
Research Article
Dependence of Shape-Based Descriptors and Mass
Segmentation Areas on Initial Contour Placement Using
the Chan-Vese Method on Digital Mammograms

S. N. Acho and W. I. D. Rae

Department of Medical Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa

Correspondence should be addressed to S. N. Acho; gnbisa.md@ufs.ac.za

Received 16 February 2015; Revised 14 July 2015; Accepted 30 July 2015

Academic Editor: Chuangyin Dang

Copyright © 2015 S. N. Acho and W. I. D. Rae. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Variation in signal intensitywithinmass lesions andmissing boundary information are intensity inhomogeneities inherent in digital
mammograms. These inhomogeneities render the performance of a deformable contour susceptible to the location of its initial
position andmay lead to poor segmentation results for these images.We investigate the dependence of shape-based descriptors and
mass segmentation areas on initial contour placement with the Chan-Vese segmentation method and compare these results to the
active contours with selective local or global segmentationmodel. For eachmass lesion, final contours were obtained by propagation
of a proposed initial level set contour and by propagation of a manually drawn contour enclosing the region of interest. Differences
in shape-based descriptors were quantified using absolute percentage differences, Euclidean distances, and Bland-Altman analysis.
Segmented areas were evaluated with the area overlap measure. Differences were dependent upon the characteristics of the mass
margins. Boundary moments presented large percentage differences. Pearson correlation analysis showed statistically significant
correlations between shape-based descriptors from both initial locations. In conclusion, boundary moments of digital mass lesions
are sensitive to the placement of initial level set contours while shape-based descriptors such as Fourier descriptors, shape convexity,
and shape rectangularity exhibit a certain degree of robustness to changes in the location of the initial level set contours for both
segmentation algorithms.

1. Introduction

Breast masses are one of the most common indications of
breast cancer. They are frequently identified on mammo-
grams, due to their saliency relative to the surrounding
regions and also to comparable regions on the mammograms
with the same projection of the opposite breast [1]. Computer
Aided Detection algorithms for breast mass classification
exploit suitable shape-based descriptors derived from the
mass boundary which are powerful enough to differentiate
between benign and malignant masses. Segmentation algo-
rithms are necessary for mass contouring in direct digital
mammography. However, in this imaging modality, mass
margins are embedded in complex backgrounds of overlying
and underlying tissueswhich createsmissing boundary infor-
mation and local minima where a deforming contour can

be entrapped and as a consequence produces an undesirable
segmentation outcome. Moreover, the wide dynamic range
of flat panel detector systems of direct digital mammography
units records small differences between the attenuation coef-
ficients of structures or regions present in a mass lesion and
they are clearly distinguishable over a wide range of densities,
whereas in film screen mammography the exposure latitude
of the film limits the dynamic range of information captured
on the film.Hence,masses whichmay have appeared as dense
structures without significant topographical relief features on
film screenmammograms can emerge following digital imag-
ing, as regions with varying densities on soft copy display.
Enhancement of these variations, following postprocessing
by the processing algorithms of the manufacturer, may
also be present. Usually, small differences in densities may
sometimes appear as low signal areas which can act as local
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minima for contour entrapment each time an evolving curve
determines its path within the mass lesion. Consequently,
local minima and missing boundary information render
deformable contours susceptible to their initial locations.

A geometric active contour is a deformable contour based
approach for image segmentation. In breast mass segmenta-
tion, an initial contour is deformed anddriven by a partial dif-
ferential equation (PDE) towards the boundary of the candi-
date mass. It is categorized into two groups: edge based mod-
els [2–4] and region based models [5–13]. Both models make
use of a stopping termwhich reduces the speed of the evolving
contour as it approaches the boundary of the object andfinally
reaches a steady state at the boundary. In edge based models,
the stopping term utilizes an edge indicator function mod-
elled on the image gradient; consequently, objects with weak
and noisy boundaries may present some difficulties to this
segmentation model [14, 15].

The Chan-Vese region based algorithm models energy
functionals as a competition of regional statistical informa-
tion [16]. They defined the stopping term as a competition
of the first moments of the local intensity distribution of the
foreground and the background within a narrowband, which
takes into consideration only pixels which will influence
the propagation of the interface (zero level set function)
between these two regions. The energy functionals drive the
initial contour from its initial location toward a desirable
local minimum, which in principle should correspond to the
delineated boundary of an expert radiologist. However, these
are determined by localized statistics; hence, the evolution
of the curve becomes sensitive to the location of the initial
level set contour and segmentation results will depend on the
placement of this contour, especially when tuning parameters
for an arbitrary collection of masses are fixed. This becomes
evident during segmentation of direct digital masses with
obscured or ill-defined margins and low signal areas within.

The active contours with selective local or global seg-
mentation model [9] are a region based energy functional
formulated as a signed pressure force function which prop-
agates the initial contour by modulating the signs of the
pressure forces inside and outside the region of interest.
These pressure forces are derived from the means of the local
intensity distributions of the foreground and the background.
The algorithm penalizes the level set function to be binary
and regularizes it with a Gaussian smoothing kernel. It
can effectively handle images with weak edges and interior
intensity inhomogeneity.

In most segmentation problems, the initial contour is
either drawn by the operator or estimated from other seg-
mentation algorithms [17, 22–25] and this may place the
initial level set contour on different locations within themass.
Any variation in segmentation outcomes will cause changes
in shape-based descriptors and the area occupied by the
segmentedmass. Variations in segmentation outcomeswhich
are due to the placement of the initial level set contours in
complicated images have been mentioned [11]. Mass lesions
on mammograms are complicated image domains for curve
evolution and variations in mass lesion segmented areas
and their influences on shape-based feature vectors due to

changes in the placement of the initial level set contours are
not found in the literature.

Understanding these inconsistencies can improve the
choice of tuneable parameters and initial contour locations
for curve evolution either for a data set of mass lesions
with labelled margin characteristics or unlabelled margin
characteristics. Shape-based descriptors [26–28] are feature
vectors in training sets for binary classification ofmass lesions
in mammography and changes in these descriptors can play
a role in determining the interclass separability measures, the
choice of margin hyperplanes, and hence the classification
efficiencies of these algorithms.

In this study, we investigate changes in one-dimensional
shape-based descriptors and the segmented areas of masses
in direct digital mammograms due to changes in the location
of the initial level set contours with the implementation of
the Chan-Vese segmentation method and the active contours
with selective local or global segmentation model. Two
groups of masses are considered in this study, one with
obscured or ill-defined margins and low signal areas within
and the other with well-defined and distinct margins. We
consider a contour which encloses the mass lesion and is
propagated towards the margin of the lesion. We propose a
semiautomatic method which derives the initial contour as a
curve connecting pointswithmaximumgradient in the radial
direction, representing an optimum curve characterizing
the intrinsic shape of the mass lesion, and then assess the
differences in the segmentation results.

2. Background to Mathematical Methods

In mammography, smoothed images present topological
surfaces that can be thresholded intomultiple layers to obtain
topographical relief maps of dominant structures found on
the images. Mammograms are filtered with edge-preserving
denoising methods such as weighted total variation (TV)
scale-space smoothing technique [29, 30] to remove noise
and fine details while preserving dominant edge character-
istics through different degrees of smoothing.

2.1. Weighted Total Variation Scale-Space Smoothing Tech-
nique. Suppose 𝐼 : Ω → R denotes an image and Ω ⊂ R2

the image domain.The variational approach for image denois-
ing for this model involves the minimization of the following
energy functional:

𝐸TV (𝐼, 𝜆) = ∫
Ω

(|∇𝐼| + 𝜆 (𝐼 − 𝐼
0
)
2

) 𝑑𝑥 𝑑𝑦, (1)

where 𝐼
0
is the noisy input image and 𝐼 its regularized

approximation. 𝜆 is the Lagrange multiplier indicating the
scale of detail desired in the smoothed image. Bresson et al.
proposed a modified model [30] in which the 𝐿

2-norm
square of Rudin et al.’s model is replaced with an 𝐿

1-norm to
preserve image contrast [31] and in addition the TV norm of
𝐼 is multiplied with a function, 𝑔, which is an edge indicator
function. This represents the weighted TV model with
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an 𝐿
1-norm as a data fidelity measure. The energy functional

for minimization is given as

𝐸
𝑔TV (𝐼, 𝜆) = ∫

Ω

(𝑔 |∇𝐼| + 𝜆
󵄨󵄨󵄨󵄨𝐼 − 𝐼
0

󵄨󵄨󵄨󵄨) 𝑑𝑥 𝑑𝑦 (2)

with

𝑔 =
1

1 + Υ
󵄨󵄨󵄨󵄨∇𝐺𝜃 ∗ 𝐼

0

󵄨󵄨󵄨󵄨

2
, (3)

where Υ is a constant >0 and 𝐺
𝜃
is a Gaussian kernel with

standard deviation, 𝜃. The minimization of 𝐸
𝑔TV(𝐼, 𝜆) results

in the following weighted TV flow equation:

𝐼
𝑡
= div(𝑔 ∇𝐼

|∇𝐼|
) + 𝜆(

𝐼 − 𝐼
0

󵄨󵄨󵄨󵄨𝐼 − 𝐼
0

󵄨󵄨󵄨󵄨

) . (4)

For small values of 𝜆, the degree of image smoothing
increases and edge is preserved; therefore, the global
boundary information which is essential for segmentation
algorithms can be modelled as the initial contour for the gra-
dient descent flow equation of the level set. This contour will
depend on the boundary properties of a given mass lesion.

2.2. Chan-Vese’s Piecewise Constant Model for Binary Segmen-
tation. Suppose 𝐶 is an evolving curve that partitions the
image domain into the foreground, Ω

1
, and the background,

Ω
2
. The Chan-Vese model [16] seeks an optimal contour,

representing the boundary of an object by minimizing the
following energy functional:
𝐹 (𝐶, 𝑐

1
, 𝑐
2
) = 𝜇length (𝐶) + 𝜐Area (inside (𝐶)) + 𝐹data, (5)

where 𝐹data represents the regional term guiding the contour
in the image domain and is given by

𝐹data = 𝜆
1
𝐹
1
(𝐶) + 𝜆

2
𝐹
2
(𝐶) (6)

in which

𝐹
1
(𝐶) = ∫

inside(𝐶)

󵄨󵄨󵄨󵄨𝐼 (𝑥, 𝑦) − 𝑐
1

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦,

𝐹
2
(𝐶) = ∫

outside(𝐶)

󵄨󵄨󵄨󵄨𝐼 (𝑥, 𝑦) − 𝑐
2

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦.

(7)

𝜇 ≥ 0, ] ≥ 0, and 𝜆
1
and 𝜆

2
are positive constants while

the average image intensities of regions inside and outside the
contour are 𝑐

1
and 𝑐
2
, respectively. In level set formulation, the

interface of the foreground and background is embedded as
the zero level set of a Lipschitz function, 𝜙(𝑥, 𝑦): Ω → R

with 𝜙(𝑥, 𝑦) > 0 for pixel positions in Ω
1
and 𝜙(𝑥, 𝑦) < 0

for pixel positions in Ω
2
whilst 𝜙(𝑥, 𝑦) = 0 on the curve 𝐶.

Using the Heaviside step function, 𝐻
𝜀
(𝜙), 𝐹(𝐶, 𝑐

1
, 𝑐
2
) can be

expressed as

𝐹 (𝐶, 𝑐
1
, 𝑐
2
)

= 𝜇∫
Ω

󵄨󵄨󵄨󵄨∇𝐻𝜀 (𝜙)
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

+ 𝜆
1
∫
Ω

(𝐼 (𝑥, 𝑦) − 𝑐
1
)
2

𝐻
𝜀
(𝜙) 𝑑𝑥 𝑑𝑦

+ 𝜆
2
∫
Ω

(𝐼 (𝑥, 𝑦) − 𝑐
2
)
2

(1 − 𝐻
𝜀
(𝜙)) 𝑑𝑥 𝑑𝑦.

(8)

Minimizing 𝐹(𝐶, 𝑐
1
, 𝑐
2
) with respect to 𝜙 yields the following

gradient descent flow:

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [𝜇∇(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) − 𝜐 − 𝜆
1
(𝐼 (𝑥, 𝑦) − 𝑐

1
)
2

+ 𝜆
2
(𝐼 (𝑥, 𝑦) − 𝑐

2
)
2

] ,

(9)

where 𝛿
𝜀
(𝜙) is the Dirac function.

2.3. Active Contours with Selective Local or Global Segmenta-
tion Model. The signed pressure force function [9] is derived
from themeans of regions inside and outside the contour and
it is defined as

spf (𝐼 (𝑥, 𝑦)) =
𝐼 (𝑥, 𝑦) − (𝑐

1
+ 𝑐
2
) /2

max (󵄨󵄨󵄨󵄨𝐼 (𝑥, 𝑦) − (𝑐
1
+ 𝑐
2
) /2

󵄨󵄨󵄨󵄨)
,

𝑥, 𝑦 ∈ Ω
𝑝
,

(10)

where 𝑐
1
and 𝑐
2
are defined in (8). The active contour with

selective local or global segmentation model utilizes the
geodesic active contour to formulate the level set equation as

𝜕𝜙

𝜕𝑡
= spf (𝐼 (𝑥, 𝑦)) ⋅ (div(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) + 𝛼)
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

+ ∇spf (𝐼 (𝑥, 𝑦)) ⋅ ∇𝜙, 𝑥, 𝑦 ∈ Ω
𝑝
.

(11)

Using the Gaussian filtering process to regularize the level set
function, the above equation can be written as follows:

𝜕𝜙

𝜕𝑡
= spf (𝐼 (𝑥, 𝑦)) ⋅ 𝛼 󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨 , 𝑥, 𝑦 ∈ Ω
𝑝
, (12)

where 𝛼 is a tuneable parameter.

3. Method

3.1. Data Set Description. Direct digital mammograms were
acquired from a Hologic Selenia Dimensions system with an
image receptor consisting of a 70 𝜇m pixel pitch selenium
direct-capture detector. Ninety mammograms with mass
lesions were selected for this study. Forty mammograms had
masses with low signal areas within the mass and margins
described as obscured, or ill-defined, while the others had
masses with well-defined or distinct margins. On each mam-
mogram, the region of interest containing themass lesionwas
cropped and then resized to a 208 × 208 matrix to create a
submammogram. Each submammogram was denoised and
thresholded to localize the initial level set contour.

3.2. Search Space for Localizing the Initial Level Set Contour.
The weighted total variation scale-space smoothed breast
mass region is represented as a topological surface in which
the grey level value of each pixel is the height of the surface.
Let 𝐼𝑆 : Ω → R denote a smoothed image and Ω ⊂ R2

the image domain. The image domain Ω is thresholded into
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Figure 1: Search space for localizing the initial contour. (a)The original mass lesion, (b) the weighted TV flow denoised image with 𝜆 = 0.05,
(c) dense nested patterns of iso-level contours representing the search space for localizing the initial contour on the gradient map, (d) radial
distances from a reference point to the iso-level contours, and (e) initial level set contour, representing points with maximum gradient in the
radial direction within a predefined radius.

multiple regions with an ordered set of equally spaced grey
level threshold values within the intensity range of the image
domain [32–34]. Suppose 𝐼max = the maximum grey level
intensity in the image domain; 𝐼min = minimum grey level
intensity; 𝑊 = {𝑤

1
, 𝑤
2
, 𝑤
3
, . . . , 𝑤

𝑁
}, a finite sequence of

equally spaced partition weights in ascending order; 𝑁 =
number of threshold values; and 𝑇 = {𝑡

1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑁
}, an

ordered set of equally spaced grey level threshold values; then,

𝑇 = 𝐼max ∗𝑊 (13)

with 𝑡
𝑁
≤ 𝐼max and 𝑡

1
≥ 𝐼min.

The subregions in the image domainwith grey level inten-
sities less than or equal to the threshold value, 𝑡

𝑖
, are given as

𝑅 (𝑡
𝑖
) = {(𝑥, 𝑦) | 𝐼𝑆 (𝑥, 𝑦) ≤ 𝑡

𝑖
} , ∀ (𝑥, 𝑦) ∈ Ω, (14)

and the iso-level contours 𝐶(𝑡
𝑖
)’s of these regions are

boundaries of 𝑅(𝑡
𝑖
). The iso-level contour map of the image

domain represents the set of all 𝐶(𝑡
𝑖
) for 𝑖 = 1 : 𝑁. A

graph-based representation of the iso-level contour map
evaluates the enclosure relationship between an iso-level
contour and its nearest neighbour, to identify the path to the
base contour that delineates the mass. Details of this method
can be found in the literature [32, 33]. In our implementation,
the boundary region of the breast mass is the region around
the base contour with a dense nested pattern of iso-level
contours, indicating the search space for the actual boundary
of the mass and the placement of the initial level set contour.
Thedense nested pattern of iso-level contours is extracted and
superimposed on the gradient map of the smoothed image.

3.3. Placement of the Initial Level Set Contour. A set of uni-
formly spaced radial lines, 𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑚
}, are generated

from a point close to the centre of mass of the innermost
iso-level contour, defining the search space on the gradient
map of the mass as shown in Figure 1(d). Let this point be
the reference point. The gradient strength is noted at every
point of intersection of the nested iso-level contours and
radial lines. Along each radial line, 𝑙

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚,

the coordinates of the point of intersection with the greatest
gradient strength are noted and the radial distance from this
point to the reference point is calculated and noted as 𝑟

𝑖
.
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Figure 2: Variation of the radial distance function of the initial level
set contours sampled at an angle of 1∘ with different 𝜆’s for the mass
lesion in Figure 1.

Let 𝑟ave = (1/𝑚)∑
𝑚

𝑖=1
𝑟
𝑖

and 𝑟std =

√∑
𝑚

𝑖=1
(𝑟
𝑖
− 𝑟ave)

2/(𝑚 − 1); then radial description of the
initial level set contour is given by

𝑟
𝑖
=

{

{

{

𝑟
𝑖
, 𝑟

𝑖
< 𝑟ave + 𝑛𝑟std

𝑟ave, 𝑟
𝑖
≥ 𝑟ave + 𝑛𝑟std,

𝑖 = 1, 2, . . . , 𝑚, 𝑛 = 1 or 2.

(15)

The spatial coordinates of the points of intersection of 𝑟
𝑖
’s

and the iso-level contours are the coordinates of the initial
level set contour. Figure 1 illustrates the summary of the
methodology in acquiring the initial level set contour and
Figure 2 shows the variation of the radial distance function,
𝑟
𝑖
, for 𝑖 = 1 : 𝑚, with the scale of observation, 𝜆, in weighted

total variation scale-space smoothing technique. The radial
distance function of the initial level set contour corresponds
to the radial distance from each point on the initial contour
to the reference point with a sampling angle of 1∘.

3.4. Evaluation Metrics of Segmentation Results. Manually
drawn initial contours and those obtained from our proposed
method were propagated with the Chan-Vese algorithm and
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the active contourswith selective local or global segmentation
model. Feature vectors representing boundary-based shape
signatures and the areas occupied by the segmented mass
lesions were assessed to provide relative measures of the
differences between the segmented mass lesions.

3.4.1. Area Metric of Relative Size of Segmented Mass Lesion.
Let im𝑌 represent the binary image obtained by evolving the
initial level set contour from our proposed method and im𝑋

from the manually drawn initial level set contour; then, the
area overlap measure, which is the Jaccard similarity coeffi-
cient between the binary images, im𝑋 and im𝑌, is given as

JSC (im𝑋, im𝑌) =
im𝑌 ∩ im𝑋

im𝑌 ∪ im𝑋
. (16)

JSC(im𝑋, im𝑌) lies between 0 and 1. A perfect match
between im𝑋 and im𝑌 is achieved as JSC(im𝑋, im𝑌) → 1,
consequently, the same segmentation outcome for both
initial level set contours.

3.4.2. Evaluation Metrics of Shape-Based Descriptors

Boundary Moments. A boundary-based shape signature of
the segmented mass lesion from each initial contour model
is represented as the centroid distance function, which
is a one-dimensional function representing the Euclidean
distance 𝑟(𝑛) between an ordered set of boundary coordinates
((𝑥(𝑛), 𝑦(𝑛)), for 𝑛 = 0, 2, 3, . . . , 𝑁 − 1) and the centroid
(𝑥𝑐, 𝑦𝑐) signifying the centre of mass of the binary image
generated from the contour:

𝑟 (𝑛) = √((𝑥 (𝑛) − 𝑥𝑐)
2
+ (𝑦 (𝑛) − 𝑦𝑐)

2

), (17)

where𝑁 is the total number of points on the contour.
The centroid distance function captures the local and

global characteristics of the final shape of the segmentedmass
lesion. Its statistical characteristics are assessed as shape fea-
tures derived from the contour sequencemoments𝑚

𝑝
and 𝜇
𝑝

[35] where the 𝑝th contour sequence moment is estimated as

𝑚
𝑝
=

1

𝑁

𝑁−1

∑

𝑛=0

[𝑟 (𝑛)]
𝑝 (18)

and the 𝑝th central moment is estimated as

𝜇
𝑝
=

1

𝑁

𝑁−1

∑

𝑛=0

[𝑟 (𝑛) − 𝑚
1
]
𝑝

. (19)

These shape features are normalized low-order boundary
moments [36, 37] described as

𝐹
1
=

(𝜇
2
)
1/2

𝑚
1

,

𝐹
2
=

(𝜇
4
)
1/4

𝑚
1

,

𝐹
3
= 𝐹
1
− 𝐹
2
,

(20)

where 𝐹
1
is the normalized amplitude variation and 𝐹

2
and

𝐹
3
are indicators of shape roughness.
Spicules are fine extensions radiating from the margin of

a mass lesion. The presence of these boundary features gen-
erates variations in the radial distances, which are indicative
of contour roughness along the boundary of a mass lesion.
The evaluation metric %Δ𝐹

𝑖
(im𝑋, im𝑌) is the percentage

change in the degree of spiculation between im𝑋 and im𝑌

and is expressed as the percentage difference in the boundary
moments, 𝐹

𝑖
’s:

%Δ𝐹
𝑖
(im𝑋, im𝑌) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝑖
(im𝑌) − 𝐹

𝑖
(im𝑋)

average (𝐹
𝑖
(im𝑌) , 𝐹

𝑖
(im𝑋))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100.

(21)

Fourier Descriptors. The centroid distance function can
be analysed in the frequency domain to obtain spectral
descriptors of its characteristics. Its spectral representation is
expressed as the coefficients of its discrete Fourier transform,
yielding

𝑎
𝑖
=

1

𝑁

𝑁−1

∑

𝑛=0

𝑟 (𝑛) exp (
−𝑗2𝜋𝑖𝑛

𝑁
) ,

𝑖 = 0, 1, 2, . . . , 𝑁 − 1.

(22)

Feature vectors which are invariant to translation, scale, and
rotation are extracted from these coefficients and are known
as the Fourier descriptors (FD

𝑖
) for shape representation:

FD
𝑖
= [

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎0
󵄨󵄨󵄨󵄨

] , 𝑖 = 1, 2, . . . ,
𝑁

2
. (23)

Zhang and Lu [38] have shown that FD
𝑖
derived from the

centroid distance function outperforms FD
𝑖
’s derived from

using complex coordinates, cumulative angles, and curva-
ture function as boundary signatures in shape-based image
retrieval system, and furthermore, in Zhang and Lu [39], they
mentioned that 60 FD

𝑖
’s are sufficient for shape indexing.

We define the evaluation metric of the initial level set
contours yielding im𝑋 and im𝑌 based on the boundary sig-
natures of the final contours delineating im𝑋 and im𝑌 in the
frequency domain as the Euclidean distance (DF(im𝑌, im𝑋))

between the Fourier descriptors of the images:

DF (im𝑌, im𝑋) = √

60

∑

𝑖=1

󵄨󵄨󵄨󵄨FD𝑖 (im𝑌) − FD
𝑖
(im𝑋)

󵄨󵄨󵄨󵄨

2

, (24)

where FD
𝑖
(im𝑋) and FD

𝑖
(im𝑌) are the 𝑖th Fourier descrip-

tors of the final contours delineating im𝑋 and im𝑌.

Shape Convexity. Shape convexity measures the degree of
spiculation in masses. The shape convexity of a binary image
is defined as the ratio of the area of the binary image to
the area of its convex hull [26]. Let 𝐶im𝑋 and 𝐶im𝑌 be
the convexity of binary images im𝑋 and im𝑌, respectively;
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the evaluation metric of the difference between the shape
convexities of images im𝑋 and im𝑌 is defined as

%ΔSC (im𝑋, im𝑌) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶im𝑌 − 𝐶im𝑋

average (𝐶im𝑌, 𝐶im𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100.

(25)

Shape Rectangularity. Shape rectangularity [40] is defined as
the ratio of the area of the binary image to the area of its min-
imal bounding rectangle. Let 𝑅im𝑋 and 𝑅im𝑌 be the shape
rectangularity of binary images im𝑋 and im𝑌, respectively;
the evaluation metric of the difference between the shape
rectangularities of images im𝑋 and im𝑌 is defined as

%ΔSR (im𝑋, im𝑌) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅im𝑌 − 𝑅im𝑋

average (𝑅im𝑌, 𝑅im𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100. (26)

Differences in shape-based descriptors of the final contours
were further evaluated with Bland-Altman analysis to explore
the agreement and trends between placements of the initial
level set contours in digital mass lesions segmentation while
Pearson correlation analysis assessed the correlation between
these descriptors.

4. Experimental Results and Discussion

In our implementation of the Chan-Vese method, we set 𝜇 =

0.2, 𝜆
1

= 2.5, and 𝜆
2

= 1. We chose 𝜆
1

> 𝜆
2
to give a

greater weight to the variance of pixels in the foreground so
as to achieve measurable segmentation differences between
the proposed locations for the initial level set contours.
Furthermore, we assigned 𝜆

1
= 𝜆
2
= 1 to investigate changes

in the final segmentation results due to differences in tuneable
parameters. In practice, for a given database of masses, the
values assigned to 𝜆

1
and 𝜆

2
depend on the similarity indices

between segmentation results of a proposed algorithm and
the gold standard of a training set of masses, which in some
cases is a subset of the database. For the active contour with
selective local or global segmentation model, we set 𝛼 = 5

for this database so that masses with ill-defined boundaries
should be accurately segmented. The segmentation perfor-
mances of this algorithm were poor with values of 𝛼 > 5 for
this group ofmasses.The average time for curve evolution for
these images was 15 ± 10 s for the segmentation methods.

Boundary information represents sharp changes in image
properties. Figure 2 shows that as the degree of smoothing
increases the radial distance functions of the initial level
set contours form a dense nested pattern of curves. The
differences between these curves are very small because edge
is preserved through different values of 𝜆’s in weighted TV
scale-space smoothing technique; consequently, segmenta-
tion results with the initial level set contours generated from
these curves are expected to be similar.

Segmentation results for some masses with low signal
areas and having obscured, or ill-defined, margins are shown
in Figure 3. The proposed method defines the initial level
set contour as the curve connecting points with maximum
gradients in the radial direction as shown in column 3. Each
curve characterizes the intrinsic shape of its mass lesion and

its evolution is guided by the statistics of pixels surrounding
the region. For this group of masses, the mean area overlap
measure between segmented areas generated from the final
contours of our proposed method and that of the manually
drawn initial level set contours were 0.81 ± 0.01 for the
Chan-Vese model and 0.86 ± 0.09 with the selective local
or global segmentation model. This is almost comparable to
the mean area overlap measures between expert radiologists
[17] and expert radiologists against segmentation methods
[17–21] as shown in Table 1. Therefore, changes in shape-
based descriptors as expressed in our setup will be suggestive
of changes in shape-based descriptors encountered by the
abovementioned publications.

Table 2 shows the variation in the area overlap measures
with percentage differences in boundary moments 𝐹

1
, 𝐹
2
,

and 𝐹
3
when masses in Figure 3 were evolved with tuneable

parameters 𝜆
1
= 2.5, 𝜆

2
= 1. The area overlap measure of

mass D is greater than 0.8; however, the percentage difference
in boundary moments was above 50%, with %Δ𝐹

1
being

87.0%. The mean values of %Δ𝐹
1
, %Δ𝐹

2
, and %Δ𝐹

3
for

this group were 23.9% (range 1.0–87.0%), 24.5% (range 1.7–
86.8%), and 32% (range 1.4–86.0%), respectively, as shown in
Table 6. The mean values are large with wide range. For 𝜆

1
=

1, 𝜆
2
= 1, the mean values of the percentage change of each

boundary moment were less than 20.2%. These large ranges
and mean values show that boundary moments are sensitive
to the location of the initial level set contour for masses with
obscured or ill-defined margins and the degree of sensitivity
depends on the choice of tuneable parameters. As shown in
Table 7, the mean values of boundary moments %Δ𝐹

1
, %Δ𝐹

2
,

and %Δ𝐹
3
were obtained as 15.1% (range 0–74%), 15.4%

(range 0–67.5%), and 23.5% (range 0–52%), respectively, by
using the selective local or global segmentation model. These
values are comparable to values obtained by implementing
the Chan-Vese model for 𝜆

1
= 1, 𝜆

2
= 1.

In Table 3, the variation in Euclidean distances of the
Fourier descriptors and the percentage differences in shape
convexity and rectangularity for the masses in Figure 3 are
illustrated. In Table 6, for 𝜆

1
= 2.5, 𝜆

2
= 1, the mean

Euclidean distance between the Fourier descriptors of the
segmented areas was 0.09 ± 0.05 while the mean values of
percentage changes in shape convexity and rectangularity
were 8.3% (range 0.0–28.1%) and 11.7% (range 0.1–42.0%),
respectively, with more than 50% reduction in the mean
values with tuneable parameters 𝜆

1
= 1, 𝜆

2
= 1. The

values for the mean percentage difference in shape convexity
and rectangularity and their range were less than those
fromboundarymoments for bothChan-Vese algorithms.The
selective local or global segmentation model presented sim-
ilar results for the percentage differences in shape convexity
and shape rectangularity as shown in Table 7.

Figure 4 illustrates the segmentation results with different
locations for the initial level set contours for some masses
with distinct, or well-defined, margins. The initial level set
contour from the proposed method is shown in column 3.
Fewer points defining the maximum gradients in the radial
direction are found within the mass lesion, as compared with
the previous group. Most points defining the maximum gra-
dients in the radial direction are found on themass boundary;
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3: Comparisons of segmentation results with different locations for the initial level set contours for masses with low signal areas
having obscured, or ill-defined, margins with the Chan-Vese model. The first column presents the original mass lesions; the second column
shows the corresponding weighted TV flow images and the search space for locating the initial contour. The third column shows the initial
contours as curves connecting points with maximum gradients in the radial direction. The fourth column shows the manually drawn initial
level set contours. The fifth column presents the segmentation outcomes with manually drawn initial level set and the last column presents
the final segmentation results of the proposed method evolved with the same tuning parameters.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4: Comparisons of segmentation results with different locations for the initial level set contours for masses with distinct, or well-
defined, margins by implementing the Chan-Vese model. The first column presents the original mass lesions; the second column shows the
corresponding weighted TV flow images and the search space for locating the initial contour. The third column shows the initial contours
as curves connecting points with maximum gradients in the radial direction. The fourth column shows the manually drawn initial level set
contours. The fifth column presents the segmentation outcomes with manually drawn initial level set contours and the last column presents
the final segmentation results of the proposed method evolved with the same tuning parameters.
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Table 1: Comparison of mean area overlap measures of masses with characterized margins due to changes in the location of the initial level
set contour with cited interobserver variability amongst radiologists and with mean area overlap measures between radiologists and other
segmentation methods in boundary delineation.

Characteristics of mass
lesion margins

Mean area overlap
measures due to

interobserver variability
amongst radiologists

Mean area overlap
measures between

radiologists and other
segmentation methods

Mean area overlap measures
due to the placement of the
initial level set contours in

this study
Sahiner et al. [17] — 0.76 ± 0.13 0.74 ± 0.13
Tao et al. [18] Ill-defined and spiculated 0.69 ± 0.16
Xu et al. [19] — 0.72 ± 0.13
Rahmati et al. [20] — 0.87 ± 0.05
Pereira et al. [21] — 0.79 ± 0.08
This study
(𝜆
1
= 2.5, 𝜆

2
= 1)

Obscured/ill-defined with
low signal areas within 0.81 ± 0.01

This study
(𝜆
1
= 2.5, 𝜆

2
= 1) Distinct/well-defined 0.96 ± 0.03

This study
(𝜆
1
= 1, 𝜆

2
= 1)

Obscured/ill-defined with
low signal areas within 0.87 ± 0.13

This study
(𝜆
1
= 1, 𝜆

2
= 1) Distinct/well-defined 0.95 ± 0.06

This study
(𝛼 = 5)

Obscured/ill-defined with
low signal areas within 0.86 ± 0.09

This study
(𝛼 = 5) Distinct/well-defined 0.91 ± 0.04

Table 2: Evaluation metrics for differences in segmented areas (JSC) and boundary moments (%Δ𝐹
1
, %Δ𝐹

2
, and %Δ𝐹

3
), due to changes in

the location of the initial level set contours evolved with tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1 for masses in Figure 3.

Masses JSC 𝐹
1

𝐹
2

𝐹
3

Method %Δ𝐹
1

%Δ𝐹
2

%Δ𝐹
3

A 0.83 0.3186 0.3715 0.0530 Manual 68.4 67.1 59.8
0.1563 0.1848 0.0286 Proposed

B 0.77 0.3417 0.4264 0.0846 Manual 8.1 7.2 3.5
0.3152 0.3969 0.0817 Proposed

C 0.78 0.2691 0.3269 0.0578 Manual 9.7 3.1 23.0
0.2442 0.3170 0.0728 Proposed

D 0.84 0.2505 0.3120 0.0615 Manual 87.0 86.8 86.0
0.0986 0.1231 0.0245 Proposed

E 0.71 0.2715 0.3300 0.0585 Manual 6.0 8.1 17.6
0.2882 0.3580 0.0698 Proposed

F 0.89 0.2969 0.3826 0.0857 Manual 8.2 7.4 4.8
0.3224 0.4122 0.0899 Proposed

G 0.87 0.1835 0.2168 0.0333 Manual 1.7 9.9 45.3
0.1866 0.2394 0.0528 Proposed

consequently, the statistics of the pixels surrounding the
initial level set contourwill be similar to those of themanually
drawn contour when it arrives at the edge of the mass lesion.

Table 4 shows the variation in the area overlap measures
and the percentage differences in boundary moments 𝐹

1
, 𝐹
2
,

and 𝐹
3
while Table 5 illustrates the variation in Euclidean

distances between the Fourier descriptors (DF), percentage
differences in shape convexity (%ΔSC), and shape rectan-
gularity (%ΔSR) when the masses in Figure 4 were evolved
with tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1. The area

overlap measure of mass B was greater than 0.95; however,
the percentage differences in boundary moments were above
18%. Formasseswith distinct orwell-definedmargins, similar
segmentation results are expected and this is confirmed with
a mean area overlap measure of 0.96 ± 0.03 as shown in
Table 6. For this category of masses, the mean value of
%Δ𝐹
1
was 8.9% (range 0.3–25.0%); of %Δ𝐹

2
, 8.6% (range

2.1–33%); and of %Δ𝐹
3
, 14.1% (range 0.9–53.0%). The mean

Euclidean distance between the Fourier descriptors of the
segmented areas was 0.05 ± 0.02 and the mean values of
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Table 3: Variation in Euclidean distances between Fourier descriptors (DF), percentage differences in shape convexity (%ΔSC), and shape
rectangularity (%ΔSR) due to changes in the location of the initial level set contours evolved with tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1 for

masses in Figure 3.

Masses DF SC SR Method %ΔSC %ΔSR

A 0.16 0.7152 0.4861 Manual 16.5 31.5
0.8439 0.6681 Proposed

B 0.10 0.5373 0.3762 Manual 22.4 9.6
0.6731 0.4143 Proposed

C 0.08 0.5610 0.3845 Manual 28.2 21.6
0.7450 0.4774 Proposed

D 0.13 0.8071 0.6301 Manual 12.5 16.6
0.9143 0.7440 Proposed

E 0.06 0.7737 0.5017 Manual 16.7 3.8
0.9143 0.4830 Proposed

F 0.05 0.5955 0.4188 Manual 10.1 10.9
0.5383 0.3755 Proposed

G 0.03 0.7899 0.5297 Manual 1.7 8.8
0.8036 0.5786 Proposed

Table 4: Evaluation metrics for differences in segmented areas (JSC) and boundary moments (%Δ𝐹
1
, %Δ𝐹

2
, and %Δ𝐹

3
), due to changes in

the location of the initial level set contours evolved with tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1 for masses in Figure 4.

Masses JSC 𝐹
1

𝐹
2

𝐹
3

Method %Δ𝐹
1

%Δ𝐹
2

%Δ𝐹
3

A 0.98 0.0827 0.1051 0.0224 Manual 29.0 31.2 39.4
0.1107 0.1440 0.0334 Proposed

B 0.97 0.2084 0.2783 0.0699 Manual 21.9 21.1 18.7
0.2597 0.3440 0.0843 Proposed

C 0.99 0.1489 0.1785 0.0295 Manual 6.1 2.6 13.6
0.1401 0.1739 0.0338 Proposed

D 0.98 0.2130 0.2568 0.0437 Manual 12.0 9.0 6.6
0.2402 0.2811 0.0409 Proposed

E 0.98 0.1080 0.1376 0.0296 Manual 2.2 2.9 5.9
0.1057 0.1336 0.0279 Proposed

F 0.94 0.1888 0.2192 0.0304 Manual 2.0 1.3 19.3
0.1851 0.2220 0.0369 Proposed

G 0.94 0.2971 0.3676 0.0705 Manual 18.7 12.4 10.9
0.2463 0.3248 0.0786 Proposed

percentage changes of shape convexity and rectangularity
were 4.5% (range 0.07–17.2%) and 5.7% (range 0.04−14.9%),
respectively. The values for the mean percentage differences
in shape convexity and rectangularity were almost 50% less
than those from boundary moments. This group presented
a small percentage change in shape convexity and shape
rectangularity and also a small mean Euclidean distance of
the Fourier descriptors as compared to the previous group
due to segmentation results having relatively similar shapes.
For these groups of masses, shape-based descriptors derived
from final contours of tuneable parameters 𝜆

1
= 1, 𝜆

2
= 1

were less sensitive to changes in the location of the initial
level set contours. Table 6 shows that the mean percentage
differences of the shape convexity and shape rectangularity
are less than the values for the boundary moments. Table 7

illustrates similar trends with the selective local or global
segmentation model; however, the Jaccard similarity indices
of the Chan-Vese segmentation model for this group of
masses were greater than values obtained by using the
selective local or global segmentation model.

The evaluation metrics of shape-based descriptors of
both groups of masses were combined and assessed with
Bland-Altman plots to investigate the intermethod agreement
between placements of the initial level set contours. Each
Bland-Altman plot was evaluated within a 95% confidence
interval as the limits of agreement.

Figures 5 and 6 illustrate the linear regression plots of
boundary moments, shape rectangularity, and shape con-
vexity with their associated Bland-Altman plots with the
Chan-Vese segmentation method. The Pearson correlation
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Figure 5: Linear regression plots ((a), (c), and (e)), along with Bland-Altman plots ((b), (d), and (f)), of boundary moments 𝐹
1
, 𝐹
2
, and 𝐹

3
,

respectively, for tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1.
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Table 5: Variation in Euclidean distances between the Fourier descriptors (DF), percentage differences in shape convexity (%ΔSC), and shape
rectangularity (%ΔSR) due to changes in the location of the initial level set contours evolved with tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1 for

masses in Figure 4.

Masses DF SC SR Method %ΔSC %ΔSR

A 0.0368 0.6612 0.4619 Manual 17.1 14.5
0.7852 0.5339 Proposed

B 0.0624 0.6637 0.4596 Manual 7.0 14.4
0.7116 0.5307 Proposed

C 0.0377 0.8894 0.6148 Manual 1.1 1.2
0.8995 0.6224 Proposed

D 0.0762 0.8508 0.6093 Manual 0.0 0.0
0.8508 0.6093 Proposed

E 0.0216 0.9267 0.6544 Manual 0.3 1.1
0.9295 0.6472 Proposed

F 0.0298 0.8606 0.6024 Manual 2.9 5.2
0.8360 0.5716 Proposed

G 0.0717 0.6612 0.4619 Manual 17.1 14.5
0.7852 0.5339 Proposed

Table 6: Mean values for the Jaccard similarity coefficient (JSC) and the Euclidean distances of the masses. The mean values and ranges of
percentage differences in boundary moments (%Δ𝐹

1
, %Δ𝐹

2
, and %Δ𝐹

3
), percentage differences in shape convexity (%ΔSC), and percentage

differences in shape rectangularity (%ΔSC) for the masses, labelled as groups with predefined margin characteristics and also a group with
arbitrary margin characteristics, due to changes in the location of the initial level set contours evolved with tuneable parameters 𝜆

1
= 2.5,

𝜆
2
= 1 and 𝜆

1
= 1, 𝜆

2
= 1.

Margin characteristics Obscured/ill-defined margins Distinct/well-defined margins Unlabelled margins
Tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1 𝜆

1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1 𝜆

1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1

Average JSC 0.81 ± 0.01 0.87 ± 0.13 0.96 ± 0.03 0.95 ± 0.06 0.89 ± 0.02 0.92 ± 0.09
Average DF 0.09 ± 0.05 0.05 ± 0.04 0.05 ± 0.02 0.04 ± 0.02 0.07 ± 0.05 0.05 ± 0.03
Mean of %Δ𝐹

1
23.9% 17.5% 8.9% 11.4% 16.4% 14.5%

Range of %Δ𝐹
1

1.0–87.0% 0–62.6% 0.3–25.0% 0–24.4% 1.0–87.0% 0–62.6%
Mean of %Δ𝐹

2
24.5% 17.2% 8.6% 9.6% 16.6% 13.4%

Range of %Δ𝐹
2

1.7–86.8% 0–59.1% 2.1–33% 0–46.0% 1.7–86.8% 0–59.1%
Mean of %Δ𝐹

3
32% 20.1% 14.1% 13.4% 23.1% 16.8%

Range of %Δ𝐹
3

1.4–86.0% 0–80.9% 0.9–53.0% 0–54.0% 0–86.0% 0–80.9%
Mean of %ΔSC 8.3% 2.4% 4.5% 2.9% 6.4% 2.7%
Range of %ΔSC 0.0–28.1% 0–21.0% 0.07–17.2% 0.2–13.9% 0.3–28.1% 0–21.0%
Mean of %ΔSR 11.7% 7.6% 5.7% 4.3% 8.7% 5.9%
Range of %ΔSR 0.1–42.0% 0–38.9% 0.04–14.9% 0–21.9% 0.1–42.0% 0–38.9%

analysis indicated good correlations between the shape-based
descriptors: shape rectangularity (𝑟 = 0.82) and shape
convexity (𝑟 = 0.82) resulting from the final contours of
the proposed andmanual methods as compared to boundary
moments 𝐹

1
(𝑟 = 0.76), 𝐹

2
(𝑟 = 0.77), and 𝐹

3
(𝑟 = 0.68). The

selective local or global segmentation method gave higher
correlation coefficients for these shape descriptors. Table 8
shows the summary results of the linear regression analysis of
shape-based descriptors for these masses and their variation
with tuneable parameters. 𝑝 values indicated that the correla-
tions of shape-based descriptors derived from these methods

were statistically significant (𝑝 < 0.0001). The strength of the
linear relationship (𝑟) between the descriptors derived from
these methods depends on the values of tuneable parameters,
𝜆
1
and 𝜆

2
, for the Chan-Vese model. For this database of

masses, the correlation coefficients of descriptors obtained
with tuneable parameters 𝜆

1
= 1 and 𝜆

2
= 1 were higher

than those with parameters 𝜆
1
= 2.5 and 𝜆

2
= 1; however,

this does not imply that tuneable parameters 𝜆
1

= 1 and
𝜆
2

= 1 will provide higher values of similarity measures
when segmentation results are compared with segmentation
outcomes of expert radiologists. Overall, the performance of
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Table 7: Mean values for the Jaccard similarity coefficient (JSC) and the Euclidean distances of the masses. The mean values and ranges of
percentage differences in boundary moments (%Δ𝐹

1
, %Δ𝐹

2
, and %Δ𝐹

3
), percentage differences in shape convexity (%ΔSC), and percentage

differences in shape rectangularity (%ΔSC) for the masses, labelled as groups with predefined margin characteristics and also a group with
arbitrary margin characteristics, due to changes in the location of the initial level set contours evolved with the selective local or global
segmentation model with tuneable parameter 𝛼 = 5.

Margin characteristics Obscured/ill-defined margins Distinct/well-defined margins Unlabelled margins
Average JSC 0.86 ± 0.09 0.91 ± 0.04 0.89 ± 0.07
Average DF 0.05 ± 0.04 0.04 ± 0.03 0.05 ± 0.04
Mean of %Δ𝐹

1
15.1% 11.1% 13.1%

Range of %Δ𝐹
1

0–74% 0–38% 0–74%
Mean of %Δ𝐹

2
15.4% 13.4% 14.4%

Range of %Δ𝐹
2

0–67.5% 0–44.2% 0–67.5%
Mean of %Δ𝐹

3
23.5% 15.1% 19.3%

Range of %Δ𝐹
3

0–52% 0–41.1% 0–52%
Mean of %ΔSC 10.2% 8.7% 9.5%
Range of %ΔSC 0–30% 0–25.1% 0–30%
Mean of %ΔSR 11.7% 9.2% 10.5%
Range of %ΔSR 0–30% 0–28% 0–30%

Table 8: Summary results of linear regression analysis for tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1 and 𝜆

1
= 1, 𝜆

2
= 1 and the selective local or

global segmentation method.

Tuneable parameters Selective local or global segmentation method
𝜆
1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1 𝛼 = 5

Slope 𝑟 𝑝 value Slope 𝑟 𝑝 value Slope 𝑟 𝑝 value
𝐹
1

0.76 0.76 <0.0001 0.83 0.81 <0.0001 0.69 0.81 <0.0001
𝐹
2

0.79 0.77 <0.0001 0.72 0.80 <0.0001 0.75 0.86 <0.0001
𝐹
3

0.62 0.68 <0.0001 0.75 0.74 <0.0001 0.7 0.74 <0.0001
SC 0.85 0.82 <0.0001 0.93 0.88 <0.0001 0.88 0.83 <0.0001
SR 0.92 0.82 <0.0001 0.82 0.88 <0.0001 0.85 0.94 <0.0001

the selective local or global segmentation model was similar
to the performance of the Chan-Vese segmentationmodel for
this database of direct digital mammographic masses.

The difference plots in Figures 5 and 6 show that dif-
ferences in shape-based features for masses with distinct or
well-defined margins are scattered very close to the central
bias line as compared to masses with obscured, or ill-defined,
margins, thus indicating that the magnitude of differences
in shape-based descriptors due to changes in the placement
of the initial level set contours depends on the mass margin
characteristics. Other researches have reported the variation
of segmentation accuracy with the characteristic of the
mass margins for a given segmentation algorithm [41]. The
correlations (𝑟s < 0.06, 𝑝 > 0.05) between differences in
shape-based descriptors due to changes in the placement of
the initial level set contours and the average magnitude of
descriptors from both algorithms were very poor and they
were not significantly different from zero.

In general, the mean area overlap measure of the com-
bined categories was 0.89±0.02, the mean Euclidean distance
between the Fourier descriptors was 0.07 ± 0.05, and more-
over, in the Bland-Altman plots, the differences in shape-
based descriptors of 90% of thesemasses are within the limits

of agreement; therefore the interplacement agreement of the
initial level set contours based on these descriptors is accept-
able. However, both segmentation methods illustrated large
variation in boundary moments as compared to shape-based
descriptors such as shape convexity, shape rectangularity,
and Euclidean distance of the Fourier descriptors. Hence,
boundary moments should be utilized with caution because
they exhibit large percentage differences.

Interobserver variability amongst radiologists and inter-
method variability in delineating masses in mammography
translate to differences in shape-based feature vectors. The
magnitude of these differences should however not be so
large as to compromise the interclass separability measures
and hence the classification accuracies of shape-based binary
classifiers. This can be achieved if these feature vectors
show a certain degree of robustness to interobserver and
intermethod variability in segmented masses.

5. Conclusion

We have investigated and quantified the variations in shape-
based features in segmentation outcomes due to differences
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Figure 6: Linear regression plots ((a) and (c)) along with associated Bland-Altman plots ((b) and (d)) of shape rectangularity (SR) and shape
convexity (SC), respectively, for tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1.

in the location of the initial level set contour for mass
lesion segmentation in direct digital mammography. The
Chan-Vese segmentation method and the active contours
with selective local or global segmentation model presented
similar results. The results show that the magnitude of
these variations expressed as area overlap measures and
percentage differences in shape-based features depend on the
characteristics of themassmargins and the choice of tuneable
parameters. Formasses with distinct or well-definedmargins,
percentage differences are reduced as compared to those

with ill-defined or obscured margins for both segmentation
algorithms. The mean percentage differences in boundary
moments and their ranges were large as compared to those
of shape convexity and shape rectangularity, even though the
area overlaps measures were within acceptable values. The
influences of these variations on the classification accuracy of
shape-based binary classifiers will depend on the magnitude
of the interclass separability measures; however, large fluc-
tuations in these values for the same mass are undesirable.
Finally, we concluded that boundary moments are sensitive
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to the placement of initial level set contours while Fourier
descriptors, shape convexity, and shape rectangularity exhibit
a certain degree of robustness to changes in the location of the
initial level set contours.
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