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Abstract

The success of many clinical, association, or population genetics studies critically

relies on properly performed variant calling step. The variety of modern genomics

protocols, techniques, and platforms makes our choices of methods and algorithms

difficult and there is no “one size fits all” solution for study design and data analysis.

In this review, we discuss considerations that need to be taken into account while

designing the study and preparing for the experiments. We outline the variety of

variant types that can be detected using sequencing approaches and highlight some

specific requirements and basic principles of their detection. Finally, we cover

interesting developments that enable variant calling for a broad range of applications

in the genomics field. We conclude by discussing technological and algorithmic

advances that have the potential to change the ways of calling DNA variants in the

nearest future.
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1 | INTRODUCTION

Genome and exome sequencing techniques are rapidly replacing

genotyping microarrays in diagnostic and prognostic studies.

A key advantage of new technologies is their ability to give a

nearly complete view on the content of our genomes with digital

precision. With recent improvements in scalability and constantly

decreasing prices, genome sequencing has all potential for being

a method of choice for a broad range of genomics studies.

However, as a relatively new invention that also has multiple

technological peculiarities, the analysis of genome variants using

sequencing data is less standardized compared to genotyping

arrays. In this review, we will discuss current approaches to

variant calling using sequencing data and specifically focus on

considerations while planning genomics experiments, practices

while executing them, and promising developments to consider

for future projects.

2 | CONSIDERATIONS

DNA sequencing is popular among researchers and companies, one

cannot complain about the limited choice of platforms and kits for

preparing and sequencing the samples. Before engaging in a

genomics project using sequencing, it is a good idea to consider

different options and choose the one that matches your research

question and provides the most cost‐efficient solution.

2.1 | DNA isolation and fragmentation

The basic experimental procedures such as DNA isolation can have

systematic effects on the representation of different genomic regions

(van Heesch et al., 2013) and, as a consequence, on variant detection.

Also, DNA fragmentation, a necessary step for short‐read

library preparation, can be achieved through a variety of
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methods, such as mechanical fragmentation, sonication, acoustic

and hydrodynamic shearing, chemical or enzymatic fragmenta-

tion. The most recent addition to the portfolio of fragmentation

methods is Tn5 transposases that can “deliver” polymerase chain

reaction (PCR) or sequencing adaptors directly to DNA (Picelli

et al., 2014). Choices on DNA sources, isolation and fragmenta-

tion methods can vary from project to project, but it is a

good idea to agree on these standards before starting a

collaborative project involving multiple research groups. The

quality and quantity of genomic DNA determine the need for PCR

amplification and can greatly affect the quality of variant calls.

2.2 | PCR duplicates

Redundant reads originating from the same DNA fragment

introduced during the PCR amplification of a library are common

artifacts created during genome sequencing. Such artifacts can

falsely increase allele frequency or even introduce erroneous

mutation calls. There are several ways to either remove or mark

the PCR duplicates to lower the false‐positive calls. When suffi-

cient input material is available, modern protocols allow for

amplification‐free library construction. When the input material is

scarce and does not meet requirements for PCR‐free library

preparations, the individual molecules can be barcoded by

adaptors with unique molecular identifiers (UMIs). Even after the

PCR amplification of such a library, UMIs will help to discard PCR

duplicates. When neither PCR‐free prep nor UMIs were used, it is

a common practice to mark additional reads with shared mapping

coordinates as potential duplicates. However, this computational

method might overcorrect (duplicated regions) or miss (repetitive

regions) the real duplicates.

2.3 | Genome coverage

Choice of sequencing strategy has an important effect on the average

depth of the genome coverage. Short‐read whole‐genome sequen-

cing offers the most complete approach and typically yields 30×,

while long reads with lower per‐base quality are routinely sequenced

to 60× coverage. Targeted resequencing, that involves selection of

genomic regions, exhibits a rather nonuniform coverage of target

regions (e.g., whole‐exome sequencing). As sufficient coverage is a

key parameter in variant calling, exome sequencing employs an even

higher 90×–100× average coverage to compensate for uneven

coverage among selected regions. Interestingly, some projects

deliberately turn to a lower sequencing depth, when sequencing re-

lated individuals or looking for common association signals in a

large population (CONVERGE Consortium, 2015; Genome of the

Netherlands Consortium, 2014).

2.4 | Platform and read length

Short reads sequencing (typical reads span several hundred bases) is

currently the most popular and cost‐effective strategy for variant

detection. As price is typically proportional to the number of bases

read, the preference should be given to the longest possible reads

(available for this platform) and paired‐end over single‐end mode

(Figure 1). This will allow to uniquely address a bigger proportion of

the genome, improve detection of structural variants and improve the

performance of read assembly methods. Overall, short read‐based

methods are well‐established, cheap, have low error rates, but can fail

to distinguish recently duplicated, repetitive sequences and can

under‐represent DNA segments with very high or low GC content.

On the other hand, long reads can cover tens and hundreds of

F IGURE 1 Overview of experimental factors that are important for planning and performing a genome sequencing study
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kilobases, which is advantageous for calling of larger structural var-

iants as they can span over large repeats and regions with GC content

bias. However, the costs per base, as well as error rates, are higher

than those for short reads. Several interesting alternatives to obtain

high‐quality data with perfect mapping ability of long reads rely on

advanced barcoding of short reads (linked‐reads), circular consensus

reading (PacBio high fidelity reads), and combining long‐ and

short‐read sequencing data (Wenger et al., 2019; Zhang et al., 2020).

To conclude, we tried to outline some of the important choices

that need to be made at the beginning and might affect the efficiency

of calling and completeness of the resulting variant set. When your

experience with variant calling is rather limited it is recommended to

involve a data analysis specialist at the stage of project conception

rather than after data is produced. This can help to avoid issues of

lacking power or poor ability to call certain types of variants from one

side and wasting the resources from another.

3 | PRACTICES

3.1 | Choice of genome reference

A poor choice of the reference assembly version can affect the re-

sults and thus should be carefully considered beforehand based on

the aim of the study. Inclusion of alternative haplotypes for hy-

pervariable regions such as major histocompatibility locus (MHC),

pseudoautosomal regions of chromosome Y may result in loss of

unique mapping for some of the genes and, hence, reduced sensi-

tivity of variant calling. On the other hand, the inclusion of unplaced

and unlocalized contigs will prevent the mismapping of reads

originating from these sequences and prevent many false‐positive

calls. It is a general recommendation to use the so‐called primary

assembly version (chromosomes, mtDNA, unplaced and unlocalized

contigs) of the reference genome unless a specific aim of the study

calls for the use of an extended version.

3.2 | Aligning

To avoid the multiple sources of errors in data, such as amplification

biases, errors introduced during sequencing and base calling, and

mapping artifacts that arise during reads alignment, the data must be

appropriately pre‐processed. At this stage, it is preferable to prioritize

sensitivity over specificity, to ensure the abundance of potential

variants, rather than missing any. A good example of balanced pre-

processing steps is described in Genome AnalysisToolKit (GATK) best

practices tutorial (DePristo et al., 2011; GATK_Team, 2021), and can

be used as a guide to constructing a workflow according to the

established and validated analysis principles. The pipeline uses a

BWA‐MEM aligner, a robust mapping algorithm, to map the sequence

data to a reference genome (H. Li, 2013). An optional next step in-

volves marking PCR duplicates for PCR‐amplified libraries, for

example using SAMtools package (H. Li et al., 2009) or according to

manufacturer recommendation if UMIs were employed. GATK is a

set of tools that can be easily used to perform the rest of

preprocessing and variant calling routines. A common practice in data

preprocessing is base quality score recalibration (BQSR). Base quality

is a confidence score provided by the sequencer for each DNA base

in the data and often needs recalibration to correct for any sys-

tematic bias, which can arise during library preparation and genome

sequencing. The recalibration process uses covariate measurements

from the base call in the data set to build and apply an adjustment

model, resulting in highly accurate base quality scores.

3.3 | Calling small variants

The most common type of changes observed in our genomes is a

single nucleotide variant (SNV), a substitution of a single base at a

certain position in the genome. A typical genome sequencing project

detects several million SNVs per individual human sample. When

reads are properly aligned to the genome reference, calling a stan-

dalone single‐base “typo” is rather straightforward. Apart from the

GATK program suite mentioned above, several others such as

BCFtools and FreeBayes are popular tools that can generate a list of

small variants in a computation‐efficient way (Table 1) (Danecek

et al., 2021; Garrison & Marth, 2012). Interestingly, summary

characteristics of SNVs can serve as quality control parameters in

population sequencing studies. Thus, a biased transition to trans-

version ratio can indicate errors in SNV analysis or a presence of

strong mutational bias in the genome.

Other small variants that lead to small insertion or deletion

between 1 and 20 DNA bases are commonly known as indels. These

changes are shorter than a sequencing read and can be found by

realigning partially mapped or unmapped reads using split‐read

aligners (Ye et al., 2018).

The biggest challenges in calling small variants present

themselves in hypervariable and repetitive regions of the genome.

Both tightly clustered variants and look‐a‐like regions in the genome

present problems for small variant calling. The former can be

alleviated by haplotype‐aware calling where, instead of “walking”

genome one position at a time, polymorphic regions are located and

their sequences are assembled from local sequencing reads, resulting

in longer stretches of allelic sequences that can be mapped more

accurately. The latter problem can be resolved by using longer

sequencing reads that overlap a sufficient number of bases that are

different between otherwise very similar regions of the genome.

3.4 | SV calling

Larger variants that encompass 20 and more DNA bases, also known

as structural variants (SVs), are difficult to locate from individual short

reads. Alterations that encompass multiple base pairs typically
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interfere with the mapping of reads that overlap this type of DNA

variants (Figure 2a). These aberrant mapping signatures indicate

structural differences between reference and patient genome and

can be used for the detection of structural variants (Figure 2b). The

following types of signatures have been proven as informative for SV

discovery:

(i) Change in read density. Large deletions and duplications result

in segmental increase or decrease of DNA copy number and, as a

result, contribute to a local change of read density, when compared

to unaffected regions. These two types of SVs, collectively known as

copy‐number variants (CNVs) can be identified by segmentation of

read coverage profiles using algorithms involving hidden Markov

models (HMM) or circular binary segmentation (CBS).

(ii) Altered distance between paired reads. When the distance

between mapping positions of paired reads significantly deviates

from the expected size of the DNA fragment, it may indicate local

DNA content difference between reference and genome of the pa-

tient. A longer distance between mapped paired reads indicates more

DNA bases in reference than in the patient sample and hence dele-

tion, while a shorter distance can be a hallmark of an insertion.

(iii) Discordant orientation of paired reads. When aligned, paired

reads typically map to opposite DNA strands. In rare cases when one

read from a pair overlaps the breakpoint of an SV, the relative

mapping of reads in a pair can exhibit unexpected directionality.

Thus, if one of the reads ends in an inverted segment, both reads

would map to the same DNA strand. Similarly, tandem duplications

frequently show inverse read order (upstream read on reverse,

downstream read on forward strand) since, in the patient DNA, these

reads belong to two sequential copies of the same reference DNA

segment.

(iv) Unmapped reads. When an alignment of a read to the re-

ference genome fails, it might indicate that the read overlaps a

breakpoint of a structural variant. In this case, split‐mapping of this

read may reveal the large variants. With many possibilities of arbi-

trary splitting of an unmapped short read, it is difficult to avoid mis‐

mapping. However, the genomic coordinate of the mapped “mate”

read from the same pair can be used as a proxy to find the start of the

SV breakpoint.

The state‐of‐the‐art SV discovery combines these aforemen-

tioned SV signatures in a clever way. Thus, a relative position of read

pairs allows discrimination between tandem and dispersed CNVs,

which is impossible from the read density analysis alone. The robust

and specific SV calls, therefore, rely on multiple independent read

pairs and are supported by multiple SV signatures (Figure 2b).

TABLE 1 Selected list of tools commonly used for detection of DNA variants

Tool Approach, method Application References

Small variants

GATK Haplotypecaller Local reassembly of haplotypes Germline, MNPs (Poplin, Ruano‐Rubio, et al., 2018)

BCFtools Positional, pileups Germline (Danecek et al., 2021)

FreeBayes Haplotype‐based, Bayesian model Germline, MNPs (Garrison & Marth, 2012)

GATK Mutect2 Local reassembly Somatic (Cibulskis et al., 2013)

Strelka2 Tiered haplotype model Germline, somatic (Kim et al., 2018)

Structural variants

Delly2 RP, SR, RD Germline SVs (Rausch et al., 2012)

Pindel SR, RP Germline SVs (Ye et al., 2018)

Manta SR, RP, AS Germline, somatic (Chen et al., 2016)

GRIDSS2 AS, SV Breakpoint Somatic (Cameron et al., 2021)

Varscan2 RD, Circular Binary Segmentation Exome, somatic, CNVs (Koboldt et al., 2012)

EXCAVATOR2 RD, In‐,Off‐target Exome, CNVs (D'Aurizio et al., 2016)

ExomeDepth RD, beta‐binomial Exome, CNVs (Plagnol et al., 2012)

Other, exotic variants

Mobster RP, clipped reads MEIs (Thung et al., 2014)

Expansion‐Hunter Reads spanning, flanking, in‐repeat Repeat expansion (Dolzhenko et al., 2017)

sideRETRO SR, RP at insert GRIP (Miller et al., 2021)

Harpak et al. (2017) HMM model NAGC (Harpak et al., 2017)

Li et al. (2019) k‐mer count, MDS NUMT (W. Li et al., 2019)

Abbreviations: AS, assembly; CNV, copy‐number variants; GATK, Genome Analysis ToolKit; MEI, mobile element insertions; RD, read depth; RP, read

pairing; SR, split‐read; SV, structural variants.
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F IGURE 2 Diversity of DNA variant types. (a) Variants that can be discovered by comparing reference genomes and mapped NGS reads. (b)
Identification of structural variants using signatures from mapped read pairs. MEI, mobile element insertions; MNV, multi‐nucleotide variants;
NRS, non‐reference sequences; SNV, single nucleotide variants; SV, structural variants
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In some of the applications, the assumptions underlying SV

signatures might be violated. For example, read density in exome data

is very nonuniform and CNV detection methods need to discriminate

between effects of change in copy number and technical variability in

fragmentation and target selection efficiency. This is especially

challenging for small sample sets and single‐exon CNVs (Gordeeva

et al., 2021).

It is worth noting that read position/orientation and especially

read depth signatures cannot resolve an SV breakpoint at base‐pair

resolution. In this situation, split‐read mapping and local de novo

assembly help with fine‐mapping of the SV coordinates.

3.5 | Other and exotic variant types

Some of the variant types need special approaches for their discovery

and were frequently missed by previous generations of variant calling

software. We will briefly discuss their origins and the specifics of

their identification.

Some mutational mechanisms, like defective polymerase zeta

(Harris & Nielsen, 2014) can lead to a replacement of multiple bases

before a displacement of the faulty enzyme. Such multi‐base variants,

known as multi‐nucleotide variants (MNVs) or complex indels will be

inherited as one allele, but can be called as several independent

SNVs/indels if the variant caller (e.g., GATK Unified Genotyper)

operated in “one base at a time mode.” A “split” reporting of an MNV

can affect the prediction of its functional effect, as individual base

changes at codon positions can have different effects on amino acid

sequence when interpreted separately. Haplotype aware calling,

(e.g., GATK Haplotype Caller) alleviates this problem and should

correctly represent this variant type.

Even a non‐faulty polymerase can make errors when it en-

counters certain types of DNA sequences. Mononucleotide and

polynucleotide tandem repeats are good examples of such challen-

ging regions. Polymerase slippage and incorrect reannealing of DNA

strands can lead to expansion or contraction of such repeats.

Expectedly, the longer the repeat, the more unstable it will behave

during DNA replication. Longer repeats of this kind have been

previously implicated in multiple genetic disorders such as fragile X

syndrome or amyotrophic lateral sclerosis (Swinnen et al., 2020).

Allelic variants with such repeats, especially high‐risk alleles,

frequently exceed read and even fragment size typical in short‐read

sequencing, making their identification challenging. Several software

packages were developed to estimate the length of such repeats

from genome sequencing data (Bahlo et al., 2018).

Next to tandem repeats, there are also dispersed repeats ap-

pearing in our genomes. A common type of dispersed repeats is

mobile elements (MEs)—“parasitic” DNA sequences with the ability to

copy and/or propagate themselves across DNA. Autonomous

elements, such as long interspersed nuclear element 1 (LINE‐1)

encode for enzymes that can convert its RNA to DNA and insert an

extra copy of itself into the genome. Nonautonomous elements are

typically short (e.g., SINEs) and use enzymes produced by their

autonomous “cousins” for their propagation. Nearly half of our gen-

ome may in fact be the result of the past activity of mobile elements.

The arms race between these “egoistic” DNA elements and cellular

processes suppressing their replication limits the number of func-

tional full‐size copies around a hundred LINEs per human genome

(Penzkofer et al., 2017). The sheer presence of ME‐derived

sequences in genomes makes identification of their new insertions

challenging, especially so when a new copy “lands” inside another

repeat. Several software packages utilize read pair, split‐read, and

local assembly to locate and genotype mobile element insertions

(MEI) in WGS data (Chu et al., 2020; Gardner et al., 2017; Thung

et al., 2014; Torene et al., 2020).

The presence of reverse transcription (RNA‐to‐DNA) function-

ality opens a possibility for other RNA molecules to “enter” our

genomes. In rare cases, a regular processed human mRNA can be

recognized by enzymes encoded by LINE‐1, resulting in the in-

troduction of retrocopy of a gene. Such gene retrotransposition

insertion polymorphisms (GRIPs) typically represent intronless, par-

tial, and nonfunctional copies of actual genes (Ewing et al., 2013).

They can obscure variant discovery of the original gene when GRIP is

rare in the population and is not part of genome reference or stan-

dard variant set. Regular variant calling software would typically call

GRIPs as duplications and/or transpositions, but specialized solutions

exist to locate and genotype them properly (Miller et al., 2021).

Apart from mobile elements and retrocopies of genes, nuclear

genomes can contain (partial) inserts of mtDNA. These nuclear in-

serts of mitochondrial DNA (termed NUMTs) can be detected using

discordantly mapped read pairs or alignment‐free methods (W. Li

et al., 2019) and can be applied to the whole genome or exome data

when the target list includes mitochondrial genes.

The presence of recently inserted copies of mobile elements,

(retro‐) copies of genes, and mtDNA segments that are not re-

presented in the genome reference introduces additional challenges

in variant calling. The alignment of paralogous sequences to the same

segment of genome reference leads to the addition of paralogous

sequence variants to the list of true polymorphisms. This problem can

be alleviated by extending the reference to incorporating new inserts

(see section “Completeness of genome reference” below).

Another genetic mechanism that can result in large‐scale

changes in our DNA is non‐allelic gene conversion (NAGC)—a

consequence of improper DNA repair event when a highly similar,

but not identical copy of segment is used as a template during

homologous recombination repair (Harpak et al., 2017). This

mechanism tends to eliminate differences between recently

duplicated regions, but can also result in loss of function events

when a functional copy of a gene is rewritten using its pseudo-

gene as a template. Such events seem to be rare, difficult to

detect from short sequencing reads, and, at a first sight, can look

like a set of multiple independent polymorphisms.

Many of the challenges in SV discovery mentioned above are

caused by limitations of short‐read sequencing and will be solved

through democratizing long‐read sequencing, with most of SVs being

detected from long reads alignments (Miga et al., 2020).
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4 | DEVELOPMENTS

4.1 | Improvement of variant calling methods

While the first generation of variant callers typically relied on a single

algorithmic approach, the latest software solutions combine multiple

signatures (such as read depth, partially and discordantly mapped reads)

and methods (split‐read mappings, gapped alignment, de novo assembly)

for the identification of complex and structural variants (Rausch

et al., 2012). However, as there is still no single tool that has mastered all

methods and variant types, consolidation of variant call sets from multiple

tools has become a popular approach (Zarate et al., 2020).

Next to this synthesis, the new methods are constantly added to

our toolbox (Figure 3). With the increasing popularity of new deep‐

learning approaches, such as convolutional neural networks, com-

puters can generate pileup image representations and call variants

from them. An implementation of such a deep‐learning algorithm

can call germline SNVs and indels and essentially requires just a

single parameter defining the minimum variant quality threshold

(Poplin, Chang, et al., 2018).

4.2 | Variant calling for other data types

Due to the popularity of sequencing methods, they are also frequently

employed for profiling transcriptomes, epigenomes, regulatory proteins

attached to DNA or RNA, and so on. These data types can have several

important differences that need to be taken into account when calling

variants.

Similar to exome sequencing, other data types do not necessarily

have a uniform coverage throughout the whole genome, so that one

cannot rely on the completeness and or same detection power for

the variants called from such data.

Alongside, data set‐specific peculiarities need special attention

by variant calling software. A good example is gapped alignment

common for splicing events in RNA‐seq data. It is important to

prevent misalignment cases due to assigning small trailing parts of the

read to an intron. Thus, transcriptome aligners have functionality

for two‐stage mapping: identifying all novel splice junctions first

(preferably for all samples in the study) and then using them in

the second mapping stage to avoid misalignments and false SNPs

(Dobin et al., 2013). Further, gaps in the alignment may complicate

the variant discovery process, hence some software solutions such as

GATK split exonic blocks into multiple supplementary alignments to

simplify variant calling.

Another peculiarity of non‐genomic data is that some of the

observed variants do not represent DNA state, but are introduced by

technical or biological modifications. Bisulfite conversion during

methylation profiling and RNA editing are good examples of such

processes. Although modifications of these types have a very clear

nucleotide context and substitution type, separating them and real

DNA variants with the same signature can be difficult (Barturen

et al., 2013; Lo Giudice et al., 2020).

Last but not least, most of the data types do not necessarily show

an equal representation of both alleles. Differences in allele expres-

sion or haplotype‐specific protein binding can bias the allelic ratio

from the 50%–50% expected in genome or exome sequencing and

therefore the separation of true variants and sequencing errors be-

comes more difficult. In this case, it can be a good idea to perform

validation of variant discovery, for example by comparing results

against independent genotyping, such as SNP arrays or checking of

calls' consistency across family members.

F IGURE 3 Current developments and challenges in variant identification technologies and algorithms
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4.3 | Calling somatic mutations

Similar challenges are being faced when research centers around calling

variants in cancer or somatic cells. Tumor heterogeneity, the presence of

both tumor and nontumor cells, and clonal expansions lead to a broad

distribution of mutated allele frequencies. As a result, very different, more

lenient settings are used for calling somatic compared to germline variants

and sometimes even different software solutions that are developed

specifically for somatic variant calling (e.g., GATKMutect2 and other tools

listed in Table 1) (Cibulskis et al., 2013).

When using archived samples, the storing regime may play a

crucial role in data quality and interpretation. While high‐quality DNA

can be readily extracted from research‐grade fresh frozen samples,

the majority of specimens available for researchers are stored as

formalin‐fixed paraffin‐embedded (FFPE) samples. The latter show

multiple signs of DNA deterioration including degradation, DNA

cross‐linking, fragmentation, strand breaks, base deamination, and

abasic sites. To boost the specificity of variant calling for FFPE

samples, the processing of multiple biopsies per patient can be a good

strategy. For example, paired tumor and control (DNA from non-

tumor tissue, blood, or saliva) experiment design improves the in-

terpretation of tumor sequencing results and aids in differentiating

between somatic and germline mutations.

The ability to call somatic changes holds great prospects for early

diagnostics of human diseases. The recent advances in sample prepara-

tion and sequencing technologies enable the profiling of cell‐free DNA

circulating in the blood, allowing for real‐time, noninvasive profiling of

cancer or monitoring disease treatment (Herberts & Wyatt, 2021).

4.4 | Phasing variants

In some cases, it is not sufficient to know genotypes to evaluate their

involvement in disease. If multiple potentially deleterious alleles exist

in a gene, it is important to understand if a single or both copies of a

gene are affected, which requires phasing of alleles into haplotypes

(Tourdot et al., 2021). Although short‐range haplotype information is

processed and reported by some of the variant callers, gene‐ and

chromosome‐level phasing often needs extra efforts and can be

obtained through information about read pairing (physical phasing),

genomes of close relatives, and phased haplotypes from population

sequencing projects (computational phasing) and even new experi-

mental methods (Porubsky et al., 2017).

4.5 | Completeness of genome reference

The non‐reference sequences (NRS) represent genomic segments

detected in sequencing data, which are currently not represented in

the human genome reference. These sequences are often poly-

morphic in the population and thus can be considered as a type of

structural variation (Hehir‐Kwa et al., 2016; Naslavsky et al., 2020).

The NRS may contain new complete or parts of genes as well as

noncoding DNA sequences potentially influencing transcription.

Integration of data from various genome sequencing projects will

help to identify, catalog, map and characterize these segments from

the whole human population and build a pangenome reference for

the unbiased interpretation of genomics data.

4.6 | Long reads technologies

Third‐generation sequencing technologies (e.g., developed by Pacific

Biosciences and Oxford Nanopore) offer numerous advantages over

short‐read sequencing. Their main strength lies in the ability to rou-

tinely produce reads that are tens and hundreds of thousands of

kilobases long. Such long reads simplify de novo assembly, improve

the unambiguity of read mapping, and the detection of structural

variants. Long‐read platforms are also able to provide insight into the

nature and frequency of nucleotide modifications, such as methyla-

tion. Nevertheless, long‐read sequencing is still more costly than

short‐reads technology and can be expensive for large sequencing

projects. Further, their relatively high base error rate usually requires

consensus polishing of high coverage data or combining of long‐read

and short‐read data to achieve maximum base call accuracy. The

recent and remarkable advances in long‐read technologies, such as

high fidelity (HiFi) reads, provide proof of principle that these tech-

nologies are instrumental to detect the most challenging variants,

such as mid‐sized SVs on repetitive sequence background, and de-

code end‐to‐end representation of human chromosomes (Miga

et al., 2020). The resulting completion of human chromosome X

demonstrated the possibility to sequence the genome with only a few

remaining gaps and the need for further development of methods for

the analysis of segmental duplications and satellite arrays.

5 | CONCLUSIONS

In this paper we reviewed the common practices of variant calling,

focusing on preparatory steps, decisions to be made, diversity of

variant types, and basic principles of their identification. As the pace

of technological developments in genome sequencing does not seem

to slow down, we can expect that many obstacles we encounter

today will disappear. As a result, researchers would be able to obtain

a comprehensive set of variants more easily and dedicate more of

their time to clinical and biological questions.
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