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Objective: The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research 

about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is 

scarce. 

Design: We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients 

with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease 

(COPD), asthma, and healthy controls. 

Results: Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs) 

were found in different com parison groups. In comparison with COPD, asthma, and controls, 11 proteins 

were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and 

asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings 

revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3, 

HBB, HBA1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with 

complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related path- 

ways. 

Conclusions: This study provides fundamental data for identifying COVID-19–specific proteomic changes 

in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

COVID-19, which is caused by SARS-CoV-2, is a threat to global 

ealth and health care systems. Currently, the disease is spread- 

ng rapidly around the world. According to the World Health Orga- 

ization’s situation report for June 9, 2021, there had been more 

han 174,801,871 confirmed COVID-19 cases and approximately 

,756,350 COVID-19 related deaths worldwide. In addition, the re- 

ort revealed that the global severity rate of COVID-19 ranges 
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irst Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Tel: 86- 
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etween 5% to 20%, with the rates varying from region to re- 

ion. For example, in New York, 1,151 patients (20%) were diag- 

osed with severe COVID-19 and required mechanical ventilation 

 Richardson et al, 2020 ). In Italy, the proportion of intensive care 

nit (ICU) admissions was between 5% and 12% of the total COVID- 

9 cases ( Livingston and Bucher, 2020 ). According to the Chinese 

enter for Disease Control and Prevention, 19% of COVID-19 pa- 

ients developed severe or critical illness, in a study encompassing 

4,415 COVID-19 cases ( Wu and McGoogan, 2020 ). Surprisingly, the 

ortality rate of critically ill COVID-19 cases was more than 80% 

 Yang et al, 2020 ). 

To date, there are still gaps in the mechanistic understanding 

f the disease process as reported by ( Bhaskaran et al., 2022 ). For

nstance, data about the biochemical and molecular alterations as- 

ociated with the severe form of COVID-19 are scarce. In addi- 
ty for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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ion, there is evidence that chronic respiratory diseases, including 

hronic obstructive pulmonary disease (COPD) and asthma, may 

redispose patients to SARS-CoV-2 infection. Nevertheless, the ef- 

ects of COPD and asthma on disease expression and outcomes, as 

ell as the potential underlying processes, are poorly investigated 

n COVID-19 patients. 

The formation of mucus plugs has been observed in critically 

ll COVID-19 patients. Clinical findings show that the mucus plugs 

ause airway obstruction and respiratory failure in a significant 

roportion of affected patients ( Lu et al, 2021 , Zhang et al, 2021 ).

n this study, it was speculated that this mucus is a mixture of 

ecretions produced by airway and alveolar epithelial cells in re- 

ponse to viruses and inflammatory mediators, and the molecular 

hanges may be indicative of the pathological changes of COVID- 

9. A previous study reported that COPD and asthma were associ- 

ted with severe illness in COVID-19 patients ( Gao et al, 2021 ). In

his study, proteomic analyses of airway mucus from severe COVID- 

9, chronic obstructive pulmonary disease (COPD), and asthma pa- 

ients were performed. The study contributes fundamental infor- 

ation to the understanding of the pathogenesis of critically ill 

OVID-19 patients and their associated comorbidities, which can 

e used to develop future targeted therapeutic approaches. 

. Material and Methods 

.1. Study design and clinical data collection 

Five critically ill COVID-19 patients were diagnosed with 

aboratory-confirmed SARS-CoV-2 infection by the local health au- 

horities. COVID-19 patients were classified into subgroups based 

n their different clinical manifestations using the Chinese Govern- 

ent Diagnosis and Treatment Guideline (Trial Seventh Version). 

evere patients were characterized by respiratory distress and a 

espiratory rate ≥30 times/min, which corresponds to an oxygen 

aturation ≤93% in resting state or arterial blood oxygen partial 

ressure (PaO 2 )/oxygen concentration (FiO2) ≤300 mm Hg (1 mm 

g = 0.133 kPa). Patients classified as critically ill were those who 

ad respiratory failure requiring mechanical ventilation, experi- 

nced shock, or required ICU care. The COPD inclusion and exclu- 

ion criteria were adapted as previously described ( Lu et al, 2016 ). 

sthma was defined according to Global Strategy for Asthma Man- 

gement and Prevention 2018 ( Bateman et al., 2018 ). The change in 

orced expiratory volume in 1 second (FEV 1 ) was used as a diag- 

ostic tool. An increase in FEV 1 , in response to bronchodilator re- 

ersibility ( �FEV 1 BDR) following inhalation of 400 μg salbutamol, 

as considered significant if it was ≥12% and ≥200 mL compared 

ith the initial FEV 1 . 

Five participants who were negative for the SARS-CoV-2 nucleic 

cid test without any lung disease were included as healthy con- 

rols. Meanwhile, 5 COPD patients and 5 asthma patients were des- 

gnated as disease controls. To aspirate the airway mucus, the crit- 

cally ill COVID-19 patients presenting with expectoration difficulty 

nd dyspnea underwent bronchoscopy using a PENTAX FB-15BS 

ortable fiber bronchoscope (PENTAX Medical Shanghai Co, Ltd, 

hanghai, China) via tracheal intubation. Airway mucus in COPD, 

sthma, and healthy control participants was induced using hyper- 

onic (3%) saline solution inhalation administered via an ultrasonic 

ebulizer. 

Clinical charts, nursing records, laboratory findings, and chest 

maging of the COVID-19 patients were reviewed from January 

6, 2020, to February 15, 2020. Electronic medical records were 

sed to acquire epidemiological, clinical, laboratory, and radiologi- 

al data. Two researchers independently reviewed the data collec- 

ion forms to ensure that the collected data was accurate. All the 

rocedures were approved by the Ethics Committee of the First 

ffiliated Hospital of Guangzhou Medical University (No.2020-65). 
259 
lthough informed consent was obtained from all participants, it 

as waived for COVID-19 patients because their family members 

ere quarantined. 

.2. Airway mucus processing 

The processing of airway mucus was conducted as previously 

escribed ( Wang et al, 2019 ). Two independent physicians who 

ere blind to clinical data performed the procedures. Supplemen- 

ary Material 1 provides more information on airway mucus pro- 

essing. 

.3. Protein extraction and trypsin digestion 

Airway mucus processing was performed as previously de- 

cribed ( Zhang et al, 2021 ). Supplementary Material 2 provides 

ore information on protein extraction and trypsin digestion. 

.4. Quantification of proteomic data and liquid chromatography 

ith tandem mass spectrometry analysis 

Proteomic data were quantified and analyzed as previously de- 

cribed ( Zhang et al, 2021 ). For label-free quantification, protein 

xpression levels were estimated using the Intensity Based Ab- 

olute Quantification (iBAQ) algorithm embedded in MaxQuant 

 Schwanhausser et al, 2011 ). Detailed information is provided in 

upplementary Material 3. 

The peptides were subjected to the nanospray ionization (NSI) 

ource followed by tandem mass spectrometry (MS/MS) in Q Exac- 

iveTM Plus (Thermo Fisher Scientific), which was connected online 

o the Ultra-performance liquid chromatography (UPLC). Peptides 

ere selected for MS/MS analysis using an normalized collision en- 

rgy (NCE) setting of 28, and the fragments were detected in the 

rbitrap at a resolution of 17,500. A principal components analy- 

is (PCA) was performed to visualize the separation of COVID-19 

atients, COPD, asthma, and healthy controls. 

.5. Differential expression/pathway analysis 

Differential gene expression analysis was performed in R 

v3.2.0) using the empirical Bayesian algorithm in the limma pack- 

ge. Up-regulated and down-regulated genes were defined using a 

old-change of ≥1.5 or ≤0.67 and a P value < 0.05. The cutoff value 

or fold-change was set at 1.2. The Gene Ontology (GO) annota- 

ion proteome was constructed using data from the UniProt-GOA 

atabase (http://www.ebi.ac. uk/GOA). The Kyoto Encyclopedia of 

enes and Genomes (KEGG) database was used to identify the en- 

iched pathways. Further hierarchical clustering based on the func- 

ional classification of differentially expressed proteins (DEPs) was 

isualized using the “heatmap.2” function from the “gplots” in R- 

ackage. More information about pathway analysis is provided in 

upplementary Material 4. 

.6. Statistical analysis 

Continuous variables were presented as median (IQR). Categor- 

cal variables were presented as a percentage (%) of the total sam- 

le (n). All analyses were performed using the GraphPad Prism 5 

oftware, and 2-sided P values. Statistical significance was set at a 

 value < 0.05. 

. Results 

.1. Clinical characteristics of participants 

The clinical characteristics of COVID-19 patients, asthma, COPD, 

nd healthy controls are shown in Table 1 . There was no significant 
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Table 1 

Demographic, clinical, laboratory and radiographic findings of patients 

COVID-19 Asthma COPD Healthy controls 

N = 5 N = 5 N = 5 N = 5 

Demographics and clinical characteristics 

Age, years 70 (66-72) 69.6 (65-79) 68 (57-80) 69 (63-75) 

Male 5 (100.0) 5 (100.0) 5 (100.0) 5 (40.0) 

Death 0 0 0 0 

ICU admission 5 (100.0) 0 0 0 

ICU length of stay, days 37 (10-43) — — —

Hospital length of stay, days 45 (41-48) — — —

Time from illness onset to 57 (53-68) — — —

hospital admission, days — —

Severe 5 (100.0) 0 0 0 

Ever smoke 4 (80.0) 5 (100.0) 5 (100.0) 5 (40.0) 

ARDS comorbidity 5 (100.0) 0 0 0 

Respiratory rate 20 (14-20) — — —

> 24 breaths per minute 1 (20.0) — — —

Pulse ≥100 beats per minute 1 (20.0) — — —

O 2 pressure 82.8 (69.0-110.0) — — —

O 2 concentration 95.3 (93.3-95.4) — — —

Fever (temperature ≥37.3 °C) 1 (20%) 0 0 0 

Cough 4 (80.0) 5 (100.0) 5 (100.0) 0 

Sputum 0 5 (100.0) 5 (100.0) 0 

Myalgia 0 0 0 0 

Fatigue 2 (40.0) 0 0 0 

Diarrhea 0 0 0 0 

Vomiting 0 0 0 0 

Rhinobyon 0 4 (80.0) 2 (40.0) 0 

Hemoptysis 0 0 0 0 

Headache 0 2 (40.0) 1 (20.0) 0 

Sore throat 1 (20.0) 4 (80.0) 4 (80.0) 0 

Polypnea 5 (100.0) 4 (80.0) 4 (80.0) 0 

Shiver 0 0 0 0 

White blood cell count, × 10 9 /L 11.1 (7.30-12.8) 9.2 ±2.1 9.6 ±3.8 —

Lymphocyte count, × 10 9 /L 0.30 (0.25-0.55) 1.5 ±0.67 1.6 ±0.83 —

Monocyte count, × 10 9 /L 0.40 (0.35-0.65) 0.63 ±0.13 0.6 ±0.16 —

Platelet count, × 10 9 /L 117.0 (87.0-212.5) 221 ±35 226 ±32 —

Lactate dehydrogenase, U/L 397 (356-535) 191 ±23 183 ±19 —

High-sensitivity cardiac 0.01 (0.005-0.03) 0.01 ±0.01 0.01 ±0.01 —

troponin I, pg/mL 

Prothrombin time, s 15.7 (13.6-18.1) — — —

D-dimer, μg/mL 1.390 (0.741-4.667) — — —

IL-6, pg/mL 22.2 (9.40-60.0) — — —

Procalcitonin, ng/mL 0.27 (0.09-0.43) — — —

CRP, 2.7 (1.5-12.9) — — —

DBIL 4.1 (3.0-8.7) — — —

TBIL 13.6 (11.9-20.4) — — —

CK-MB 11.0 (7.0-18.0) — — —

Cr 77.0 (69.1-91.7) — — —

Imaging features 

Consolidation 5 (100.0) 0 0 0 

Ground-glass opacity 5 (100.0) 1 (20.0) 1 (20.0) 0 

Bilateral pulmonary infiltration 5 (100.0) 0 1 (20.0) 0 

Data are presented as median (IQR), mean ± SD, or n (%). 
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ifference in baseline characteristics (age, sex, and smoking sta- 

us) between COVID-19, asthma, COPD, and healthy controls. In all 

OVID-19 patients, laboratory findings revealed characteristic clini- 

al outcomes of SARS-CoV-2 infection, which were almost identical 

o those reported in previous studies. 

.2. Proteomic profiling of airway mucus from all 

articipants 

Airway mucus samples were obtained from critically ill COVID- 

9 patients, asthma, COPD, and healthy control participants. Label- 

ree quantification of proteomic (PTM Biolabs) was used to ana- 

yze airway mucus from each participant. The airway mucus from 

OVID-19 patients exhibited distinct proteomic patterns compared 

ith asthma, COPD, and healthy controls. Of note, 91 DEPs were 
260 
dentified between COVID-19 and healthy controls, 78 between 

sthma and healthy controls, 66 between COPD and healthy con- 

rols, 69 between COVID-19 and asthma, and 143 between COVID- 

9 and COPD, as shown in Figure S1A. There were 2,257, 2,169, 

,093, and 2,175 proteins identified and quantified in the airway 

ucus of COVID-19 patients, asthmatic patients, COPD patients, 

nd healthy controls, respectively (Figure S1B). The proteomics 

ata sets (including fold-change and P values for the 2 groups’ 

omparisons) are provided in Table S1-S3. PCA, the median rel- 

tive SD (RSD) of all internal standards in each sample, protein 

ass and coverage distribution, and protein sequence distribution 

ere calculated as part of the quality control analysis (Figure S1C- 

). The data of the current study were collected with a high degree 

f consistency and reproducibility. Figure S2-S3 depicts a heatmap, 

O enrichment analysis, and KEGG pathway analysis for each pro- 

eomics data set. 
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Figure 1. Protein analysis shows proteins unique to COVID-19 patients (11 overlap proteins): A. Venn plot showing identification of the COVID-19 specific proteins among 

COVID-19 versus controls, COVID-19 versus asthma, and COVID-19 versus COPD; B. Volcano plot, a. COVID-19 versus controls; b. COVID-19 versus asthma; c. COVID-19 versus 

COPD. Blue: down-regulated proteins; red: up-regulated proteins. NCP;novel coronavirus pneumonia. COPD, chronic obstructive pulmonary disease. 

Figure 2. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentiated expressed proteins (DEPs). A. GO 

annotation for biological processes, cellular compartments, and molecular function; B. KEGG enrichment analysis. a. COVID-19 versus controls; b. COVID-19 versus asthma; 

c. COVID-19 versus COPD. NCP; COPD, chronic obstructive pulmonary disease. 
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.3. Identification and enrichment analyses of COVID-19 specific 

roteins 

.3.1. Comparisons in COVID-19 versus controls, COVID-19 versus 

OPD, and COVID -19 versus asthma (method 1) 

When COVID-19 was compared with healthy controls, Venn 

iagrams and volcano plots ( Figure 1 ) indicated 91 dysregulated 

EPs (50 up-regulated and 41 down-regulated). GO enrichment 

nalysis showed that the significantly altered molecular function 

erms were enriched in serine-type peptidase activity, serine-type 

ndopeptidase activity, and serine hydrolase activity. The biologi- 

al process terms are mainly comprised protein activation cascade 

nd leukocyte migration. Most of the proteins were in the extra- 

ellular space and blood microparticles ( Figure 2 Aa). KEGG path- 

ay analysis demonstrated that there were 2 pathways enriched 

n phenylalanine metabolism and 2-oxocarboxylic acid metabolism 

 Figure 2 Ba), whereas all the DEPs are presented in a heatmap 

 Figure 3 A). 

When COVID-19 was compared with asthma, Venn and volcano 

lots ( Figure 1 ) showed that there were 46 up-regulated and 46 

own-regulated DEPs. The GO enrichment analysis revealed sig- 

ificant changes in molecular function terms such as serine-type 
261 
eptidase activity, serine hydrolase activity, and (serine-type) en- 

opeptidase activity. Significantly altered biological process terms 

ncluded protein activation cascade, antimicrobial humoral re- 

ponse, immune response, and regulation of defense response. 

ost of them were located in the vesicle lumen and granule lu- 

en ( Figure 2 Ab). The KEGG pathway analysis showed that these 

EPs were significantly enriched in complement and coagulation 

ascades as well as in propanoate metabolism ( Figures 2 Bb and 

B). 

The comparison between COVID-19 and COPD groups showed 

he presence of 143 DEPs ( Figure 1 ) in the mucus obtained 

rom COVID-19 patients, including 56 up-regulated and 87 down- 

egulated proteins. The GO functional enrichment analysis revealed 

hat protein activation cascade, antimicrobial humoral response, 

ellular response to interleukin-1 (IL-1), immunoglobulin medi- 

ted immune response, B cell-mediated immunity, regulation of 

nflammatory response, and receptor-mediated response were all 

nriched. Most of these proteins were in the extracellular space, 

esicle lumen, and the vacuolar lumen. The molecular functions of 

hese proteins were primarily distributed among 4-function pro- 

esses: acetylgalactosaminyl transferase activity, endonuclease ac- 

ivity, carbohydrate-binding, and actin-binding ( Figure 2 Ac). Ac- 
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Figure 3. Heatmap showing the differentiated expressed proteins (DEPs). A. COVID-19 versus controls; B. COVID-19 versus asthma; C. COVID-19 versus COPD. NCP; COPD, 

chronic obstructive pulmonary disease. 
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ording to the KEGG pathway analysis, these DEPs were signifi- 

antly enriched in the folate biosynthesis, hippo signaling path- 

ay, glucagon signaling pathway, and tight junction ( Figures 2 Bc 

nd 3C). 

.3.2. Screening of COVID-19 specific proteins based on method 1 

A total of 11 overlapped DEPs were identified in COVID-19 pa- 

ients. They were discovered from the intersection of COVID-19 

ersus controls, COVID-19 versus asthma, and COVID-19 versus 

OPD. As illustrated in Figure 4 A-B, pathway and network enrich- 

ent analyses revealed that these intersecting DEPs were primar- 

ly associated with complement and coagulation cascades, platelet 

ctivation, Staphylococcus aureus infection, nicotinate, and nicoti- 

amide metabolism, and metabolic pathways. According to the dif- 

erential significance levels, the COVID-19 specific proteins were 

GLV3-19, IGLV3-1, FGB, FGG, C9, PRTN3, HBB, HBA1, COTL1, NAPRT, 

nd BPIFB1 ( Figure 4 C). 

.3.3. Comparisons between COVID-19 versus controls, COPD versus 

ontrols, and asthma versus controls (method 2) 

A comparison between COVID-19 patients and controls revealed 

1 DEPs as previously reported ( Figure 5 , Figure 6 Aa, 6Ba, and

igure 7 A). For asthma versus controls, 78 DEPs were significantly 

xpressed, with 27 being up-regulated ( Figure 5 and Figure 7 B). GO 

nrichment analysis was performed to annotate the putative func- 

ional implications of these differently grouped DEPs. The results 

evealed that (L-) lactate dehydrogenase activity was enriched. In 

ddition, most of these proteins were in the extracellular space and 

he tertiary granule lumen. The molecular function of these pro- 

eins was primarily distributed among 3 function processes: reg- 
262 
lation of (ion) transmembrane transport, regulation of ion trans- 

ort, and leukocyte migration ( Figure 6 Ab). KEGG pathway analysis 

evealed that these DEPs were significantly enriched in the hippo 

ignaling pathway and glucagon signaling pathway ( Figure 6 Bb). 

There were 66 DEPs found in COPD versus controls, with 

6 up-regulated and 20 down-regulated proteins ( Figure 5 and 

igure 7 C). GO enrichment analysis showed that the signifi- 

antly altered molecular function terms were enriched in iron 

on binding and proteoglycan binding. The biological process 

erms comprised granulocyte/neutrophil activation, neutrophil- 

ediated immunity, response to tumor necrosis factor, and an- 

imicrobial humoral response. Most of these proteins were found 

ithin the organelle/membrane-enclosed/intracellular organelle lu- 

en ( Figure 6 Ac). KEGG pathway analysis revealed that there were 

 pathways enriched in salivary secretion, cysteine and methionine 

etabolism, antigen processing, and presentation ( Figure 6 Bc). 

.3.4. Screening of COVID-19 specific proteins according to method 2 

There were 59 DEPs detected in the mucus of COVID-19 pa- 

ients compared with controls, excluding any DEPs detected in 

OPD versus controls or asthma versus controls. As indicated in 

igure 8 A, pathway and network enrichment analysis revealed that 

he intersected DEPs were largely associated with metabolic path- 

ays, lysosome, phagosome, and NOD-like receptor signaling path- 

ays. The selected proteins included CXCL1, DEFA3, HBB, ICAM1, 

AMP2, RAC1, and TXN, and were chosen because they were 

resent in at least 2 pathways at a high frequency ( Figure 8 B ) . 

.3.5. Screening of final COVID-19 specific proteins 

COVID-19 patients’ specific proteins were defined as the in- 

ersection of specific DEPs in COVID-19 samples compared with 
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Figure 4. Analysis of differentiated expressed proteins (DEPs) between different groups. A. Hierarchical clustering analysis of DEPs. A heatmap showing the top 11 DEPs. The 

red and the blue colors in the heatmap denote higher gene expression and lower gene expression, respectively. Target protein symbols for the top 11 DEPs are included; 

B. These dysregulated proteins are enriched in 2 pathways: complement and coagulation cascades pathways and platelet activation (both of which contain DEPs at a high 

frequency); C. The change in expression level (original value) of the 11 selected proteins with significance is indicated by the P value. COVID-19, NCP; COPD, chronic 

obstructive pulmonary disease. 

Figure 5. Analysis of differentially expressed proteins (DEPs) between different groups. A. Venn plot, identification of the common proteins among COVID-19 versus healthy 

controls, COPD versus healthy controls, and asthma versus healthy controls; B. Volcano plot. a. COVID-19 versus healthy controls; b. COPD versus healthy controls; c. Asthma 

versus healthy controls. Blue: down-regulated proteins; red: up-regulated proteins. NCP; COPD, chronic obstructive pulmonary disease. 
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ealthy/disease controls (COVID-19 vs controls, COVID-19 vs COPD, 

nd COVID-19 vs asthma). Simultaneously, any DEPs found in COPD 

ersus controls or asthma versus controls were excluded from the 

nalysis. For example, the filtered COVID-19 specific proteins were 

ifferentially expressed between COVID-19 and controls but not 

etween COPD and controls or asthma and controls. 

Finally, as determined by the 2 aforementioned techniques, the 

 overlapping differential proteins specific to COVID-19 patients 
263 
ere identified, including FGB, FGG, C9, PRTN3, HBB, HBA1, IGLV3- 

9, and COTL1 (Figure S4). 

. Discussion 

The COVID-19 pandemic is a major threat to public health 

nd the social-economic well-being of people globally. There is 

urrently no effective treatment strategy to prevent the death of 
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Figure 6. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentiated expressed proteins (DEPs). A. GO 

annotation for biological process, cellular compartment, and molecular function, respectively; B. KEGG enrichment analysis. a. COVID-19 versus healthy controls; b. COPD 

versus healthy controls; c. Asthma versus healthy controls. NCP; COPD, chronic obstructive pulmonary disease. 

Figure 7. Heatmap analysis of differentiated expressed proteins (DEPs). A. COVID-19 versus healthy controls; B. Asthma versus healthy controls; C. COPD versus healthy 

controls. NCP; COPD, chronic obstructive pulmonary disease. 

264 
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Figure 8. Analysis of differentiated expressed proteins (DEPs) between different groups. A. Hierarchical clustering analysis of DEPs. Heatmap of the top 59 DEPs. The red color 

in the heatmap denotes higher gene expression, and the blue color in the heatmap denotes lower gene expression. Target proteins symbols for the 59 DEPs are included; B. 

Pathways enrichment; C. The expression level change (original value) of the 7 selected proteins with significance is indicated by the P value. NCP; COPD, chronic obstructive 

pulmonary disease. 
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everely ill COVID-19 patients. Therefore, any lead to the discovery 

f therapeutic drug targets for critically ill COVID-19 patients is vi- 

al. In this study, compared with asthma and COPD, proteomic se- 

uencing identified 8 key characteristics of the proteomic changes 

ssociated with hospitalized patients seriously infected with SARS- 

oV-2. 

Around 20% to 51% of COVID-19 patients were associated with 

t least 1 comorbidity ( Guan et al, 2020b , Huang et al, 2020 ). The

 most prevalent comorbidities were hypertension, diabetes, and 

oronary heart disease, with frequencies ratios of 10%-30%, 10%- 

0%, and 7%-15%, respectively ( Guan et al, 2020a , Wang et al, 2020 ,

hou et al, 2020 ), which contributed to poorer clinical outcomes. 

t is reported that chronic respiratory disorders, including COPD 

nd asthma, may predispose patients to SARS-CoV-2 infection 

 Guan et al, 2020b , Huang et al, 2020 ). Alternatively, the poor

ecognition by the general population and the lack of spirometric 

esting may result in the under-diagnosis of respiratory diseases 

 Guan et al, 2020a ). For instance, it was reported that the frequen-

ies of COVID-19 with COPD were 1.5% to 5% ( Grasselli et al, 2020 ,

hang et al, 2020 ) and for asthma 0% to 12.5%. 18 Evidence suggests 
265 
hat the intrinsic pathophysiological features of COPD and asthma 

ay modify the response to severe SARS-CoV-2 infection made 

ossible by ACE2 expression ( Song et al, 2021 ). Therefore, it is 

ecessary to understand the effects of SARS-CoV-2 on unique pro- 

eomic changes compared with COPD and asthma, which may im- 

ly further research of molecular targets directed at specific ther- 

py. 

In this study, the 8 overlapped differential specific proteins 

ere found in COVID-19 cases after intersecting. There was up- 

egulation of proteins, including FGB, FGG, C9, PRTN3, HBB, HBA1, 

nd IGLV3-19, and down-regulation of COTL1 proteins in COVID- 

9 patients compared with the other groups. Pathway and net- 

ork enrichment analysis revealed that the DEPs were mostly as- 

ociated with complement and coagulation cascades, platelet ac- 

ivation pathways, or iron metabolism and anemia- related path- 

ays. In the present study, an elevated complement system pro- 

ein C9 was identified. It is reported that the complement system 

lays an important role in linking innate and adaptive immunity 

nd that inflammation could further aggravate lung injury. Com- 

lement activation is detected cumulatively in conditions such as 
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cute respiratory distress syndrome (ARDS), pneumonia, asthma, 

ulmonary arterial hypertension, and COPD ( Sarma et al, 2006 ). 

vidence suggests that suppression of complement system protein 

9 appears to be effective immunotherapy for the SARS-infected 

ouse model ( Gralinski et al, 2018 ). In addition, FGB and FGG are

rucial for blood clot formation (coagulation), and this study re- 

ealed that the 2 proteins were up-regulated. Previous proteomic 

tudy of plasma exosomes demonstrated that FGG and FGB lev- 

ls were significantly higher in the malignant pulmonary nodules 

roup than in the benign group ( Kuang et al, 2019 ). FGB and FGG

ere 2 of the key epithelial-mesenchymal transition effectors asso- 

iated with cell adhesion and cellular communication in lung can- 

er. Therefore, we indicate that critically ill COVID-19 patients may 

enefit from the suppression of the complement and coagulation 

ystems. 

Iron metabolism and anemia may play pivotal roles in mul- 

iple organ dysfunction syndromes in COVID-19. The hemoglobin 

roteins (HBB, HBA1, and HBA2) combine to form the adult 

emoglobin molecule (HbA), which is a heterotetramer of 2 α
nd two β-globin chains. The dysregulated hemoglobin proteins 

esult in an imbalanced globin chain synthesis and consequently 

mpaired erythropoiesis. The severity of COVID-19 is heavily in- 

uenced by the degree of chain imbalance. Survival is dependent 

n regular blood transfusions in the worst-case scenario, which 

esults in transfusional iron overload and secondary multi-organ 

amage due to iron toxicity. Understanding the relationship be- 

ween HBB and HBA1 proteins and the severity of COVID-19 and 

hether these associations differ by age, sex, and the presence of 

hronic conditions is critical in the management of COVID-19. 

Mucus is an integral part of respiratory physiology. It protects 

he respiratory tract by forming a physical barrier to inhaled aller- 

ens and pathogens. This study established that mucus accumula- 

ion contributed to recurrent airway infection, resulting in further 

bstruction. The inflammatory cytokine storm greatly contributes 

o the more serious clinical manifestations and worse outcomes in 

OVID-19 patients. It is particularly potent in accumulating mucus 

ecause it initiates many inflammatory cascades associated with 

ucus production. Numerous studies have demonstrated that the 

ARS-CoV-2 infection can result in an allergic reaction in the res- 

iratory tract mucosa, which activates mucin secretion and mod- 

lates its chemical structure to enable the virus to enter the cells 

 Khan et al, 2021 ). Mucus accumulation can contribute to worse 

omorbidities indicated in COVID-19 patients, such as venous en- 

orgement and pulmonary edema. Thus, it is important to under- 

tand the proteomic expression and functional changes of mucus 

o develop new therapeutic approaches. 

In addition, this retrospective study identified several risk fac- 

ors for COVID-19 patients. For example, increased levels of white 

lood cell count, D-dimer, blood IL-6, and lactate dehydroge- 

ase, as well as lymphocytopenia, were all observed in severely 

ll COVID-19 patients. These risk factors were associated with 

OVID-19 outcomes and corroborated previously published studies 

 Zhang et al, 2021 ). In this study, there were no significant differ-

nces in age, gender, and smoking status among COVID-19, asthma, 

OPD, and healthy controls. 

Our study has some limitations. First, the airway mucus ob- 

ained from COVID-19 patients using bronchoscopy may be a mix- 

ure of secretions produced by airway and alveolar epithelial cells 

n response to the virus and inflammatory mediators. In contrast, 

nduced sputum was used for COPD, asthma, and control partic- 

pants, all of whom may have variable content and sputum, cell 

ount. Second, because the study design was retrospective, labora- 

ory tests may have been underestimated in the medical records 

nalyzed, making it difficult to investigate the effect on outcomes. 

hird, information on medications, disease control status, and phe- 

otypes of diseases before admissions was incomplete. Further- 
266 
ore, the effect of these factors on the risk of SASR-CoV-2 infec- 

ion and disease expression needs further exploration. Finally, the 

ample size was relatively small. Prospect studies on a larger pop- 

lation should be conducted. 

. Conclusion 

Airway mucus proteomic databases are highly valuable re- 

ources for elucidating the host proteomic changes associated with 

evere SARS-CoV-2 infection. This study analyzed proteins from 

OVID-19 patients, COPD, asthma, and controls to identify the 

nique proteomic molecular signatures associated with SARS-CoV- 

 infection. This study contributes to our understanding of the 

athological changes associated with COVID-19 and forms the basis 

or the development of potential therapeutic strategies. 
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