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Abstract. Adipocytes are the main stromal cells in the tumor 
microenvironment. In addition to serving as energy stores for 
triglycerides, adipocytes may function as an active endocrine 
organ. The crosstalk between adipocytes and cancer cells was 
shown to promote the migration, invasion and proliferation of 
cancer cells and to cause phenotypic and functional changes 
in adipocytes. Tumor‑derived soluble factors, such as TNF‑α, 
plasminogen activator inhibitor 1, Wnt3a, IL‑6, and exosomal 
microRNAs (miRNA/miRs), including miR‑144, miR‑126, 
miR‑155, as well as other miRNAs, have been shown to act on 
adipocytes at the tumor invasion front, resulting in the forma‑
tion of cancer‑associated adipocytes (CAAs) with diminished 
reduced terminal differentiation markers and a dedifferenti‑
ated phenotype. In addition, the number and size of CAA lipid 
droplets have been found to be significantly reduced compared 
with those of mature adipocytes, whereas inflammatory cyto‑
kines and proteases are overexpressed. The aim of the present 
review was to summarize the latest findings on the biological 
changes of CAAs and the potential role of tumor‑adipocyte 
crosstalk in the formation of CAAs, in the hope of providing 
novel perspectives for breast cancer treatment.
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1. Introduction

The tumor microenvironment consists of several types of 
stromal cells, including adipocytes, fibroblasts, endothelial 
cells and macrophages (1). Imaging evaluation has revealed 
that adipose tissue occupies 56% of non‑lactating breast 
tissue and 35% of lactating breast tissue  (2,3), suggesting 
that adipocytes account for a major part of the breast tumor 
microenvironment. Adipocytes, preadipocytes, fibroblasts, 
immune cells, endothelial cells and extracellular matrix 
(ECM) are the main components of adipose tissue, which is 
divided into white, brown and beige adipose tissue (4,5). White 
adipocytes are the most abundant fat cells in the human body, 
and previous findings have associated white adipose tissue 
(WAT) with an increased risk of breast cancer (6). In addition 
to serving as an energy reservoir for triglycerides, adipose 
tissue is an active endocrine organ that secretes hormones, 
adipokines, cytokines, chemokines and proinflammatory 
molecules (7). Existing studies have confirmed the hypothesis 
that adipocytes and cancer cells interact dynamically (8‑10), 
as opposed to adipocytes being previously considered as static 
cells neighboring cancer cells. Previous studies have mostly 
focused on the role of adipocytes in the proliferation and 
migration of cancer cells, with little attention to the changes in 
adipocytes (11). A particular class of adipocytes, referred to as 
cancer‑associated adipocytes (CAAs), have been identified in 
the matrix surrounding invasive breast cancer (12). Therefore, 
in addition to summarizing the biological characteristics of 
CAAs, the aim of the present review was to further focus on 
the underlying mechanisms that contribute to CAA develop‑
ment, in the hope of providing new perspectives for breast 
cancer treatment.

2. Differentiation of adipocytes

Adipocytes originate from mesenchymal stem cells 
(MSCs) (13). MSCs are found in the bone marrow, adipose 
tissue and dental pulp (14), and they are multipotent cells that 
can differentiate into adipocytes, chondrocytes, muscle cells 
and osteocytes  (15). Studies have found that MSCs highly 
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express CD44, CD73, CD90 and CD105, which can be used 
as MSC markers (16). When the human body is in a state of 
excessive energy consumption and elevated glucose demands 
over a prolonged period of time, MSCs can be induced in a 
multi‑step commitment process by one or more undetermined 
signals, limiting the differentiation of progenitor cells into the 
adipocyte lineage (17). As a key mediator for stem cells to 
commit and generate preadipocytes, the bone morphogenetic 
protein and Wnt families can upregulate the expression of 
cytoskeleton‑related proteins, such as lysine oxidase, transla‑
tion‑controlled tumor protein 1, αB crystallin and lymphoid 
enhancer factor1/T‑cell factor (Tcf) to promote preadipo‑
cyte commitment (18‑20). When committed preadipocytes 
are exposed to a differentiation inducer comprising a mixture 
of dexamethasone, isobutylmethylxanthine and insulin, the 
CCAAT/enhancer binding protein  β  (C/EBPβ) acquires 
DNA‑binding activity consistent with the re‑entry of preadipo‑
cytes into the cell cycle at the G1/S boundary, and undergoes 
approximately two rounds of division, known as mitotic clonal 
expansion (21). During this process, C/EBPβ binds to C/EBP 
regulatory elements in the proximal promoters of C/EBPα and 
peroxisome proliferator‑activated receptor γ (PPARγ) genes, 
transactivating C/EBPα and PPARγ (21), which are two key 
adipogenic transcription factors involved in preadipocyte 
differentiation (22). Both C/EBPα and PPARγ can supervise 
the whole process of terminal differentiation and establish a 
mature adipocyte phenotype (23,24). The expression of PPARγ 
and C/EBPα promotes transactivations through their respec‑
tive C/EBP regulatory elements, inducing the expression of 
numerous adipocyte‑specific genes, such as fatty acid‑binding 
protein 4  (FABP4)  (25), insulin‑responsive glucose trans‑
porter  4  (GLUT4)  (25,26), perilipin (PLIN) and insulin 
receptor (21), and the expression of enzymes, such as lipopro‑
tein lipase (LPL) and fatty acid synthase (FAS). Adipocytes, 
on the other hand, secrete adipokines, such as leptin (27,28), 
adiponectin (APN) (29), resistin (30), and others. The expres‑
sion of preadipocyte factor‑1, one of the key negative regulators 
of adipogenesis, is downregulated (31,32). Consequently, due 
to commitment and differentiation induction, MSCs lose their 
fibroblast‑like characteristics, accumulate a large number of 
cytoplasmic triglycerides, and obtain the appearance and 
metabolic characteristics of mature adipocytes.

3. Biological characteristics of CAAs

Cancer‑adjacent adipocytes can be transformed into CAAs 
after communicating with cancer cells, adopting a dedif‑
ferentiation phenotype and secreting a significant number of 
proinflammatory cytokines, thereby promoting malignant 
tumor progression (12,33). The main characteristics of CAAs 
are described below: 

Loss of terminal differentiation markers. The expression of 
PPARγ and C/EBPα is significantly inhibited, which results in a 
substantial reduction in the mRNA levels of adipocyte‑specific 
genes, including FABP4 and hormone‑sensitive lipase (HSL), 
resulting in dedifferentiation of mature adipocytes (12,34). 
The reduction of lipid content and cell size triggers the release 
of metabolites by CAAs, including free fatty acids and ketone 
bodies, to facilitate tumor progression (34‑36). This effect was 

shown to be significantly enhanced in a cell culture model of 
obesity (36). Furthermore, the expression and activity of LPL 
and FAS in adipose tissue adjacent to the tumor invasion front 
were found to be significantly decreased, and the adipogenesis 
and fat storage capacity in patients with colorectal cancer 
were impaired  (37). These changes may cause lipolysis in 
adipocytes, which then assume a fibroblast‑like morphology. 

Changes in the expression of adipokines and proinflammatory 
cytokines. In CAAs, the expression of pro‑tumorigenic 
adipokines, such as leptin and resistin, is increased, while 
the expression of the anti‑tumorigenic adipokine, APN, 
is markedly decreased  (12). CAAs also exhibit increased 
expression and secretion of proinflammatory cytokines, such 
as IL‑6, IL‑1β and TNF‑α (12,38), and chemokines, such as 
C‑C motif chemokine ligand (CCL)5, CCL2 and IL‑8 (also 
known as CXCL8), causing an increase in cancer invasive 
and metastatic ability (39‑41). Our transcriptome sequencing 
data revealed that CAAs exhibited a higher expression of 
granulocyte colony‑stimulating factor, which can promote 
the malignant progression of breast cancer via the STAT3 
pathway (Fig. 1) (42). 

ECM remodeling. Overexpression of ECM‑related molecules, 
such as MMP11  (43), plasminogen activator inhibitor 1 
(PAI‑1)  (12), MMP1  (44), fibroblast‑activating protein, 
dipeptidyl peptidase 4, procollagen‑lysine and 2‑oxoglutarate 
5‑dioxygenase 2 (PLOD2), promote the transformation of 
adipocytes into cells with a fibroblast‑like phenotype, which 
eventually develop into adipocyte‑derived fibroblasts (ADFs). 
ADFs are characterized by increased secretion of fibronectin 
and type I collagen, as well as upregulated expression of the 
cancer‑associated fibroblast (CAF) marker fibroblast‑specific 
protein  I, but not α‑smooth muscle actin (α‑SMA). ADFs 
exhibit enhanced ability of migration and invasion, and 
can reach the tumor center, significantly promoting tumor 
invasion (45‑47). 

WAT browning. Master et al (48) demonstrated that the breast 
contains brown adipose tissue (BAT), which plays a potential 
role in adaptive thermogenesis. Furthermore, Wang et al (49) 
found that the expression levels of BAT marker genes, such as 
uncoupling protein (UCP1), protein 16 containing PR domain 
(PRDM16) and cell death‑inducing DFFA‑like effector A, were 
upregulated in CAAs from patients with breast cancer, and the 
browning activity of adipocytes adjacent to the breast cancer 
tissues was higher compared with those adjacent to benign 
breast lesions. Previous studies indicated that tumor‑derived 
IL‑6 induced adipose tissue browning via the STAT3 pathway, 
and that microRNA (miRNA/miR)‑155 can promote the 
browning of adipocytes by downregulating PPARγ expres‑
sion (50,51). Compared to WAT, BAT has a stronger catabolic 
ability and can provide high‑energy mitochondrial fuel in the 
form of ketone bodies to support the growth of tumors such as 
skin and colon cancer (35).

4. Possible mechanisms of tumor‑mediated CAA development

Tumors secrete numerous types of factors that induce the 
transformation of adipocytes into CAAs. The factors secreted 
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by CAAs, such as IL‑8 and autotaxin (ATX), can also main‑
tain their activated state and provide favorable conditions for 
tumor growth and metastasis.

TNF‑α. Tumor‑derived TNF‑α can promote the formation of 
CAAs by selectively downregulating the expression of PPARγ 
and C/EBPα (52). Stephens and Pekala (53) demonstrated that 
culturing differentiated 3T3‑L1 adipocytes with TNF‑α signifi‑
cantly inhibited C/EBPα, GLUT4 and FABP4 gene expression 
in adipocytes. Interestingly, TNF‑α was found to significantly 
reduce the stability of these mRNAs, which further prevented 
the accumulation of GLUT4 and C/EBPα proteins. The 
marked reduction in C/EBPα protein levels may lead to the 
enhancement of transcriptional inhibition of C/EBPα, GLUT4 
and FABP4 genes by TNF‑α. In addition, treatment with 
TNF‑α activates the NF‑κB pathway in adipocytes, which 
further enhances the binding of p65 to the miR‑130 promoter. 
The upregulation of miR‑130 eventually leads to a decrease 
in PPARγ mRNA to preadipocyte levels (54). Furthermore, 

by decreasing the terminal differentiation markers, TNF‑α 
increases lipolysis in WAT. Treatment with TNF‑α was shown 
to increase the levels of inducible nitric oxide synthase (iNOS) 
and nitric oxide (NO) in multiple tissues, including adipose 
tissue, activating cAMP/cGMP and stimulating HSL phos‑
phorylation, resulting in a significant increase in lipolysis (55). 
PLIN is a key regulator of HSL that is located on the surface of 
intracellular triglyceride lipid droplets. Exposing adipocytes 
to a TNF‑α‑rich tumor microenvironment can downregulate 
PLIN expression to mediate lipolysis via the ERK1/2 and 
JNK pathways (56). In addition, in TNF‑α‑treated adipocytes, 
the expression of the cyclic nucleotide phosphodiesterase 3B 
(PDE3B), a key hydrolase of insulin‑activated cAMP, was 
shown to decrease by 50%, resulting in an increase in intracel‑
lular cAMP content and enhanced lipolysis (57‑59). The loss of 
terminal differentiation markers and the synergistic effect of 
enhanced lipolysis promote the transition of mature adipocytes 
from the adipocyte phenotype to the spindled fibroblast‑like 
phenotype. 

Figure 1. Differentiation of MSCs into adipocytes and biological characteristics of CAAs. MSCs can differentiate into preadipocytes through the BMP2/4 
and Wnt pathways, and then preadipocytes can be further induced to transform into adipocytes after being treated with a differentiation induction mixture, 
resulting in an increased adipocyte‑specific gene expression and lipid accumulation. Adipocytes adjacent to cancer can dedifferentiate into CAAs. The main 
characteristics of CAAs include decreased terminal differentiation markers, secretion of multiple inflammatory factors, ECM remodeling and expression of 
browning genes. MSCs mesenchymal stem cells; CAAs, cancer‑associated adipocytes; BMP, bone morphogenetic protein; Lox, lysine oxidase; Tpt1, transla‑
tion‑controlled tumor protein 1; Lef1, lymphoid enhancer factor 1; Tcf, T‑cell factor; Pref‑1, preadipocyte factor 1; PPARγ, peroxisome proliferator‑activated 
receptor γ; C/EBP, CCAAT/enhancer binding protein; FABP4, fatty acid‑binding protein 4; GLUT4, glucose transporter 4; PLIN, perilipin; APN, adiponectin; 
HSL, hormone‑sensitive lipase; CCL, C‑C motif chemokine ligand; G‑CSF, granulocyte colony‑stimulating factor; PAI‑1, plasminogen activator inhibitor 1; 
ECM, extracellular matrix; FAP, fibroblast‑activating protein; PLOD2, procollagen‑lysine and 2‑oxoglutarate 5‑dioxygenase 2; DPP4, dipeptidyl peptidase 4; 
BAT, brown adipose tissue; UCP1, uncoupling protein; PRDM16, protein 16 containing PR domain.
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IL‑6. The crosstalk between inflammatory signals, such as 
IL‑6, from tumor tissue, adipose tissue and other organs, can 
cause energy imbalance and promote fat mobilization and 
catabolism (60,61). Petersen et al (62) showed that IL‑6 can 
directly act on adipose tissue to enhance lipolysis in vivo and 
in vitro. Tumor‑derived IL‑6 binds to glycoprotein 130 (gp130) 
to enhance the adipose triglyceride lipase (ATGL)‑stimulated 
lipolysis cascade via the AMP‑activated protein kinase 
(AMPK) pathway, resulting in free fatty acids for breast cancer 
cells (50,63), which then induce the migration and invasion of 
breast cancer cells (64). Tsoli et al (50) also discovered that IL‑6 
can enhance insulin signaling interference by upregulating 
the expression of suppressor of cytokine signaling 3, which 
phosphorylates and activates the STAT3 pathway, reducing 
glucose uptake and the synthesis other lipid substrates by 
WAT, inhibiting lipid synthesis and promoting the atrophy of 
WAT (65). Interestingly, WAT browning is known to involve 
paracrine and neuroendocrine signaling, which can be used 
by the transcription factor PRDM16 to induce the expression 
of genes related to lipid utilization and thermogenesis, such 
as UCP1 (66). The STAT3 signaling pathway can activate 
the PRDM16 gene, promoting the browning of WAT (50,66). 
IL‑6 also enhances sympathetic activity, causing further 
stress‑mediated release of IL‑6 from BAT (67). Adipocytes 
co‑cultured with tumor cells can increase the level of IL‑6 by 
upregulating mmu‑miR‑5112 and downregulating the expres‑
sion of cytoplasmic polyadenylation element‑binding protein 
1, a negative regulator of IL‑6 (68). In addition, tumor‑secreted 
leukemia inhibitory factor, a member of the IL‑6 cytokine 
family, can activate the Janus kinase (JAK)/STAT pathway 
through gp130 and induce ATGL activation to enhance 
lipolysis (69).

IL‑8. CAAs expressing high levels of inflammatory cytokines, 
adipokines and proteases are considered to be adipocytes at 
an active state, as mentioned above. Compared to adipocytes 
at a distance from the tumor invasion front, CAAs are char‑
acterized by a high proliferation rate and strong invasive and 
migratory abilities. Al‑Khalaf et al (70) isolated CAAs and 
their adjacent tumor‑counterpart adipocytes (TCAs) from 
10 patients with invasive breast cancer and found that IL‑8 
plays a key role in maintaining the activation of CAAs. It was 
also previously reported that all CAAs secrete high levels of 
IL‑8, which helps to induce the migration of ovarian cancer 
cells to adipocyte‑rich areas (34). In addition, the basic and 
active forms of the AKT and STAT3 proteins, which are 
downstream effectors of IL‑8 signaling, are higher in CAAs 
compared with those in TCAs. The ectopic expression of 
IL‑8 in TCAs may cause their self‑activation. According to 
Hendrayani et al (71), the activation state of CAFs is main‑
tained via an IL‑6/NF‑κB/Lin28b positive feedback loop. 
Consistently, treatment of CAAs with anti‑IL‑8 antibody 
decreases the mRNA levels of IL‑6, RelA and Lin28b, and 
inhibits the activated state of CAAs. These results suggest 
that IL‑8 may maintain the activity of CAAs by activating the 
IL‑6/NF‑κB/Lin28b positive feedback loop (70). 

Wnt3a and Wnt5a. Breast cancer cells secrete Wnt3a, which 
activates the Wnt/β‑catenin pathway and induces the dedif‑
ferentiation of mouse and human adipocytes, acquiring an 

ADF‑like phenotype  (72). In adipocytes co‑cultured with 
breast cancer cells, Wan3a upregulates the expression of Wnt 
target genes, such as dishevelled‑1, Wnt10b, endothelin‑1 and 
MMP7, via a β‑catenin‑dependent pathway (45,73). Wnt10b 
is known to block adipocyte differentiation by suppressing 
PPARγ and C/EBPα expression. Treatment with ICG‑001, a 
unique small molecule that selectively inhibits Tcf/β‑catenin 
transcription, significantly inhibits the increase of Wnt10b 
expression, partially restores the lipid accumulation and 
reverses the ADF phenotype  (45). Zoico  et  al  (70) and 
Kang et al (71) demonstrated that pancreatic cancer can induce 
adipocyte dedifferentiation through a Wnt5a‑dependent 
signaling pathway. The JAK/STAT3 pathway is activated 
by adipocyte‑derived inflammatory factors when pancreatic 
cancer cells are co‑cultured with adipocytes, leading to an 
increase in Wnt5a expression (74). The inhibition of adipogen‑
esis by Wnt5a expressed by immune cells, such as macrophages, 
is well known (75). However, the opposite results have also 
been observed in other types of cancer (76,77), which may be 
explained by the different expression levels of Wnt5a isotypes. 
Wnt5a‑long (L) can inhibit tumors, whereas Wnt5a‑short (S) 
can promote tumors  (77). The expression of Wnt5a‑L was 
found to be more pronounced in adipocytes co‑cultured with 
pancreatic cancer cells (Fig. 2) (74). 

MMP11. MMP11, which is also known as stromelysin‑3, is 
a connective tissue‑derived factor that is usually associated 
with tumor invasion and poor prognosis (78). The expres‑
sion of MMP11 in adipocytes can be significantly increased 
during the crosstalk between cancer cells and adipocytes (43). 
Andarawewa et al (43) found that MMP11 was expressed in 
adipocytes located adjacent to the invasive breast cancer, but 
not in distally located adipocytes. Northern blotting analysis 
demonstrated that the expression levels of PPARγ and FABP4 
in MMP11‑deficient mice were higher compared with those 
in wild‑type mice with stronger adipocyte differentiation 
potential, suggesting that MMP11 is a negative physiological 
regulator of adipogenesis. In addition to reducing the differen‑
tiation of preadipocytes, MMP11 induces the dedifferentiation 
of mature adipocytes. Treatment with MMP11 decreases the 
number and size of lipid droplets in adipocytes, reduces the 
number of adipocytes exhibiting a round phenotype, and 
increases the number of fibroblast‑like cells (43). Compared 
with FABP4, the expression of PPARγ in MMP11‑deficient 
tissues was found to be unregulated, suggesting that MMP11 
may impede adipogenesis by downregulating the expres‑
sion of PPARγ (43). According to previous studies, MMP11 
is expressed in fibroblasts surrounding invasive cancer 
cells (79,80). Interestingly, these fibroblasts do not express 
α‑SMA. Therefore, MMP11‑expressing fibroblasts around 
the tumor may partially transdifferentiate from adipocytes 
or preadipocytes. Motrescu et al (81) further demonstrated 
that MMP11 can specifically degrade the natural α3 chain 
of collagen  VI and change the ECM of tumors, unlike 
resting adipocytes, which are surrounded by thin strands 
of collagen VI. These results suggest that cancer cells can 
induce MMP11 expression in adipocytes by secreting soluble 
substances or through direct contact, resulting in an increased 
CAA phenotype and a high proportion of tumor matrix 
fibroblasts (43). 
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PAI‑1. PAI‑1 is a mesenchymal marker that has been linked 
to the progression of a variety of cancers. Overexpression of 
PAI‑1 has been associated wit a poor prognosis of breast cancer, 
particularly triple‑negative breast cancer. The expression of 
PAI‑1 is upregulated in both adipocytes and breast cancer cells 
after co‑culture, but breast cancer cells secrete five‑fold higher 
PAI‑1 amounts than adipose cells (47). It has been revealed 
that PAI‑1 mediates signal transduction by binding to cell 
membrane receptors, such as LDL receptor‑related protein 1 
(LRP‑1) (82). In addition, available data indicate that LRP‑1 is 
highly expressed in adipocytes and CAAs, and a high concen‑
tration of PAI‑1 (200 ng/ml) can upregulate the expression of 
LRP‑1 in adipocytes (47). The LRP‑1‑dependent simulation 
of the PI3K/AKT signaling pathway promotes the activation 
of PLOD2 (a lysine hydroxylase gene) in CAAs, whereas 
knocking down PAI‑1 in MDA‑MB‑231 cells blocks the 
upregulation of PLOD2 expression in CAAs, suggesting that 

PAI‑1 is an important regulatory factor (47). The activation of 
PLOD2 can stimulate the rearrangement of adipocyte‑derived 
collagen into a linear structure and promote the metastasis of 
cancer cells along the recombinant linear collagen fibers (47).

ATX/lysophosphatidylcholine (LPC) signaling. ATX is a 
secreted enzyme that catalyzes the hydrolysis of LPC, the most 
abundant phospholipid in the plasma, to produce vast amounts 
of lysophosphatidic acid (LPA) (83). LPA signaling is mediated 
by at least six G protein‑coupled receptors (LPA1‑6) (84,85), 
and it promotes cell survival, proliferation and migration, 
while also controlling a variety of physiological and patho‑
logical processes (86‑88). Popnikolov et al (89) demonstrated 
that ATX is mainly present in stromal cells. Adipose tissue is 
the main source of ATX in the circulation. Therefore, obesity 
and a high‑fat diet may increase the production of ATX in 
adipocytes (90). In comparison to the surrounding breast fat 

Figure 2. Possible mechanism of tumor‑mediated CAA formation. (1) In tumor cells, overexpressed IL‑6 binds to adipocyte gp130 and enhances ATGL‑mediated 
lipolysis via the AMPK pathway. Furthermore, activation of the STAT3 pathway increases SOCS3 expression, which promotes lipid decomposition while 
inhibiting lipid synthesis. The activation of the STAT3 pathway also increases the expression of PRDM16. (2) Tumor‑derived ZAG binds to β3AR to stimu‑
late lipid decomposition by upregulating the levels of ATGL, HSL and phosphorylated ACC through the MAPK signaling pathway. (3) TNF‑α induces 
iNOS/NO in adipose tissue, leading to an increased cAMP and cGMP levels. In addition, the ERK1/2 and JNK‑mediated reduction of PDE3B and PLIN 
expression enhances the phosphorylation of HSL and decreases the number and size of lipid droplets. (4) PAI‑1 activates the LRP‑1‑dependent PI3K/AKT 
signaling pathway and promotes the activation of PLOD2 in CAAs, leading to collagen remodeling and extracellular matrix recombination. (5) Wnt3a 
enhances downstream Wnt10b transcription through ectopic accumulation of β‑catenin in the nucleus. TNF‑α can also upregulate miRNA‑130 expression 
via the NF‑κB pathway, which acts synergistically with Wnt10b to inhibit the transcription of PPARγ and dedifferentiate adipocytes. (6) Tumor‑derived 
miR‑105 activates MYC signaling and induces metabolic changes in adipocytes. miR‑122 reduces the inhibitory effect of GEPK on glucose uptake. miR‑126 
upregulates HIF‑1 and MCT4 protein expression and induces metabolic remodeling of adipocytes. The p38‑ERK1/2‑mediated lipolysis is induced by AE. 
ciRS‑133 activates PRDM16 to promote adipocyte browning. (7) Adipocyte‑derived IL‑8 maintains the activation of CAAs, and adipocyte‑derived MMP11 
dedifferentiates adipocytes via blocking PPARγ. CAAs, cancer‑associated adipocytes; gp130, glycoprotein 130; ZAG, zinc‑α2‑glycoprotein; β3AR, β3 adre‑
noceptor; ACC, acetyl‑CoA carboxylase; ATGL, adipose triglyceride lipase; AMPK, AMP‑activated protein kinase; iNOS, inducible nitric oxide synthase; 
NO, nitric oxide; PDE3B, phosphodiesterase 3B; PLIN, perilipin; HSL, hormone‑sensitive lipase; PAI‑1, plasminogen activator inhibitor 1; LRP‑1, LDL 
receptor‑related protein 1; PLOD2, procollagen‑lysine and 2‑oxoglutarate 5‑dioxygenase 2; PRDM16, protein 16 containing PR domain; SOCS3, suppressor of 
cytokine signaling 3; MCT4, monocarboxylate transporter 4; GEPK, glycolytic enzyme pyruvate kinase; PPARγ, peroxisome proliferator‑activated receptor γ; 
HIF, hypoxia-inducible factor; AE, adrenomedullin; ciRS‑133, circRNA sponge for miR‑133; miR, microRNA.
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pad, a syngeneic breast cancer model revealed that 4T1 cells 
express negligible amounts of ATX (91). The activity of ATX 
can be inhibited by LPA or sphingosine 1‑phosphate‑related 
lipids. Moreover, Benesch et al (92) found that inflammatory 
cytokines, such as TNF‑α and IL‑1β, produced by tumor cells 
can overcome the LPA‑mediated inhibitory effect on ATX 
mRNA expression, suggesting that LPA and ATX may coexist 
in the tumor microenvironment. The levels of ATX mRNA and 
protein in the adipose tissue surrounding tumor tissues increase 
as breast cancer develops (91). The increased LPA signaling 
further promotes the production of inflammatory mediators in 
adipose tissue and tumors (93). Although the molecules impli‑
cated in the ATX pathway remain unclear, evidence indicates 
that tumor‑derived cytokines can stimulate increased production 
of ATX in peripheral adipocytes, promoting tumor cell prolif‑
eration, migration, metastasis, and resistance to radiotherapy 
and chemotherapy in a paracrine manner (84,86,90). 

Zinc‑α2‑glycoprotein (ZAG). ZAG is a 43‑kDa glycoprotein 
encoded by the AZGP‑1 gene. Previous studies have shown 
that ZAG is produced by certain cancer cells and WAT, and 
is closely associated with the prognosis of several types 
of cancer  (94,95), including breast  (96), colorectal  (97), 
prostate (98), and other cancers. Further research has demon‑
strated that tumor‑derived ZAG can regulate lipid metabolism 
and promote WAT browning (99). Overexpression of ZAG 
suppresses the expression of FAS, diacylglycerol acyltrans‑
ferase and acetyl‑CoA carboxylase (ACC) in mouse adipose 
tissue (100). On the contrary, ZAG binds to β3 adrenoceptor 
(β3AR) and upregulates the expression of ATGL, HSL and 
phosphorylated ACC via the protein kinase A (PKA)/p38 
MAPK signaling pathway, promoting lipolysis and inhibiting 
adipogenesis (101). In 3T3‑L1 preadipocytes, ZAG was shown 
to suppress the differentiation of preadipocytes by inhib‑
iting the expression of PPARγ, C/EBPα and the adipogenic 
enzyme FAS. According to Elattar et al (99), ZAG enhances 
the transcriptional translation of PRDM16 by stimulating the 
expression of PPARγ and early B cytokine 2. In addition, 
ZAG stimulates the expression of PPARγ and PPARγ coacti‑
vator 1α, and promotes the recruitment of PPARγ into the 
UCP1 promoter, leading to increased UCP1 expression (99). 
Similarly, the ZAG/β3AR/PKA/p38 MAPK signaling pathway 
can enhance the expression of specific BAT markers (101). 

Exosomes. Exosomes are small extracellular vesicles, with 
a diameter of 30‑100 nm, derived from endosomal multive‑
sicular bodies (MVBs). Exosomes are released in bursts when 
MVBs fuse with the cell membrane, and their contents, such 
as miRNAs, other non‑coding RNAs, transcription factors, 
proteins and lipids, are transported to target cells to participate 
in cell‑cell communication (102). The miRNA characteristics 
of exosomes are parallel to the miRNA expression profile of 
the tumor cells (103), suggesting that the miRNA expression 
pattern in body fluids, such as urine or saliva, can be analyzed 
to replace traditional needle biopsy for early diagnosis of 
breast cancer.

Breast cancer cell‑derived exosomes transport miRNAs, 
such as miR‑144, miR‑126 and miR‑155, to resident cells in 
the breast cancer microenvironment, inducing the forma‑
tion of CAAs (35). Previous studies have shown that cancer 

cell‑derived miR‑144 can target the MAP3K8 gene and reduce 
the phosphorylation level of ERK1/2 (35), resulting in the 
inhibition of PPARγ S273 phosphorylation in adipocytes, 
increased expression of UCP1 and browning of WAT (35,104). 
Tumor‑derived miR‑126 can downregulate the expression of 
GLUT4 in adipocytes by directly targeting the insulin receptor 
substrate 1 gene. Furthermore, miR‑126 can activate AMPK 
and increase the protein levels of hypoxia‑inducible factor‑1α 
and monocarboxylate transporter 4, resulting in metabolic 
remodeling of adipocytes, which is characterized by decreased 
glucose uptake and increased glycolysis and secretion of 
metabolites such as lactic acid and pyruvate (35,105). Breast 
cancer cell‑derived miR‑155 can promote the beiging/browning 
and metabolic remodeling of adipocytes by downregulating 
the expression of PPARγ (51). In addition, higher levels of 
circulating miR‑122 have been associated with breast cancer 
metastasis. Cancer cell‑secreted miR‑122 inhibits glucose 
uptake of premetastatic niche cells by reducing the activity of 
the glycolytic enzyme pyruvate kinase, which promotes the 
progression of the disease (106). Similarly, the expression of 
breast cancer‑secreted miR‑105 activates MYC signaling in 
CAFs and CAAs, which allows them to fuel neighboring cancer 
cells by enhancing glucose and glutamine metabolism under 
adequate nutrient conditions (107). In addition, the liver cancer 
secretes exosomes, which can activate the NF‑κB signaling 
pathway in adipocytes to promote tumor growth and angio‑
genesis, and recruit additional macrophages (108). Pancreatic 
cancer cells can transfer exosomal AE and induce lipolysis of 
CAAs by activating the p38 and ERK1/2 pathways (109,110). 
Advanced Lewis lung cancer can also secrete exosomal IL‑6, 
leading to skeletal muscle atrophy and adipose tissue browning 
via activation of the IL‑6/STAT3 pathway (111). Gastric cancer 
cells can transfer exosomal ciRS‑133 (circRNA sponge for 
miR‑133) to preadipocytes and induce brown adipocyte differ‑
entiation by activating PRDM16 and inhibiting the expression 
of miR‑133  (109,112). Furthermore, adipocyte‑derived 
exosomal miR‑21 can be transferred to tumor cells to promote 
their proliferation, invasion and migration, drug resistance 
and angiogenesis  (113‑115). Lazar  et  al  (116) found that 
adipocyte‑derived exosomes can stimulate melanoma invasion 
and metastasis by fatty acid oxidation. Adipocyte‑derived 
exosomal MMP3 can also promote lung cancer metastasis by 
increasing the activity of MMP9, which adversely affects the 
prognosis of patients with lung cancer (Fig. 2) (117). 

Taken together, the aforementioned tumor‑derived cytokines 
or miRNAs target CAAs via a paracrine mechanism, and one or 
more biological changes occur during the transition from mature 
adipocytes to CAAs through the activation of the NF‑κB, ERK, 
β‑catenin and other signaling pathways. Initially, tumor‑derived 
cytokines or miRNAs suppress the expression of the adipocyte 
differentiation markers PPARγ and C/EBPα, resulting in adipo‑
cyte lipolysis, increased expression of pro‑inflammatory factors, 
ECM remodeling and browning, until the adipocytes are finally 
transformed into the unique CAAs.

5. Role of CAAs in breast cancer progression

CAAs play a key role in breast cancer progression. ‘Activated’ 
CAAs can promote the progression of breast cancer through 
regulating various aspects of tumor cell proliferation, 
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epithelial-to-mesenchymal transition (EMT), invasion, metas‑
tasis and angiogenesis, by secreting chemokines (CCL2 and 
CCL5), inflammatory factors (IL‑6, IL‑1β, TNF‑α and VEGF), 
adipokines (leptin), exosomes (proteins involved in fatty acid 
oxidation and miR‑21) and lipolysis products (fatty acids, lactic 
acid and ketone bodies) (11). In a similar manner, CAAs may 
contribute to the drug resistance of breast cancer. Studies have 
reported that fatty acids can be used as a structural unit for the 
synthesis of membrane phospholipids, which can change the 
lateral and transverse membrane dynamics of breast cancer 
cells to enhance their oxidative stress resistance and limit the 
drug intake (118). Furthermore, lipolysis products, such as 
fatty acids and lactate, profoundly affect the homeostasis and 
differentiation of various immune cells, promoting immune 
escape and tumor progression (119). Leptin can also activate 
NF‑κB signal transduction to reduce the toxicity of chemo‑
therapeutics in vitro (120). The elevated expression of IL‑6 
in CAAs can induce the cancer stem cell‑positive phenotype 
by activating the STAT3/NF‑κB pathway, leading to chemo‑
therapy resistance of HER2‑positive breast cancer (121). In 
CAAs, the upregulation of the expression of matrix proteins, 
such as MMP11, MMP1 and collagen VI, may also be involved 
in cisplatin resistance (Fig. 3) (38). 

6. Perspectives

CAAs can create a favorable microenvironment for tumor 
cell proliferation, invasion and migration, and communica‑
tion between CAAs and tumor cells can further affect the 
prognosis of patients with cancer (11), suggesting that CAAs 
may represent a potential therapeutic target for breast cancer. 
However, the mechanisms underlying the formation of CAAs 
have yet to be completely elucidated, and several problems 
remain unresolved. 

First, certain cytokines, such as TGF‑β, strongly reduce 
PPARγ and C/EBPα expression and induce fibrosis in vivo (52). 
IL‑11 and angiopoietin‑like 4 are highly expressed in tumor 
cells (122), inhibit the differentiation of preadipocytes (123), or 
stimulate lipolysis by increasing adipocyte cAMP levels (124). 
In addition to the miRNAs mentioned above, Wu et al (35) 
also discovered that several miRNAs, including miR‑22, 
miR‑210 and miR‑16, were found to be differentially expressed 
in MDA‑MD‑231 cell‑ and CAA‑conditioned culture medium. 
However, whether those cytokines and novel tumor‑derived 
miRNAs are involved in the formation of CAAs is unknown. 
HOX transcript antisense intergenic RNA (HOTAIR), a 
long non‑coding (lnc)RNA released by exosomes, is highly 
expressed in a variety of tumor tissues (125,126). Interestingly, 
cancer cells transfer exosomal HOTAIR to endothelial cells, 
resulting in increased expression of VEGFA and angiogen‑
esis (127). However, the role of lncRNAs secreted by tumors 
in adipocytes requires further investigation in the future. 

Second, ADFs in the tumor center no longer contain lipid 
droplets or express adipocyte markers, and CAFs have also 
been found to overexpress UCP1 and MMP11 (80,128), which 
makes ADFs indistinguishable from other CAFs, suggesting 
that CAAs may constitute a part of the CAF population. 

Third, adipocytes can be attracted to tumors and some 
cancer cells preferentially migrate to sites rich in adipose tissue, 
indicating the potential application of adipocytes as cell‑based 

delivery platforms for drugs (or prodrugs), nanoparticles, or 
nucleic acids (129). However, in comparison, CAAs are more 
aggressive and in an active state, exhibiting increased expres‑
sion of various inflammatory factors. CAAs can be cultured 
and isolated in vitro, making them more suitable for cell‑based 
delivery platforms compared with normal mature adipocytes. 

Finally, CAAs can be transformed from an ‘accomplice’ 
to a ‘preventer’ of tumors, which is of higher therapeutic 
value, by reversing their phenotype. However, due to the lack 
of uniform standards for CAA protein markers and related 
genes, it remains difficult to develop CAA‑targeted treatments. 
Therefore, an in‑depth understanding of the formation of 
CAAs in the breast cancer microenvironment should provide 
new insights into the treatment of breast cancer.
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