

Outcome In-hospital 30-day 1-year

MACE 27 (7.0) 30 (7.8) 52 (13.8)
Cardiac death 1 (0.3) 2 (0.5) 4 (1.1)
All myocardial infarction 26 (6.8) 28 (7.3) 40 (10.5)

Non-Q-wave myocardial infarction 22 (5.7) 23 (6.0) 35 (9.2)
Q-wave myocardial infarction 4 (1.0) 6 (1.6) 6 (1.6)

Target vessel revascularization 2 (0.5) 6 (1.6) 22 (6.0)
All-cause death 1 (0.3) 2 (0.5) 7 (1.8)
Cardiac 1 (0.3) 2 (0.5) 4 (1.1)
Noncardiac 0 (0.0) 0 (0.0) 2 (0.5)
Vascular 0 (0.0) 0 (0.0) 1 (0.3)

Target lesion failure 26 (6.8) 29 (7.6) 45 (11.9)
Cardiac death 1 (0.3) 2 (0.5) 4 (1.1)
TV-MI 26 (6.8) 28 (7.3) 38 (9.9)
ID-TLR 1 (0.3) 5 (1.3) 16 (4.3)

All revascularization 2 (0.5) 10 (2.6) 45 (12.3)
Target vessel 2 (0.5) 6 (1.6) 22 (6.0)
ID-TVR 2 (0.5) 6 (1.6) 22 (6.0)
ID-TLR 1 (0.3) 5 (1.3) 16 (4.3)
Non-ID-TVR 0 (0.0) 0 (0.0) 0 (0.0)
Non-ID-TLR 0 (0.0) 0 (0.0) 0 (0.0)

Nontarget vessel 0 (0.0) 6 (1.6) 29 (8.0)
Stent thrombosis (definite or probable) 0 (0.0) 3 (0.8) 4 (1.1)
Definite 0 (0.0) 3 (0.8) 4 (1.1)
Probable 0 (0.0) 0 (0.0) 0 (0.0)

Values are n (%). In-hospital (n ¼ 384) and 30-day (n ¼ 383) rates are based on
binomial proportions. One-year rates are Kaplan-Meier estimates.
ID-TLR, ischemia-driven target lesion revascularization; ID-TVR, ischemia-driven
target vessel revascularization; TV-MI, target vessel myocardial infarction.

D.J. Kereiakes et al. Journal of the Society for Cardiovascular Angiography & Interventions 1 (2022) 100001
III study, effective target lesion calciummodification by IVL pretreatment
was demonstrated in the 100-patient OCT substudy.14 In that study, the
MSA and % stent expansion at the site of maximum lesion calcification
were 6.5 � 2.1 mm2 and 102 � 29%, respectively. These results were
achieved despite the fact that 100% of cases were confirmed to have
severe calcification by core lab assessment with an average calcium angle
and thickness of 293� 77� and 0.96� 0.25 mm, respectively. Moreover,
low rates of serious angiographic complications were observed (flow--
limiting dissection [0.3%], perforation [0.3%], slow flow/no-reflow
[0.0%]) reflecting the favorable safety profile and relative ease of use
of IVL in these complex lesions. The large MSA and % stent expansion
measures translated into acceptably low 1-year rates of ID-TLR (4.3%)
and ST (1.1%), with only one ST event beyond 30 days.

These observations confirm and extend the observed benefit of IVL in
the Disrupt CAD III 30-day primary endpoint report which utilized
objective performance goals derived from the ORBIT II trial for US reg-
ulatory approval of orbital atherectomy.19 In this regard, although
cross-study comparisons are less than definitive, the data from the
Disrupt CAD III and ORBIT II studies may be evaluated given their similar
trial designs, study populations, endpoints, and endpoint definitions.
MACE at 30 days in Disrupt CAD III and ORBIT II were observed in 7.8%
and 10.4% of patients, respectively, and in both studies was largely
driven by periprocedural NQWMI (5.7% and 8.6%, respectively) with
cardiac death at 30 days in 0.5% and 0.2% of patients, respectively.
MACE at 1 year in Disrupt CAD III and ORBIT II occurred in 13.8% and
16.9% of patients, respectively, largely driven by NQWMI (9.2% versus
9.7%, respectively) with cardiac death in 1.1% and 3.2% of patients,
respectively. Two small “real-world” registries that included patients
4



Table 2
Sub-group analyses for MACE and TVR at 1 year.

Variable N MACE TVR

N events
(KM
estimate, %)

Log-
rank P
value

N events
(KM
estimate, %)

Log-
rank P
value

Age (median)
�71 years 199 27 (13.8) .99 12 (6.2) .82
>71 years 185 25 (13.8) 10 (5.7)

Sex
Male 294 40 (13.8) .97 17 (6.0) .94
Female 90 12 (13.8) 5 (6.1)

Diabetes
Yes 136 23 (17.2) .17 11 (8.3) .15
No 247 29 (11.9) 11 (4.7)

Renal
insufficiency
eGFR <60 mL/
min/1.73 m2

101 15 (14.9) .55 7 (7.1) .56

eGFR �60 mL/
min/1.73 m2

282 36 (13.1) 15 (5.6)

Prior CABG
Yes 36 5 (14.6) .99 4 (11.8) .15
No 348 47 (13.7) 18 (5.3)

RVD
�3.0 mm 196 26 (13.4) .91 13 (6.8) .44
>3.0 mm 185 24 (13.3) 9 (5.2)

Lesion length
<25 mm 190 17 (9.0) .02 7 (3.7) .08
�25 mm 191 33 (17.6) 15 (8.3)

Bifurcation
lesion
Yes 116 21 (18.2) .08 8 (7.1) .49
No 268 31 (11.8) 14 (5.5)

CABG, coronary artery bypass graft; eGFR, estimated glomerular filtration rate
using the MDRD formula, Modification of Diet in Renal Disease formula; KM,
Kaplan-Meier; MACE, major adverse cardiovascular events; RVD, reference
vessel diameter; TVR, target vessel revascularization.

Table 3
Independent predictors of 1-year adverse events.

Clinical event OR (95% CI) P value

MACE
Bifurcation (yes vs no) 2.69 (1.32-5.47) .006
Prior MI (yes vs no) 2.22 (1.01-4.87) .048
Current or former smoker (yes vs no) 2.21 (1.01-4.78) .045

TVR
Prior MI (yes vs no) 4.07 (1.20-13.77) .024

The independent predictors of MACE, and TVR, at 1-year were determined by
multivariable logistic regression using stepwise selection with a P< .1 univariate
threshold for entry and a P < .05 level of significance to stay in the final model.
The following variables were entered into the models: age (71 years), sex, prior
MI, lesion length per 10 mm, LVEF (�50%), diabetes, eGFR (<60 mL/min/1.73
m2), hyperlipidemia, hypertension, prior stroke or TIA, BMI, per 5, current or
former smoker, RVD (>3.0 mm), bifurcation, lesion location (LAD, vs non-LAD).
BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular
filtration rate; LAD, left anterior descending; LVEF, left ventricular ejection
fraction; MACE, major adverse cardiovascular events; MI, myocardial infarction;
OR, odds ratio; RVD, reference vessel diameter; TIA, transient ischemic attack;
TVR, target vessel revascularization.
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with acute coronary syndromes and IVL treatment of in-stent restenosis
have also reported favorable safety and effectiveness outcomes of coro-
nary IVL with low rates of adverse clinical events at 1 year.26,27 Thus, the
relative 1-year benefits of IVL were sustained in both indirect
Central Illustration. Target lesion failure (TLF), defined as the composite of cardia
lesion revascularization (ID-TLR), was 7.6% at 30 days and 11.9% at 1 year. The 1-yea
of patients with only one event beyond 30 days.
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comparisons with orbital atherectomy28,29 and with historical cohorts of
patients with moderate or severe target lesion calcification undergoing
PCI with other lesion preparation techniques.6,30,31 Nonetheless,
adequately powered randomized trials are required to further evaluate
the relative safety and effectiveness of different types of
calcium-modifying therapies for calcified lesions.

IVL has demonstrated safe and predictable modification of severely
calcified plaque14,32–36 with a short learning curve as the IVL device is
inherently similar to standard balloon-based PCI. In the Disrupt CAD III
study, freedom from 30-day MACE, procedural success, device crossing
success, and outcomes were similar between roll-in procedures (first case
for each site) and procedures included in the pivotal analysis despite the
severe calcification of all target lesions.14 This is in contrast to the steep
learning curve that has been described with atherectomy for which high
operator volume is an important factor determining favorable out-
comes.37–39 The safety and effectiveness of coronary IVL as an adjunct to
stenting has been observed by others in smaller, initial “real-world”
clinical experiences with limited 1-year follow-up.26,27 Additionally,
c death, target vessel myocardial infarction (TV-MI), or ischemia-driven target
r ID-TLR was 4.3%, and stent thrombosis (definite or probable) occurred in 1.1%
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although aggressive dilatation using NC balloons,40 scoring or cutting
balloons, or calcium ablation by atherectomy41 have been shown to
improve luminal gain and stent expansion in calcified coronary lesions,
procedural complications including perforation, severe dissection, and
distal embolization remain a concern.19,42,43 The differential, non-
ablative mechanism of IVL action that modifies calcium in a circumfer-
ential, transmural fashion at low balloon inflation pressures without
either wire bias or significant thermal energy generation has theoretic
appeal and may reduce early and late adverse events.17 IVL may also
provide an advantage in the treatment of calcified bifurcation lesions as
side branch protection using a guidewire may be performed without a
risk of wire entrapment or severing as may occur with rotational or
orbital atherectomy.44,45 This may be of particular importance for the
treatment of calcified left main lesions where simultaneous access to
branch vessels may mitigate the risk of acute vessel closure.46

Although Disrupt CAD III and other studies have demonstrated that IVL
is safe and effective for treatment of severely calcified coronary lesions, a
single calcific plaque modification technique may not be sufficient in all
cases. Indeed, successful adjunctive use of atherectomy to facilitate IVL
catheter crossing in tight calcified lesions and IVL use to spot-treat undi-
latable lesions after suboptimal PCI (with balloon angioplasty or atherec-
tomy) have been reported.47–50 Thus, the complementary roles of IVL and
other lesion preparation devices in the overall treatment algorithm of
calcified coronary lesions continue to be refined.51,52

Several potential limitations of the present analysis deserve mention.
First, Disrupt CAD III is a single-arm study without a randomized
comparator or concurrent control arm; as such, comparisons with ORBIT
II or other trials should be considered hypothesis generating. Further-
more, randomized studies would be required to compare the impact of
IVL treatment versus other calcium-modifying technologies on longer
term outcomes. Second, multiple angiographic and patient demographic
subsets were excluded per protocol which limits broader generalization
of the observations to a “real-world,” all-comers population. These
groups include biomarker-positive acute coronary syndromes, severe
renal insufficiency, extreme target vessel tortuosity, or unprotected left
main, ostial, and saphenous vein bypass graft target lesions. Neverthe-
less, this study represents the largest clinical trial experience with coro-
nary IVL in patients with severe lesion calcification who are often
excluded from participation in most clinical trials. Similarly, patients
with moderately calcified lesions were not included in the present study.
The relative safety and effectiveness of IVL has not been examined in
such lesions. Finally, the relationship between the intravascular imaging
findings from the Disrupt III OCT substudy and 1-year clinical outcomes
has not yet been analyzed. A larger pooled analysis from the Disrupt CAD
study is ongoing and will be better powered to assess these relationships.

Conclusions

The 1-year follow-up from the large-scale single-arm Disrupt CAD III
study has demonstrated acceptably low rates of adverse clinical events,
particularly ID-TLR and ST, with only a single isolated ST event beyond
30 days. This experience suggests that the beneficial impact of IVL on
lesion calcium modification and subsequent stent expansion is sustained
to at least 1 year. Further study is required to determine if IVL can
effectively reduce the longer term (beyond 1 year) annualized incidence
of adverse stent device–related events in patients with severe target
lesion calcification.
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