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Objective: The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research
about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is
scarce.

Design: We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients
with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease
(COPD), asthma, and healthy controls.

Results: Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs)
were found in different comparison groups. In comparison with COPD, asthma, and controls, 11 proteins
were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and
asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings
revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3,
HBB, HBAT1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with
complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related path-
ways.

Conclusions: This study provides fundamental data for identifying COVID-19-specific proteomic changes
in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy.

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

COVID-19, which is caused by SARS-CoV-2, is a threat to global
health and health care systems. Currently, the disease is spread-
ing rapidly around the world. According to the World Health Orga-
nization’s situation report for June 9, 2021, there had been more
than 174,801,871 confirmed COVID-19 cases and approximately
3,756,350 COVID-19 related deaths worldwide. In addition, the re-
port revealed that the global severity rate of COVID-19 ranges
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between 5% to 20%, with the rates varying from region to re-
gion. For example, in New York, 1,151 patients (20%) were diag-
nosed with severe COVID-19 and required mechanical ventilation
(Richardson et al, 2020). In Italy, the proportion of intensive care
unit (ICU) admissions was between 5% and 12% of the total COVID-
19 cases (Livingston and Bucher, 2020). According to the Chinese
Center for Disease Control and Prevention, 19% of COVID-19 pa-
tients developed severe or critical illness, in a study encompassing
44,415 COVID-19 cases (Wu and McGoogan, 2020). Surprisingly, the
mortality rate of critically ill COVID-19 cases was more than 80%
(Yang et al, 2020).

To date, there are still gaps in the mechanistic understanding
of the disease process as reported by (Bhaskaran et al., 2022). For
instance, data about the biochemical and molecular alterations as-
sociated with the severe form of COVID-19 are scarce. In addi-
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tion, there is evidence that chronic respiratory diseases, including
chronic obstructive pulmonary disease (COPD) and asthma, may
predispose patients to SARS-CoV-2 infection. Nevertheless, the ef-
fects of COPD and asthma on disease expression and outcomes, as
well as the potential underlying processes, are poorly investigated
in COVID-19 patients.

The formation of mucus plugs has been observed in critically
ill COVID-19 patients. Clinical findings show that the mucus plugs
cause airway obstruction and respiratory failure in a significant
proportion of affected patients (Lu et al, 2021, Zhang et al, 2021).
In this study, it was speculated that this mucus is a mixture of
secretions produced by airway and alveolar epithelial cells in re-
sponse to viruses and inflammatory mediators, and the molecular
changes may be indicative of the pathological changes of COVID-
19. A previous study reported that COPD and asthma were associ-
ated with severe illness in COVID-19 patients (Gao et al, 2021). In
this study, proteomic analyses of airway mucus from severe COVID-
19, chronic obstructive pulmonary disease (COPD), and asthma pa-
tients were performed. The study contributes fundamental infor-
mation to the understanding of the pathogenesis of critically ill
COVID-19 patients and their associated comorbidities, which can
be used to develop future targeted therapeutic approaches.

2. Material and Methods
2.1. Study design and clinical data collection

Five critically ill COVID-19 patients were diagnosed with
laboratory-confirmed SARS-CoV-2 infection by the local health au-
thorities. COVID-19 patients were classified into subgroups based
on their different clinical manifestations using the Chinese Govern-
ment Diagnosis and Treatment Guideline (Trial Seventh Version).
Severe patients were characterized by respiratory distress and a
respiratory rate >30 times/min, which corresponds to an oxygen
saturation <93% in resting state or arterial blood oxygen partial
pressure (PaO,)/oxygen concentration (FiO2) <300 mm Hg (1 mm
Hg = 0.133 kPa). Patients classified as critically ill were those who
had respiratory failure requiring mechanical ventilation, experi-
enced shock, or required ICU care. The COPD inclusion and exclu-
sion criteria were adapted as previously described (Lu et al, 2016).
Asthma was defined according to Global Strategy for Asthma Man-
agement and Prevention 2018 (Bateman et al., 2018). The change in
forced expiratory volume in 1 second (FEV;) was used as a diag-
nostic tool. An increase in FEVy, in response to bronchodilator re-
versibility (AFEV{BDR) following inhalation of 400 pg salbutamol,
was considered significant if it was >12% and >200 mL compared
with the initial FEV;.

Five participants who were negative for the SARS-CoV-2 nucleic
acid test without any lung disease were included as healthy con-
trols. Meanwhile, 5 COPD patients and 5 asthma patients were des-
ignated as disease controls. To aspirate the airway mucus, the crit-
ically ill COVID-19 patients presenting with expectoration difficulty
and dyspnea underwent bronchoscopy using a PENTAX FB-15BS
portable fiber bronchoscope (PENTAX Medical Shanghai Co, Ltd,
Shanghai, China) via tracheal intubation. Airway mucus in COPD,
asthma, and healthy control participants was induced using hyper-
tonic (3%) saline solution inhalation administered via an ultrasonic
nebulizer.

Clinical charts, nursing records, laboratory findings, and chest
imaging of the COVID-19 patients were reviewed from January
26, 2020, to February 15, 2020. Electronic medical records were
used to acquire epidemiological, clinical, laboratory, and radiologi-
cal data. Two researchers independently reviewed the data collec-
tion forms to ensure that the collected data was accurate. All the
procedures were approved by the Ethics Committee of the First
Affiliated Hospital of Guangzhou Medical University (No.2020-65).
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Although informed consent was obtained from all participants, it
was waived for COVID-19 patients because their family members
were quarantined.

2.2. Airway mucus processing

The processing of airway mucus was conducted as previously
described (Wang et al, 2019). Two independent physicians who
were blind to clinical data performed the procedures. Supplemen-
tary Material 1 provides more information on airway mucus pro-
cessing.

2.3. Protein extraction and trypsin digestion

Airway mucus processing was performed as previously de-
scribed (Zhang et al, 2021). Supplementary Material 2 provides
more information on protein extraction and trypsin digestion.

2.4. Quantification of proteomic data and liquid chromatography
with tandem mass spectrometry analysis

Proteomic data were quantified and analyzed as previously de-
scribed (Zhang et al, 2021). For label-free quantification, protein
expression levels were estimated using the Intensity Based Ab-
solute Quantification (iBAQ) algorithm embedded in MaxQuant
(Schwanhausser et al, 2011). Detailed information is provided in
Supplementary Material 3.

The peptides were subjected to the nanospray ionization (NSI)
source followed by tandem mass spectrometry (MS/MS) in Q Exac-
tiveTM Plus (Thermo Fisher Scientific), which was connected online
to the Ultra-performance liquid chromatography (UPLC). Peptides
were selected for MS/MS analysis using an normalized collision en-
ergy (NCE) setting of 28, and the fragments were detected in the
Orbitrap at a resolution of 17,500. A principal components analy-
sis (PCA) was performed to visualize the separation of COVID-19
patients, COPD, asthma, and healthy controls.

2.5. Differential expression/pathway analysis

Differential gene expression analysis was performed in R
(v3.2.0) using the empirical Bayesian algorithm in the limma pack-
age. Up-regulated and down-regulated genes were defined using a
fold-change of >1.5 or <0.67 and a P value <0.05. The cutoff value
for fold-change was set at 1.2. The Gene Ontology (GO) annota-
tion proteome was constructed using data from the UniProt-GOA
database (http://www.ebi.ac. uk/GOA). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) database was used to identify the en-
riched pathways. Further hierarchical clustering based on the func-
tional classification of differentially expressed proteins (DEPs) was
visualized using the “heatmap.2” function from the “gplots” in R-
package. More information about pathway analysis is provided in
Supplementary Material 4.

2.6. Statistical analysis

Continuous variables were presented as median (IQR). Categor-
ical variables were presented as a percentage (%) of the total sam-
ple (n). All analyses were performed using the GraphPad Prism 5
software, and 2-sided P values. Statistical significance was set at a
P value <0.05.

3. Results
3.1. Clinical characteristics of participants

The clinical characteristics of COVID-19 patients, asthma, COPD,
and healthy controls are shown in Table 1. There was no significant
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Table 1

Demographic, clinical, laboratory and radiographic findings of patients
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COVID-19 Asthma COPD Healthy controls
N=5 N=5 N=5 N=5

Demographics and clinical characteristics
Age, years 70 (66-72) 69.6 (65-79) 68 (57-80) 69 (63-75)
Male 5 (100.0) 5 (100.0) 5 (100.0) 5 (40.0)
Death 0 0 0 0
ICU admission 5(100.0) 0 0 0
ICU length of stay, days 37 (10-43) — — -
Hospital length of stay, days 45 (41-48) — — —
Time from illness onset to 57 (53-68) — — -
hospital admission, days — —
Severe 5 (100.0) 0 0 0
Ever smoke 4 (80.0) 5 (100.0) 5 (100.0) 5 (40.0)
ARDS comorbidity 5 (100.0) 0 0 0
Respiratory rate 20 (14-20) — — -
> 24 breaths per minute 1 (20.0) — — —
Pulse >100 beats per minute 1 (20.0) — — -
0, pressure 82.8 (69.0-110.0) — — —
0, concentration 95.3 (93.3-95.4) — — —
Fever (temperature >37.3°C) 1 (20%) 0 0 0
Cough 4 (80.0) 5 (100.0) 5 (100.0) 0
Sputum 0 5 (100.0) 5 (100.0) 0
Myalgia 0 0 0 0
Fatigue 2 (40.0) 0 0 0
Diarrhea 0 0 0 0
Vomiting 0 0 0 0
Rhinobyon 0 4 (80.0) 2 (40.0) 0
Hemoptysis 0 0 0 0
Headache 0 2 (40.0) 1 (20.0) 0
Sore throat 1 (20.0) 4 (80.0) 4 (80.0) 0
Polypnea 5 (100.0) 4 (80.0) 4 (80.0) 0
Shiver 0 0 0 0
White blood cell count, x 10°/L 11.1 (7.30-12.8) 9.2+2.1 9.6+3.8 —
Lymphocyte count, x 10°/L 0.30 (0.25-0.55) 1.5+0.67 1.6+0.83 -
Monocyte count, x 10°/L 0.40 (0.35-0.65) 0.63+0.13 0.6+0.16 -
Platelet count, x 10°/L 117.0 (87.0-212.5) 221435 226432 —
Lactate dehydrogenase, U/L 397 (356-535) 191423 183+19 -
High-sensitivity cardiac 0.01 (0.005-0.03) 0.01+0.01 0.01+0.01 -
troponin I, pg/mL
Prothrombin time, s 15.7 (13.6-18.1) - — -
D-dimer, pg/mL 1.390 (0.741-4.667) — — -
IL-6, pg/mL 22.2 (9.40-60.0) — — —
Procalcitonin, ng/mL 0.27 (0.09-0.43) — — -
CRP, 2.7 (1.5-12.9) - - -
DBIL 4.1 (3.0-8.7) — — —
TBIL 13.6 (11.9-20.4) - - —
CK-MB 11.0 (7.0-18.0) - — -
Cr 77.0 (69.1-91.7) - - —
Imaging features

Consolidation 5 (100.0) 0 0 0

Ground-glass opacity 5(100.0) 1 (20.0) 1 (20.0) 0

Bilateral pulmonary infiltration 5 (100.0) 0 1 (20.0) 0

Data are presented as median (IQR), mean + SD, or n (%).

difference in baseline characteristics (age, sex, and smoking sta-
tus) between COVID-19, asthma, COPD, and healthy controls. In all
COVID-19 patients, laboratory findings revealed characteristic clini-
cal outcomes of SARS-CoV-2 infection, which were almost identical
to those reported in previous studies.

3.2. Proteomic profiling of airway mucus from all
participants

Airway mucus samples were obtained from critically ill COVID-
19 patients, asthma, COPD, and healthy control participants. Label-
free quantification of proteomic (PTM Biolabs) was used to ana-
lyze airway mucus from each participant. The airway mucus from
COVID-19 patients exhibited distinct proteomic patterns compared
with asthma, COPD, and healthy controls. Of note, 91 DEPs were
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identified between COVID-19 and healthy controls, 78 between
asthma and healthy controls, 66 between COPD and healthy con-
trols, 69 between COVID-19 and asthma, and 143 between COVID-
19 and COPD, as shown in Figure S1A. There were 2,257, 2,169,
2,093, and 2,175 proteins identified and quantified in the airway
mucus of COVID-19 patients, asthmatic patients, COPD patients,
and healthy controls, respectively (Figure S1B). The proteomics
data sets (including fold-change and P values for the 2 groups’
comparisons) are provided in Table S1-S3. PCA, the median rel-
ative SD (RSD) of all internal standards in each sample, protein
mass and coverage distribution, and protein sequence distribution
were calculated as part of the quality control analysis (Figure S1C-
F). The data of the current study were collected with a high degree
of consistency and reproducibility. Figure S2-S3 depicts a heatmap,
GO enrichment analysis, and KEGG pathway analysis for each pro-
teomics data set.
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Figure 2. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentiated expressed proteins (DEPs). A. GO
annotation for biological processes, cellular compartments, and molecular function; B. KEGG enrichment analysis. a. COVID-19 versus controls; b. COVID-19 versus asthma;

c. COVID-19 versus COPD. NCP; COPD, chronic obstructive pulmonary disease.

3.3. Identification and enrichment analyses of COVID-19 specific
proteins

3.3.1. Comparisons in COVID-19 versus controls, COVID-19 versus
COPD, and COVID -19 versus asthma (method 1)

When COVID-19 was compared with healthy controls, Venn
diagrams and volcano plots (Figure 1) indicated 91 dysregulated
DEPs (50 up-regulated and 41 down-regulated). GO enrichment
analysis showed that the significantly altered molecular function
terms were enriched in serine-type peptidase activity, serine-type
endopeptidase activity, and serine hydrolase activity. The biologi-
cal process terms are mainly comprised protein activation cascade
and leukocyte migration. Most of the proteins were in the extra-
cellular space and blood microparticles (Figure 2Aa). KEGG path-
way analysis demonstrated that there were 2 pathways enriched
in phenylalanine metabolism and 2-oxocarboxylic acid metabolism
(Figure 2Ba), whereas all the DEPs are presented in a heatmap
(Figure 3A).

When COVID-19 was compared with asthma, Venn and volcano
plots (Figure 1) showed that there were 46 up-regulated and 46
down-regulated DEPs. The GO enrichment analysis revealed sig-
nificant changes in molecular function terms such as serine-type
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peptidase activity, serine hydrolase activity, and (serine-type) en-
dopeptidase activity. Significantly altered biological process terms
included protein activation cascade, antimicrobial humoral re-
sponse, immune response, and regulation of defense response.
Most of them were located in the vesicle lumen and granule lu-
men (Figure 2Ab). The KEGG pathway analysis showed that these
DEPs were significantly enriched in complement and coagulation
cascades as well as in propanoate metabolism (Figures 2Bb and
3B).

The comparison between COVID-19 and COPD groups showed
the presence of 143 DEPs (Figure 1) in the mucus obtained
from COVID-19 patients, including 56 up-regulated and 87 down-
regulated proteins. The GO functional enrichment analysis revealed
that protein activation cascade, antimicrobial humoral response,
cellular response to interleukin-1 (IL-1), immunoglobulin medi-
ated immune response, B cell-mediated immunity, regulation of
inflammatory response, and receptor-mediated response were all
enriched. Most of these proteins were in the extracellular space,
vesicle lumen, and the vacuolar lumen. The molecular functions of
these proteins were primarily distributed among 4-function pro-
cesses: acetylgalactosaminyl transferase activity, endonuclease ac-
tivity, carbohydrate-binding, and actin-binding (Figure 2Ac). Ac-
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Figure 3. Heatmap showing the differentiated expressed proteins (DEPs). A. COVID-19 versus controls; B. COVID-19 versus asthma; C. COVID-19 versus COPD. NCP; COPD,

chronic obstructive pulmonary disease.

cording to the KEGG pathway analysis, these DEPs were signifi-
cantly enriched in the folate biosynthesis, hippo signaling path-
way, glucagon signaling pathway, and tight junction (Figures 2Bc
and 3C).

3.3.2. Screening of COVID-19 specific proteins based on method 1

A total of 11 overlapped DEPs were identified in COVID-19 pa-
tients. They were discovered from the intersection of COVID-19
versus controls, COVID-19 versus asthma, and COVID-19 versus
COPD. As illustrated in Figure 4A-B, pathway and network enrich-
ment analyses revealed that these intersecting DEPs were primar-
ily associated with complement and coagulation cascades, platelet
activation, Staphylococcus aureus infection, nicotinate, and nicoti-
namide metabolism, and metabolic pathways. According to the dif-
ferential significance levels, the COVID-19 specific proteins were
IGLV3-19, IGLV3-1, FGB, FGG, C9, PRTN3, HBB, HBA1, COTL1, NAPRT,
and BPIFB1 (Figure 4C).

3.3.3. Comparisons between COVID-19 versus controls, COPD versus
controls, and asthma versus controls (method 2)

A comparison between COVID-19 patients and controls revealed
91 DEPs as previously reported (Figure 5, Figure 6Aa, 6Ba, and
Figure 7A). For asthma versus controls, 78 DEPs were significantly
expressed, with 27 being up-regulated (Figure 5 and Figure 7B). GO
enrichment analysis was performed to annotate the putative func-
tional implications of these differently grouped DEPs. The results
revealed that (L-) lactate dehydrogenase activity was enriched. In
addition, most of these proteins were in the extracellular space and
the tertiary granule lumen. The molecular function of these pro-
teins was primarily distributed among 3 function processes: reg-
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ulation of (ion) transmembrane transport, regulation of ion trans-
port, and leukocyte migration (Figure 6Ab). KEGG pathway analysis
revealed that these DEPs were significantly enriched in the hippo
signaling pathway and glucagon signaling pathway (Figure 6Bb).
There were 66 DEPs found in COPD versus controls, with
46 up-regulated and 20 down-regulated proteins (Figure 5 and
Figure 7C). GO enrichment analysis showed that the signifi-
cantly altered molecular function terms were enriched in iron
ion binding and proteoglycan binding. The biological process
terms comprised granulocyte/neutrophil activation, neutrophil-
mediated immunity, response to tumor necrosis factor, and an-
timicrobial humoral response. Most of these proteins were found
within the organelle/membrane-enclosed/intracellular organelle lu-
men (Figure 6Ac). KEGG pathway analysis revealed that there were
2 pathways enriched in salivary secretion, cysteine and methionine
metabolism, antigen processing, and presentation (Figure 6Bc).

3.3.4. Screening of COVID-19 specific proteins according to method 2
There were 59 DEPs detected in the mucus of COVID-19 pa-
tients compared with controls, excluding any DEPs detected in
COPD versus controls or asthma versus controls. As indicated in
Figure 8A, pathway and network enrichment analysis revealed that
the intersected DEPs were largely associated with metabolic path-
ways, lysosome, phagosome, and NOD-like receptor signaling path-
ways. The selected proteins included CXCL1, DEFA3, HBB, ICAMI,
LAMP2, RAC1, and TXN, and were chosen because they were
present in at least 2 pathways at a high frequency (Figure 8B).

3.3.5. Screening of final COVID-19 specific proteins
COVID-19 patients’ specific proteins were defined as the in-
tersection of specific DEPs in COVID-19 samples compared with
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healthy/disease controls (COVID-19 vs controls, COVID-19 vs COPD, were identified, including FGB, FGG, C9, PRTN3, HBB, HBA1, IGLV3-

and COVID-19 vs asthma). Simultaneously, any DEPs found in COPD 19, and COTL1 (Figure S4).

versus controls or asthma versus controls were excluded from the

analysis. For example, the filtered COVID-19 specific proteins were 4. Discussion

differentially expressed between COVID-19 and controls but not

between COPD and controls or asthma and controls. The COVID-19 pandemic is a major threat to public health
Finally, as determined by the 2 aforementioned techniques, the  and the social-economic well-being of people globally. There is

8 overlapping differential proteins specific to COVID-19 patients  currently no effective treatment strategy to prevent the death of
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Figure 6. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentiated expressed proteins (DEPs). A. GO
annotation for biological process, cellular compartment, and molecular function, respectively; B. KEGG enrichment analysis. a. COVID-19 versus healthy controls; b. COPD

versus healthy controls; c. Asthma versus healthy controls. NCP; COPD, chronic obstructive pulmonary disease.

NCP vs CTL

SERPINCI
SERPINAL
FGB
FGG
HBB

HBAI
SERPINA3
IGLV3-1

N1 N2 N3 N4 N5 C1 C2 C3 C4 C5

Figure 7. Heatmap analysis of differentiated expressed proteins (DEPs). A. COVID-19 versus healthy controls; B. Asthma versus healthy controls; C. COPD versus healthy

B. Asthma vs CTL

cLcal
2.5 wmucsac

LK11
2.0

IGHV3-7
1.5

1.0 CEACAMS

IGHAI
0.5

CTss
PLTP

BPIFBI
CDHI

IGKV3-15
-0.5 iHvass

IGLVI-47
-1.0

-1.5 BrFal
APOH

-2.(0 RNASE2
SERPINA4
GPRCSA
SERPINAS

Al A2 A3 A4 A5 C1 C2 C3 C4 C5

controls. NCP; COPD, chronic obstructive pulmonary disease.

264

0

-0.5
-1.0
-1.5
-2.0

C. COPD vs CTL
MAN2BI
CFB
PRKCSH
GNS
AGA
HSPAS
cTss
PDIA3
CALR
STX7
LMNBI
SERPINBIO
MARCKS
LCN2
CcAMP
GoTI
PRCP
UBAS2
HIS
RNASE2
OLFM4
AZUI
Gss
™NC
CHI3LI
RNASE3
SERBPI
LMNA
MUCSAC
SERPINAS
ANXAT
CEACAMS
PPIB
PSMA4
EPX
PRG2
PSMAT
Cliorfs4
MPO
HACI
EML2
FTHI
IGLV3-1
KRTIS
TXNRDI
cPVL
GMFG
UBAI
AHCY
LYPLAI
AHSAL
GNAI4
CHST6
BLVRB
SAMHDI
ESD
CORO7
PFKP
HNRNPHI
CAB39
csT4
BPIFA2
LCNI
csT2
PRBI
PLODI

DI D2 D3 D4 D5 Cl1 C2 C3 C4 C5

2:5
2.0
1.5
1.0
0.5

-0.5
-1.0
-1.5
-2.0



Z. Zhang, E Lin, E Liu et al.

B

IGHV3-74  AOAOB4J1X5

International Journal of Infectious Diseases 116 (2022) 258-267

000533
014672

P19105

075367

P01008

P01009

PO1011

POI019

P01703

POI714

PO1717

P02675

P02679

P02748

P02763

P02765

P04083

P04114

Q99878

P05362 | |

POG312 ]

P09341

P10599

PII6S4 [

PI13473

P13489

P21291

P22304

P23142

P24158

P30838

P37802

P48735

P359666 | |
P62495

P63000

P68871

P69905

Q02413

QU2818

Q13421

Q14005

Q14019

Q14118

Q16378

Q16651

QS3FA7

Q6ZVXT

Q86SF2

Q8TD55

QIHC35

QIUBG3
QIUBWS

QouIn2

\\@S’ “Q‘*? . %@u‘é’%@ ¢S “’:\Ws\“’%&s\w& 5\5 s\bs\k’ ﬁﬁ '-P\%
«”«‘&W*&”v\*&”&”@«?&W\\"@’ EECEEE e
1CAMI e)4 LAMP2 ) . RACI g)‘ TXN
B l s lhe " ‘e x ¥

A CTL Asthma COPD NCP
I - [
| CHLI
| ADAMI0
0 | MYLI2A
| H2AFY
-2 [ | SERPINC1
[ | SERPINAI
4 [ SERPINA3
[ AGT
6 ] | IGLVI-40
I IGLV3-19
[ IGLV3-25
d - - e
[ FGG
B o
| ORMI
| [ | AHSG
| ANXAL
] [ APOB
| H2AC14
| ICAMI
| | IGKV4-1
| | CXCL1
| TXN
| SCGBIAL
[ LAMP2
RNHI
CSRPL
DS
FBLNI
[ PRTN3
[ | | ALDH3A1
TAGLN2
[ IDH2
[ DEFA3
ETF1
RACI
. uBB
i B HBAI
DSGI
] 4‘ NUCBI
| MSLN
IL16
I | D H COTLI
[ DAGI
[ | PRR4
[ [ || PRSSS
| TPS313
[ | NCCRP1
| | GALNT?
| 1 PLEKHO2
[ EML4
}» | CRNN
. Hl | Bl BIN2
ATPOVIH
| cDV3
[ PACSIN2
| HEBP2
| [ FCGBP
C cxcL HBB d),
o o
& &S L & &

N N
j" (p'lv ES

N { N
& &S S & &S & &S

Figure 8. Analysis of differentiated expressed proteins (DEPs) between different groups. A. Hierarchical clustering analysis of DEPs. Heatmap of the top 59 DEPs. The red color
in the heatmap denotes higher gene expression, and the blue color in the heatmap denotes lower gene expression. Target proteins symbols for the 59 DEPs are included; B.
Pathways enrichment; C. The expression level change (original value) of the 7 selected proteins with significance is indicated by the P value. NCP; COPD, chronic obstructive

pulmonary disease.

severely ill COVID-19 patients. Therefore, any lead to the discovery
of therapeutic drug targets for critically ill COVID-19 patients is vi-
tal. In this study, compared with asthma and COPD, proteomic se-
quencing identified 8 key characteristics of the proteomic changes
associated with hospitalized patients seriously infected with SARS-
CoV-2.

Around 20% to 51% of COVID-19 patients were associated with
at least 1 comorbidity (Guan et al, 2020b, Huang et al, 2020). The
3 most prevalent comorbidities were hypertension, diabetes, and
coronary heart disease, with frequencies ratios of 10%-30%, 10%-
20%, and 7%-15%, respectively (Guan et al, 2020a, Wang et al, 2020,
Zhou et al, 2020), which contributed to poorer clinical outcomes.
It is reported that chronic respiratory disorders, including COPD
and asthma, may predispose patients to SARS-CoV-2 infection
(Guan et al, 2020b, Huang et al, 2020). Alternatively, the poor
recognition by the general population and the lack of spirometric
testing may result in the under-diagnosis of respiratory diseases
(Guan et al, 2020a). For instance, it was reported that the frequen-
cies of COVID-19 with COPD were 1.5% to 5% (Grasselli et al, 2020,
Zhang et al, 2020) and for asthma 0% to 12.5%.!® Evidence suggests

that the intrinsic pathophysiological features of COPD and asthma
may modify the response to severe SARS-CoV-2 infection made
possible by ACE2 expression (Song et al, 2021). Therefore, it is
necessary to understand the effects of SARS-CoV-2 on unique pro-
teomic changes compared with COPD and asthma, which may im-
ply further research of molecular targets directed at specific ther-
apy.

In this study, the 8 overlapped differential specific proteins
were found in COVID-19 cases after intersecting. There was up-
regulation of proteins, including FGB, FGG, C9, PRTN3, HBB, HBA1,
and IGLV3-19, and down-regulation of COTL1 proteins in COVID-
19 patients compared with the other groups. Pathway and net-
work enrichment analysis revealed that the DEPs were mostly as-
sociated with complement and coagulation cascades, platelet ac-
tivation pathways, or iron metabolism and anemia- related path-
ways. In the present study, an elevated complement system pro-
tein C9 was identified. It is reported that the complement system
plays an important role in linking innate and adaptive immunity
and that inflammation could further aggravate lung injury. Com-
plement activation is detected cumulatively in conditions such as
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Acute respiratory distress syndrome (ARDS), pneumonia, asthma,
pulmonary arterial hypertension, and COPD (Sarma et al, 2006).
Evidence suggests that suppression of complement system protein
C9 appears to be effective immunotherapy for the SARS-infected
mouse model (Gralinski et al, 2018). In addition, FGB and FGG are
crucial for blood clot formation (coagulation), and this study re-
vealed that the 2 proteins were up-regulated. Previous proteomic
study of plasma exosomes demonstrated that FGG and FGB lev-
els were significantly higher in the malignant pulmonary nodules
group than in the benign group (Kuang et al, 2019). FGB and FGG
were 2 of the key epithelial-mesenchymal transition effectors asso-
ciated with cell adhesion and cellular communication in lung can-
cer. Therefore, we indicate that critically ill COVID-19 patients may
benefit from the suppression of the complement and coagulation
systems.

Iron metabolism and anemia may play pivotal roles in mul-
tiple organ dysfunction syndromes in COVID-19. The hemoglobin
proteins (HBB, HBA1, and HBA2) combine to form the adult
hemoglobin molecule (HbA), which is a heterotetramer of 2 «
and two B-globin chains. The dysregulated hemoglobin proteins
result in an imbalanced globin chain synthesis and consequently
impaired erythropoiesis. The severity of COVID-19 is heavily in-
fluenced by the degree of chain imbalance. Survival is dependent
on regular blood transfusions in the worst-case scenario, which
results in transfusional iron overload and secondary multi-organ
damage due to iron toxicity. Understanding the relationship be-
tween HBB and HBA1 proteins and the severity of COVID-19 and
whether these associations differ by age, sex, and the presence of
chronic conditions is critical in the management of COVID-19.

Mucus is an integral part of respiratory physiology. It protects
the respiratory tract by forming a physical barrier to inhaled aller-
gens and pathogens. This study established that mucus accumula-
tion contributed to recurrent airway infection, resulting in further
obstruction. The inflammatory cytokine storm greatly contributes
to the more serious clinical manifestations and worse outcomes in
COVID-19 patients. It is particularly potent in accumulating mucus
because it initiates many inflammatory cascades associated with
mucus production. Numerous studies have demonstrated that the
SARS-CoV-2 infection can result in an allergic reaction in the res-
piratory tract mucosa, which activates mucin secretion and mod-
ulates its chemical structure to enable the virus to enter the cells
(Khan et al, 2021). Mucus accumulation can contribute to worse
comorbidities indicated in COVID-19 patients, such as venous en-
gorgement and pulmonary edema. Thus, it is important to under-
stand the proteomic expression and functional changes of mucus
to develop new therapeutic approaches.

In addition, this retrospective study identified several risk fac-
tors for COVID-19 patients. For example, increased levels of white
blood cell count, D-dimer, blood IL-6, and lactate dehydroge-
nase, as well as lymphocytopenia, were all observed in severely
ill COVID-19 patients. These risk factors were associated with
COVID-19 outcomes and corroborated previously published studies
(Zhang et al, 2021). In this study, there were no significant differ-
ences in age, gender, and smoking status among COVID-19, asthma,
COPD, and healthy controls.

Our study has some limitations. First, the airway mucus ob-
tained from COVID-19 patients using bronchoscopy may be a mix-
ture of secretions produced by airway and alveolar epithelial cells
in response to the virus and inflammatory mediators. In contrast,
induced sputum was used for COPD, asthma, and control partic-
ipants, all of whom may have variable content and sputum, cell
count. Second, because the study design was retrospective, labora-
tory tests may have been underestimated in the medical records
analyzed, making it difficult to investigate the effect on outcomes.
Third, information on medications, disease control status, and phe-
notypes of diseases before admissions was incomplete. Further-
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more, the effect of these factors on the risk of SASR-CoV-2 infec-
tion and disease expression needs further exploration. Finally, the
sample size was relatively small. Prospect studies on a larger pop-
ulation should be conducted.

5. Conclusion

Airway mucus proteomic databases are highly valuable re-
sources for elucidating the host proteomic changes associated with
severe SARS-CoV-2 infection. This study analyzed proteins from
COVID-19 patients, COPD, asthma, and controls to identify the
unique proteomic molecular signatures associated with SARS-CoV-
2 infection. This study contributes to our understanding of the
pathological changes associated with COVID-19 and forms the basis
for the development of potential therapeutic strategies.
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