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ABSTRACT
Background Forced expiratory volume in 1 s as
a percentage of predicted (%FEV1) is a key outcome in
cystic fibrosis (CF) and other lung diseases. As people
with CF survive for longer periods, new methods are
required to understand the way %FEV1 changes over
time. An up to date approach for longitudinal modelling
of %FEV1 is presented and applied to a unique CF dataset
to demonstrate its utility at the clinical and population
level.
Methods and findings The Danish CF register contains
70 448 %FEV1 measures on 479 patients seen monthly
between 1969 and 2010. The variability in the data is
partitioned into three components (between patient,
within patient and measurement error) using the
empirical variogram. Then a linear mixed effects model is
developed to explore factors influencing %FEV1 in this
population. Lung function measures are correlated for
over 15 years. A baseline %FEV1 value explains 63% of
the variability in %FEV1 at 1 year, 40% at 3 years, and
about 30% at 5 years. The model output smooths out the
short-term variability in %FEV1 (SD 6.3%), aiding clinical
interpretation of changes in %FEV1. At the population
level significant effects of birth cohort, pancreatic status
and Pseudomonas aeruginosa infection status on %FEV1
are shown over time.
Conclusions This approach provides a more realistic
estimate of the %FEV1 trajectory of people with chronic
lung disease by acknowledging the imprecision in
individual measurements and the correlation structure of
repeated measurements on the same individual over
time. This method has applications for clinicians in
assessing prognosis and the need for treatment
intensification, and for use in clinical trials.

INTRODUCTION
Understanding the long-term natural history of
changes in lung function in people with lung
diseases is a research priority.1 In order to do this,
objective measures of disease progression are
necessary. The per cent predicted forced expiratory
volume in 1 s (%FEV1) is commonly used to
monitor lung function, and to describe disease
severity in cystic fibrosis (CF)2 and chronic
obstructive pulmonary disease (COPD).3 %FEV1 is
used to inform clinical decisions about changing or
intensifying treatment, and as an outcome measure
in clinical studies.4e6 Furthermore %FEV1 has been
shown to be related to survival in CF. Kerem et al’s

study in 1992 demonstrated that patients with
a %FEV1 <30 had a 2-year mortality over 50%,7

though a more recent study shows that survival
rates at low levels of lung function have improved
in subsequent cohorts.8

Interpreting the significance of changes in %FEV1

in CF to inform patient management and to
counsel patients regarding prognosis requires an
understanding of the inherent variability of %FEV1

measures within individuals, to determine what
constitutes a clinically significant deterioration in
%FEV1, rather than a change due to measurement
error, or recoverable day-to-day fluctuation in lung
function.9 10 Furthermore, this variability needs to
be understood to make valid inferences about the
association between covariates and %FEV1 in
observational studies.
As survival in CF improves with successive

cohorts, there are many more people surviving into
late adulthood. An implication of this, coupled
with the availability of long-term follow-up data in
CF registers, is that up to date methods should be
adopted to interpret the long-term dynamics of
lung function in CF. Statistical techniques for
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longitudinal data analysis have been the subject of much
methodological development over the past 20 years, and the
random intercept and slope model has become a popular analysis
framework.4 5 11e14 While this is often appropriate for relatively
short follow-up periods, there are theoretical reasons to suggest
that this approach makes assumptions that will lead to incorrect
inferences if applied over longer follow-up periods. One central
assumption is that the variability in %FEV1 increases as
a quadratic function over time (in proportion to time squared),
which leads to estimates that diverge unrealistically over longer
time periods. Methods for undertaking these analyses over
longer time periods have been described,15 but have not been
commonly applied.

In this study we analyse a unique population-level dataset of
people with CF that includes longitudinal %FEV1 measures
taken monthly for up to 30 years. We apply these methods to
develop a general model for %FEV1 decline that goes beyond the
popular random-intercept and slope approach, and explicitly
describes the variability in %FEV1 within individuals over time.
We show how this could be applied clinically to help interpret
the significance of changes in lung function, and at a population
level to explore the association of covariates (eg, Pseudomonas
aeruginosa acquisition) with %FEV1 decline.

METHODS
Subjects
All patients aged over 5 years whose %FEV1 data were entered
on the Danish CF database between 1969 and 2010 were eligible.
Post-transplant data from patients who had received a lung
transplant were excluded. Patients attending the two Danish CF
centres (Copenhagen and Aarhus) are seen routinely every
month in the outpatient clinic for evaluation of clinical status,
pulmonary function and microbiology of lower respiratory tract
secretions. It is estimated that coverage of people with CF
resident in Denmark is almost complete from 1990 when CF
care was centralised. This coverage and the unparallelled
frequency of measurement make this a unique dataset for
epidemiological research. The study was approved by the Danish
Data Inspectorate (Datatilsynet).

Lung function testing
The primary outcome for this analysis was %FEV1. Pulmonary
function tests were performed according to international
recommendations,16 measuring FEV1, expressed as a percentage
of predicted values for sex and height using reference equations
from Wang or Hankinson.17 18

Covariates
Covariates in the analysis were age, sex, genotype coded as the
number of Delta F508 alleles (0, 1 or 2), onset of chronic Pseu-
domonas infection (coded 0 or 1 as a time-varying covariate),
pancreatic insufficiency determined on the basis of pancreatic
enzyme usage (coded 0 or 1 as a baseline covariate), birth cohort
(six 10-year cohorts starting at 1948), and CF-related diabetes
(CFRD) diagnosed using the WHO criteria (coded 0 or 1 as
a time-varying covariate).

Statistical analysis
A detailed explanation is given in the online appendix. Repeated
%FEV1 measures on individuals are correlated, and this must be
accommodated to obtain valid inferences. We used a linear
mixed effects model with longitudinally structured correla-
tion,15 19 and contrasted our approach with the widely used
random intercept and slope model.20 We modelled random
variation in %FEV1 over time for an individual subject so that
the strength of the correlation of the random variation between
two values depends on the corresponding time separation. The
model decomposed the overall random variation in the data into
three components: between subjects, between times within
subjects, and measurement error.
First, we fit a provisional model for the mean response by

ordinary least squares and used the empirical variogram of the
residuals (see figure E1 in the online appendix) to provide initial
estimates for the three components of variation, and for the
shape of the correlation function of the between-times-within-
subjects component. We then re-estimated all of the model
parameters by maximum likelihood estimation, and used
generalised likelihood ratio statistics to compare nested models,
and Wald statistics to test hypotheses about model parameters.
We assessed associations between single or multiple covariates
and the population mean %FEV1 over time, and explored alter-
natives to a linear function for the population-averaged time
trend.

RESULTS
Population characteristics
The dataset contained 70 448 lung function measures on 479
patients seen between 1969 and 2010 in Denmark (table 1). The
median number of %FEV1 measures per person was 101 (range
2e597). The median follow-up period was 10.5 years (range
0.1e31.5), with a total of 6500 person-years of follow-up. Forty-
two patients were followed up for more than 30 years (see also
figures E2 and E3 in the online appendix).

Table 1 Baseline characteristics of the Danish cystic fibrosis (CF) population

Birth cohort

‡1948 ‡1958 ‡1968 ‡1978 ‡1988 ‡1998 Total

N (%) 7 (1.5) 42 (8.8) 110 (23) 105 (21.9) 141 (29.4) 74 (15.4) 479 (100)

Women 1 (14.3) 19 (45.2) 48 (43.6) 52 (49.5) 74 (52.5) 42 (56.8) 236 (49.3)

No. Delta F508 ¼ 0 0 (0) 0 (0) 1 (0.9) 4 (3.8) 5 (3.5) 5 (6.8) 15 (3.1)

No. Delta F508 ¼ 1 2 (28.6) 14 (33.3) 26 (23.6) 24 (22.9) 42 (29.8) 19 (25.7) 127 (26.5)

No. Delta F508 ¼ 2 5 (71.4) 28 (66.7) 83 (75.5) 77 (73.3) 94 (66.7) 50 (67.6) 337 (70.4)

Developed chronic Pseudomonas 6 (85.7) 31 (73.8) 84 (76.4) 55 (52.4) 20 (14.2) 5 (6.8) 201 (42)

Missing infection information 0 (0) 5 (11.9) 2 (1.8) 2 (1.9) 1 (0.7) 0 (0) 10 (2.1)

Pancreatic insufficient 7 (100) 42 (100) 105 (95.5) 99 (94.3) 133 (94.3) 73 (98.6) 459 (95.8)

Copenhagen 7 (100) 38 (90.5) 83 (75.5) 72 (68.6) 79 (56) 50 (67.6) 329 (68.7)

Alive 4 (57.1) 27 (64.3) 79 (71.8) 77 (73.3) 132 (93.6) 74 (100) 393 (82)

Developed CFRD 3 (42.9) 21 (50) 41 (37.3) 31 (29.5) 22 (15.6) 1 (1.4) 119 (24.8)

CFRD, cystic fibrosis related diabetes.
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Limitations of random intercept and slope model
The high degree of short-term and long-term variation in
predicted %FEV1 is illustrated in figure 1. The standard random
intercept and slope model approach is illustrated over long and
short follow-up periods in figure 1A,C. This approach assumes
that any deviation of an individual’s trajectory from the popu-
lation mean is linear in time over the whole of the follow-up
period apart from independent random errors. One can see that
this assumption is reasonable over short time periods, as illus-
trated by the fit of the shorter dotted-line segments (figure 1A,
C), but over longer time periods the individual data traces
diverge unrealistically from their fitted linear mean trajectories
(long solid line). Our proposed model produces a much closer
fit to the data (figure 1B,D), and one that better reflects
the relative magnitude of the three estimated components of
variation in %FEV1 over time.

Quantifying the variability in %FEV1 over time
The empirical variogram quantifies the variability in the dataset
(figure 2A). The intercept at time zero represents measurement
error because there can be no true within-person variation at

a time lag of zero. Of the total variance in the Danish dataset,
about half is due to systematic differences between patients (eg,
genotype, sex or pancreatic status), two-fifths is within patients,
representing change over time (disease progression), and one-
tenth is ‘measurement error ’. In practice, this last component
represents the combined effects of technical errors, and physi-
ological variability occurring at time intervals less than the
monthly interval of measurement, for example, day-to-day
variability. This error variance equates to an average SD of 6.3%
for repeated measures on the same individual at short time
intervals. Figure 2B shows the proportion of the within-person
variability in %FEV1 at follow-up time (t), which can be
explained by their %FEV1 value at baseline. For example, about
50% of the within-patient variability at t¼2.5 years is explained
by the baseline measurement, and about 30% at t¼5 years.
Overall, the dependence on baseline measures gradually decays
and is negligible at 15 years.

Clinical utility of our proposed model
The model can be used to guide interpretation of sudden changes
in lung function. Consider seeing the person in figure 1B at

Figure 1 Comparison of conventional
random intercept and slope model over
short and long follow-up periods,
versus our proposed Gaussian process
model. (A) Data for a single individual,
illustrating that a linear trend fits
reasonably well over short time
periods, but gives a very poor fit to this
individual’s complete data; linear trends
are fitted by ordinary least squares. (B)
The same data with the fitted trajectory
of the stationary Gaussian process
model. The smoothed fitted trace is
a better representation of the ‘true’
underlying lung function, and could be
used in real time to guide the
interpretation of sudden changes in lung
function. For instance, the sudden drop
to under 30% indicated by the arrow is
not mirrored in the model trace,
suggesting that this may be recoverable
random fluctuation. (C, D)
Corresponding plots for a second
individual. %FEV1, forced expiratory
volume in 1 s as a percentage of
predicted.

Cystic fibrosis

862 Thorax 2012;67: doi:10.1136/thoraxjnl-2011-200953860–866.



around age 9 (as indicated by the arrow in the figure), when her
lung function has dropped to below 30%. On the basis of this
one-off measurement, one might be quite guarded in terms of
prognosis. However, our modelled trace (thick black line in figure
1B) suggests that her underlying lung function is changing less
dramatically, with a modelled %FEV1 of around 50%. We suggest
that this estimate provides a more realistic assessment of
underlying lung function by smoothing out the short-term
variability. This could be a useful adjunct to clinical decision-
making. As well as providing information about the significance
of a sudden change in lung function, figure 2B also quantifies the
predictive value of a contemporary %FEV1 measure. In terms of
counselling patients, this means that a higher %FEV1 today is
associated with a higher %FEV1 at subsequent time points, but
the predictive value deteriorates over time as illustrated in the
figure.

Effect of covariates on lung function in the Danish population
We explored the effect of covariates that have been associated
with %FEV1 in previous studies to demonstrate how this model
can be used to answer questions at the population level (see
table E1 online appendix for univariate associations).4 There was

no evidence to suggest that covariate effects were nonlinear (see
figure E4 in online appendix). The final model included age,
Pseudomonas status, pancreatic status, cohort and CFRD
(table 2). Note that the estimated covariate effects in table 2 are
population-averaged effects, that is, they describe average values
of %FEV1 for sub-populations of individuals sharing the same
explanatory characteristics, rather than for any one individual.
The most prominent effects are associated with birth cohort,
pancreatic function and the onset of Pseudomonas infection
(figure 3). There is clear separation between the three most
recent birth cohorts, with a successive increase in the intercept
term at age 5 (83% in the 1978e88 cohort vs 96% in the post-
1998 cohort) (figure 3A and figures E9eE10 in online appendix).
There is a large change in the point estimate for the rate of
change of lung function in the post-1998 (0.24%) compared with
the 1988e98 cohort (�1% per year), such that the post-1998
cohort appears to be improving over the period of measurement.
The three cohorts spanning the years 1948e1978 have a similar
overall rate of decline around �0.3% per year, with an intercept
at age 5 of 66%. Pancreatic insufficiency is associated with
a significantly steeper rate of decline of lung function (�0.92%
per year, 95% CI �1.7 to �0.3), as is acquisition of Pseudomonas

Figure 2 Quantifying the variability in
forced expiratory volume in 1 s as
a percentage of predicted (%FEV1) with
the variogram approach. (A) Scaled
empirical variogram for the Danish data.
The solid line (variogram function)
represents the variance of the
difference between residual errors
within individuals at time lags from 0 to
30 years. The variogram function
increases up to about 15 years,
corresponding to a decreasing
correlation between paired lung
function measures with
increasing time separation. The
variogram partitions the variability in
the data into three components: within
person, between person, and error. (B)
Proportion of variability in an individual’s %FEV1 at follow-up time t that is explained by their %FEV1 at baseline. This shows that the variogram can
predict 63% of the variability from the population average at 1 year, which decreases to around 60%, 40%, 30% and 10% at 2, 3, 5 and 10 years
respectively.

Table 2 Estimates from final multivariate model

Point estimate Lower 95% CI Upper 95% CI p Value

Intercept at age 5 years 66.02 61.13 70.92 <0.001

CFRD �2.47 �3.58 �1.37 <0.001

Age �0.26 �0.49 �0.03 0.025

Cohort$1948 (reference 1968) 1.20 �25.50 27.90 0.930

Cohort$1958 �0.75 �10.01 8.51 0.874

Cohort$1978 16.60 10.15 23.05 <0.001

Cohort$1988 25.19 19.11 31.27 <0.001

Cohort$1998 29.81 22.85 36.78 <0.001

Pancreatic sufficiency 2.78 �10.43 15.99 0.679

Pseudomonas aeruginosa infection �0.51 �0.72 �0.29 <0.001

Age3cohort$1948 �0.03 �0.67 0.61 0.920

Age3cohort$1958 0.06 �0.23 0.34 0.699

Age3cohort$1978 �0.72 �1.00 �0.44 <0.001

Age3cohort$1988 �0.72 �1.09 �0.35 <0.001

Age3cohort$1998 0.50 �0.41 1.42 0.280

Age3pancreatic sufficiency 0.98 0.29 1.67 0.005

CFRD, cystic fibrosis related diabetes.
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infection (�0.5% per year, 95% CI �0.72 to �0.3) (figure 3B and
figure E8 in online appendix). CFRD is associated with a drop in
intercept of �2.5% (95% CI �3.6% to �1.37%), but has no
effect on the rate of decline of lung function.

DISCUSSION
We describe a novel longitudinal modelling technique specifically
aimed at analysing long sequences of repeated measurements,
and apply this to %FEV1 from a CF population. We show how
this approach could be used to inform patient management, by
aiding the interpretation of sudden changes in lung function,
and by quantifying the predictive value of a baseline %FEV1

measure up to 15 years later. At the population level, we show
how our model can be used to quantify the effect of covariates
on populations or sub-populations. Translation of these methods
into clinical practice is important because people with CF are
living longer, and we have shown how commonly applied
approaches are unhelpful over long follow-up periods.

This study quantifies the short-term variability in %FEV1 in
this population (SD 6.3%), and demonstrates that %FEV1

measures within individuals are correlated over time lags of
15 years or more. We have also explored the effect of previously
studied risk factors for lung function decline in the Danish CF
population, and have demonstrated significant effects of birth
cohort, pancreatic status and Pseudomonas infection status.

The findings from this study have a number of clinical
applications. Quantifying the variability in lung function
measures is essential to make correct clinical interpretation.10

Exploiting the unusually high frequency of data collection in
Denmark, this study implies that on average a change in %FEV1

of >13% (ie, twice the error SD, to give a 95% confidence range)
is likely to represent true within-patient variation over time
(disease progression), whereas anything less than this could be
due to short-term fluctuation, which may recover. Stanbrook
et al21 found a pooled within-subject %FEV1 SD of 4.5% when
measured over a 9-day period in 21 stable adults with CF. This
population is different to the population in our study, who were
measured regardless of clinical status, and one would therefore
expect greater variability. Other studies have shown that people
with CF, asthma and COPD have more short-term variability in
lung function tests22e24 and that more impaired lung function is
associated with greater variability.25

Our model can be used to generate an underlying represen-
tation of an individual’s ‘true’ lung function trajectory (figure
1B,D) that smoothes out the noise inherent in %FEV1 measures.
These smoothed traces could be used to inform clinical decision-

makingdthe model fit curves in figure 1 provide more realistic
estimates of underlying lung function, and more valid criteria for
clinical decisions. We propose that this model could be used to
develop a real-time smoothing tool embedded in electronic
patient records to aid clinical interpretation of spirometry data.
We suggest that access to this information would provide some
re-assurance to patents experiencing lower than expected lung
function values, since lung function can recover quite dramati-
cally, and these data suggest that a linear or stepwise decline in
lung function over time is not the norm.
We have generated, for the first time to our knowledge, the

variogram function for %FEV1 in people with CF over long
follow-up periods. This precisely quantifies how %FEV1

measures are correlated over time. Furthermore we have done
this for the whole CF population of Denmark. This quantifies
the degree to which a baseline %FEV1 measure can be used
to predict subsequent %FEV1 measures over long follow-up
periods, and is likely to be of interest to clinicians and
patients. We demonstrate a long-term correlation between levels
of %FEV1 within an individual. This suggests that there is long-
term predictive value in a high %FEV1 measuredpeople with
CF with a high %FEV1 at baseline are more likely to have a high
%FEV1 up to 15 years later than individuals with a lower
baseline %FEV1 (figure 2B). However, the predictive value of a
%FEV1 measure drops away rapidly over this period. We can say
that on average a %FEV1 reading today explains about 63% of
the variability in %FEV1 at 1 year, 40% at 3 years, and about
30% at 5 years.
This corroborates Rosenthal’s study,26 which found that

baseline %FEV1 explains 66% of the variability in %FEV1 at
1 year, and Mastella et al’s study of European registry data in
which differences in lung function at enrolment at age 5, cate-
gorised as mild, moderate or severe, tracked through the study to
age 40.27 Konstan et al also describe how a lower %FEV1 for
a given age can be used to characterise the aggressiveness of lung
disease.28 Other studies have shown a high %FEV1 to be an
independent risk factor for a greater rate of decline of %FEV1

over the next few years.4 29 This is not at odds with our findings
here; a high %FEV1 can be a risk factor for greater decline in
the short term, while still being associated with a relatively
higher %FEV1 over the longer term.28

At the population level we show how our approach can be
applied to quantify the effect of covariates on changes in
lung function. Furthermore, the partitioning of the variability in
%FEV1 and the precise description of the correlation structure
captured in the model provide important information for sample

Figure 3 Effect of covariates on
forced expiratory volume in 1 s as
a percentage of predicted (%FEV1). (A)
Birth cohort effect in the final model.
There is clear separation between the
three most recent birth cohorts, with
a successive increase in the intercept
term at age 5 years. (B) Effect of
pancreatic insufficiency and
Pseudomonas infection on the
predicted population trajectory for
a person born in the 1988e1998
cohort. CF, cystic fibrosis; PA,
Pseudomonas aeruginosa.
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size calculations in longitudinal clinical studies with %FEV1 as
an outcome. Increasingly longitudinal outcomes are being used
in randomised control trials, and to undertake an a priori sample
size calculation it is essential to have information on the
correlation structure. Furthermore, our modelled %FEV1 trace
could be used as an outcome in its own right.

As with other studies of patients with CF,30 there is a striking
cohort effect evident in this population. The treatment of CF
lung disease has been transformed over the period captured in
this analysis, from 1969 to the present day. Particularly
impressive is the improvement in lung function in the post-1998
cohort by comparison with preceding birth cohorts. Although
patients in this group are early in their disease progression, the
overall picture suggests that new therapeutic strategies are
continuing to provide improvements in respiratory function in
CF.

Our approach to modelling changes in %FEV1 can be applied
over long follow-up periods. This is in contrast to the widely
used random intercept and slope approach that has been applied
in studies of CF and COPD over short-term4 27 31 32 and longer-
term follow-up periods.10 11 14 33 The development and testing
of the new approach is facilitated by the nature of the Danish
CF registerdto our knowledge there are no other datasets that
contain such frequent (monthly) measures of lung function on
individuals measured over very long periods (up to 31.5 years).
However, the fact that the data are from Denmark does not
influence the validity of the methods we have described, since
these are essentially context free. Furthermore, this method does
not exploit any features of our data that are unique to CF, and is
equally applicable to other clinical areas that generate long
sequences of repeated measurements. As a next step we
recommend that this method be applied to longitudinal data
collected in other CF registries, such as the UK, to clarify how
robust this approach is in terms of predicting changes in %FEV1

over time, and to better understand how this might inform
clinical decision making. Future research could explore the
utility of our proposed model in other diseases such as COPD.

A limitation of this study is the likely influence of survivor
bias on lung function estimates in the earlier birth cohorts. In
the 1948e1978 period, the intercept at age 5 appears signifi-
cantly lower than in the other cohorts, but there is also a shal-
lower rate of decline of lung function. This is likely to be due to
the incomplete capture of patients in earlier cohorts, with
censoring due to death leaving only the more stable survivors.
This is a common problem in datasets of this type.34 Fitting the
model by maximum likelihood automatically corrects for selec-
tion bias that depends on a patient’s observed lung function
measurements prior to death, although not for any additional
dependence on unmeasured features of their lung function
trajectory.15 19

Pancreatic sufficiency had an important effect on the overall
rate of decline of lung function (+0.9% per year). In Konstan’s
study4 pancreatic sufficiency was the most important protective
factor in the age group 6e8 years (+1.33% per year). The small
number of pancreatic-sufficient individuals in the Danish
dataset (n¼20, 5%) have a notably different lung function
phenotype, maintaining near-normal lung function over the
period of follow-up (see plot in online appendix). The onset of
Pseudomonas infection was associated with a significant increase
in the rate of decline of lung function, by around �0.5% per year,
similar to that reported in the study by Konstan, in which
Pseudomonas colonisation was associated with an increased rate
of decline of FEV1 of �0.31% per year in the 6e8-year-old age
group, and �0.22 in the 9e12-year-old age group.4

In conclusion, our modelling approach provides a more real-
istic estimate of the %FEV1 trajectory in CF, which could be
applied in real time to help clinicians interpret the significance of
changes in %FEV1. Furthermore, our approach quantifies the
predictive value of a baseline %FEV1 measure, over three
decades. This method is equally applicable to the longitudinal
assessment of %FEV1 in other lung diseases, and can enable more
robust comparisons of populations, including groups studied in
clinical trials. As people are now living for many decades with
these diseases, the development of tools to better understand the
natural history of this important outcome will be essential for
improved clinical care, as well as being a key research priority.1
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