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Abstract: The coronavirus disease 2019 (COVID-19) pandemic has caused a dramatic loss of human
life and devastated the worldwide economy. Numerous efforts have been made to mitigate COVID-19
symptoms and reduce the death rate. We conducted literature mining of more than 250 thousand
published works and curated the 174 most widely used COVID-19 medications. Overlaid with the
human protein–protein interaction (PPI) network, we used Steiner tree analysis to extract a core
subnetwork that grew from the pharmacological targets of ten credible drugs ascertained by the CTD
database. The resultant core subnetwork consisted of 34 interconnected genes, which were associated
with 36 drugs. Immune cell membrane receptors, the downstream cellular signaling cascade, and
severe COVID-19 symptom risk were significantly enriched for the core subnetwork genes. The
lung mast cell was most enriched for the target genes among 1355 human tissue-cell types. Human
bronchoalveolar lavage fluid COVID-19 single-cell RNA-Seq data highlighted the fact that T cells and
macrophages have the most overlapping genes from the core subnetwork. Overall, we constructed
an actionable human target-protein module that mainly involved anti-inflammatory/antiviral entry
functions and highly overlapped with COVID-19-severity-related genes. Our findings could serve
as a knowledge base for guiding drug discovery or drug repurposing to confront the fast-evolving
SARS-CoV-2 virus and other severe infectious diseases.

Keywords: COVID-19; text mining; drug-target network; drug treatment

1. Introduction

Coronavirus disease 2019 (COVID-19) has spread globally, with over 422 million
confirmed cases and over 5.8 million deaths worldwide as of 20 February 2022 [1]. SARS-
CoV-2 belongs to the coronavirus (CoV) family, which includes life-threatening respiratory
diseases such as severe acute respiratory syndrome (SARS) and Middle East respiratory
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syndrome (MERS) that typically spread from animal hosts such as bats and civet to hu-
mans [2]. During the past two years, medical personnel and investigators around the
world have spared no effort to explore medical treatments and develop potential vac-
cines for SARS-CoV-2 [3]. This research provides us with critical information underlying
massive amounts of heterogeneous data, especially potential drugs with high efficacy for
treating COVID-19 and the associations among drugs, genes, and the coronavirus. Drugs
involved in COVID-19 clinical trials belong to four major categories in the classification in
PharmGKB [4], including those that inhibit viral entry, those that inhibit viral replication,
anti-cytokine (anti-inflammatory) drugs, and others. Among them, a few antiviral drugs
such as Remdesivir [5], Paxlovid [6], and Molnupiravir [7], and multiple monoclonal an-
tibodies [8] have been approved by the FDA. Drugs suppressing viral replication mainly
target the SARS-CoV2 polymerase and the replication process [9]. Therefore, they do
not directly target the human cellular interactome. Drugs that inhibit viral entry were
designed to block the interaction between the spike protein of SARS-CoV-2 and the human
cell surface protein ACE2 and transmembrane protease TMPRSS2 [10]. Drugs in the anti-
cytokine category are intended to mitigate the severe COVID-19 symptoms induced by a
hyperinflammatory immune response [11]. As well as these, various other drugs have been
identified as conditionally effective treatments for COVID-19 and related symptoms [12–14].
However, the fast evolution of the virus has threatened the efficacy of both vaccines and
drug treatments [15,16]. Understanding their pharmacological process will help us to
measure the usability of individual drugs and drug combinations and eventually benefit
from the discovery of potential treatments for other infectious diseases.

Systematic identification of drug-target and target-protein interactions can effectively
explain the underlying mechanisms of drugs [17–19]. Network pharmacology methods
have been used to transform drug discovery technology from developing single target lig-
ands to more clinically effective drugs that target multiple proteins [20,21]. The applications
of these concepts in drug research include target identification, target-protein interaction
analysis, side-effect prediction, and molecular transport analysis [22]. The network analysis
involved in biomedical research helps researchers and physicians to understand the mecha-
nisms of drugs and prioritize the treatments for patients [23,24]. Viruses typically require
host cellular factors in order to successfully enter the cells and replicate during infection [25].
After the viral particles enter the host cell, the host innate immune response is initiated via
the production of type I interferons (IFN-α/β), activation of the JAK-STAT pathway [26],
and the subsequent recruitment of a series of pro-inflammatory cytokines [27]. The dys-
regulation of these pro-inflammatory responses leads to severe COVID-19 symptoms,
including fever, cytokine storm, and acute respiratory distress syndrome [28]. Systematic
analysis of the known drugs that are involved in virus–host interaction and the host im-
mune response regulatory network will guide us in understanding effective strategies for
combating COVID-19 and for drug repurposing [29,30].

In this study, we aimed to understand COVID-19 drug targets on the human cellu-
lar network and their relevance to COVID-19-related disease genes. (1) We conducted
systematic curation of COVID-19-related treatments and their corresponding targets.
(2) We projected them into a human protein–protein interaction (PPI) reference and used
the Steiner tree to connect the core target genes into an actionable network. (3) To explore
the features of the network, we conducted functional enrichment analysis and cell-type-
specific enrichment analysis. (4) We further explored the drug target–protein network with
COVID-19-related genes from GWAS risk genes and single-cell RNA-seq data.

2. Materials and Methods
2.1. Text Mining of COVID-19 Drugs and Drug Target Curation

Literature was firstly collected from PubMed (https://pubmed.ncbi.nlm.nih.gov,
accessed on 4 October 2021), using the keyword set [“COVID-19”, “COVID 19”, “SARS-CoV-
2”, “SARS COV 2”]. All abstracts with matching keywords were downloaded from PubMed
using the “batch_pubmed_dowload” function in the easyPubMed R package (https://cran.

https://pubmed.ncbi.nlm.nih.gov
https://cran.r-project.org/web/packages/easyPubMed/index.html
https://cran.r-project.org/web/packages/easyPubMed/index.html
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r-project.org/web/packages/easyPubMed/index.html). The easyPubmed package is an
R interface allowing easy programmatic access to PubMed. Then, we adopted a natural
language processing (NLP) model, Med7, to extract all drug names from the downloaded
abstracts [31]. Med7 is a transferable clinical NLP model for electronic health records. It has
been trained to recognize seven categories from electronic health record (EHR) data: the
amount of drug administered, the name of the drug, the length of prescription, the form
of drug given, the dosage regimen of the drug, the route for the drug to enter the body,
and the amount of drug in each dose. It is extremely useful for extracting drug-related
information from EHR data or texts in general [31]. Roughly the top 20% of the drugs were
selected, based on the distribution of the number of occurrences of the extracted drugs
(log10(freq) > 1), with subsequent filtration of noisy drug names outputted from Med7.
We further manually inspected the abstracts for the remaining drugs. Drugs that were not
directly used or proposed for treating COVID-19 in other literature studies were filtered
out from our list. Finally, target-gene information was collected from DrugBank using the
“dbparser” R package (https://cran.r-project.org/web/packages/dbparser/index.html)
on 12 January 2022 [32].

2.2. Steiner Tree Analysis

Steiner tree [33] is a subnetwork extraction algorithm that identifies the least number of
mediator nodes required to interconnect the input terminal nodes. The algorithm has been
applied in systems biology research [34,35]. We obtained all non-redundant protein–protein
interactions from BioGRID (version 4.4.203) [36], including 19,094 genes and 539,890 unique
interactions after removing non-human and redundant data. We derived a COVID-19-
related parental network from these interactions by restricting the search within our curated
COVID-19 drug targets. We identified the common drugs between our curation and the
COVID-19 drug curation from the Comparative Toxicogenomics Database (CTDbase) [37].
Then, we took the union targets of the common drugs as the terminal nodes, to carry
out the Steiner tree analysis in the COVID-19-related parental network. The Steiner tree
algorithm iteratively added the next mediator node(s) with the minimal average shortest
path to the existing isolated tree components until the isolated components were merged
into one single component. In the resultant interconnected subnetwork, all input genes
appeared as terminal nodes, whereas the algorithm-selected additional nodes were placed
at the inner parts as mediators. Only a minimum number of interactions were preserved
in the subnetwork to interconnect all terminals and mediators. The identified mediator
nodes were considered topologically important because they were the optimal set of nodes
bridging the terminal nodes.

We investigated which drugs were enriched in the Steiner tree subnetwork resulting
from the parental network. For each drug with at least one retained target gene, the target
genes were counted into both the Steiner tree subnetwork and the parent subnetwork.
The target gene reservation rate was compared with the subnetwork size shrinkage rate
through a hypergeometric test, and drugs with a p-value of less than 0.01 were considered
to be plausible COVID-19 drugs.

2.3. Functional Enrichment Analysis

To investigate the features of target genes, we performed an over-representation
analysis using the R package WebGestaltR (https://cran.r-project.org/web/packages/
WebGestaltR/index.html, accessed on 10 February 2022) with no redundant Gene On-
tology (GO) terms (Biological Process, Molecular Function, and Cellular Component),
with all human protein-coding genes as the reference. We used Benjamini–Hochberg
(BH) approach to adjust the p-value [38]. To understand the cell-type-specific enrichment
analyses (CSEA) of the target genes, we input the genes from the core target interaction net-
work to our in-house tool, Web-based Cell-type-Specific Enrichment Analysis (WebCSEA,
https://bioinfo.uth.edu/webcsea/, accessed on 15 February 2022) [39,40]. Specifically, this
online tool utilized our previous deTS algorithm [41] to calculate the raw p-value across
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1355 tissue-cell types. To overcome the potential bias due to the different lengths of signa-
ture genes among tissue-cell types, we calculated the permutation p-value by ranking the
raw p-value with >20,000 gene lists from GWAS and a rare-variants association of human
traits and disease pre-curated in WebCSEA [42,43]. Overall, we calculated a combined
p-value with two significant thresholds to evaluate the significance. The suggestive signifi-
cance was 0.001. The stringent significance was defined as a Bonferroni-corrected p-value
of 3.7 × 10−5 (0.05/1355).

2.4. GWAS Summary Statistics Process and z-Score Permutation

We collected six COVID-19 European ancestry GWAS summary statistics available
on 23 August 2020. The related COVID-19 GWAS included the following traits: “Se-
vere COVID-19 infection with respiratory failure (analysis I) and (analysis II)” from
the severe COVID-19 GWAS group [44], “hospitalized COVID-19 vs. not hospitalized
COVID-19”, “predicted COVID-19 self-reported symptoms vs. predicted or self-reported
non-COVID-19” from the COVID-19 Host Genetics Initiative [45] and the UK biobank
COVID-19 study “COVID-19 UKBB tested controls”, and “COVID-19 UKBB tested con-
trols” from the Genome-Wide Repository of Associations Between SNPs and Phenotypes
(GRASP) [46]. The first three traits are COVID-19-severity-related phenotypes, while the
other three traits are COVID-19-susceptibility-related phenotypes. The detailed GWAS de-
scription is available in the supplementary file Table S1. We used the multi-marker analysis
of GenoMic Annotation (MAGMA v1.07) to calculate the gene-level p-value [47]. MAGMA
combines multiple SNPs mapped to the same gene and adjusts the effects of the gene
length, SNP density, and local linkage disequilibrium (LD) structure. We considered all
SNPs located in the window from 50 kb upstream to 35 kb downstream. We used the mean
of the χ2 statistic for the SNPs to measure the gene-level p-value for each gene. We used the
1000 Genome Project Phase 3 European population as the reference panel.

We adapted the gene-level z-score transformed from the MAGMA output, which was
calculated from the inversed probit function Φ:

Zi = Φ−1(1 − Pi), (1)

Here, Pi is the gene-level p-value. We calculated the mean of the z-scores of the focal
gene list. Then, we randomly selected the same number of genes as the focal gene list
from the whole GWAS gene set without replacement one million times, to obtain one
million medium z-scores from permutation. Lastly, we defined the permuted p-value as
the proportion of cases from one million permutations that returned a z-score higher than
the focal gene list z-score.

2.5. Differentially Expressed Gene Analysis for COVID-19 Single-Cell RNA-Seq Data

We obtained the COVID-19 BALF single-cell RNA sequencing (scRNA-seq) data from
13 patients (severe (n = 6), moderate (n = 3), and healthy (n = 4)) generated by Liao et al.
(GSE145926) [48]. The processed data, with disease severity and cell-type annotation from
the original study, were downloaded from https://covid19-balf.cells.ucsc.edu (accessed on
11 October 2021) and used in our analysis. We compared all the differentially expressed
genes (DEGs) between the severe group and the healthy group, as well as between the
severe and moderate groups, across B cells, epithelial cells, macrophages, myeloid dendritic
cells (mDCs), neutrophils, NK cells, plasmacytoid dendritic cells (pDCs), plasma cells, and
T cells. We performed a non-parametric Wilcoxon rank sum test for differential expression
analysis, using the “FindMarkers” function in the “Seurat” R package [49].

3. Results
3.1. Identifying COVID-19 Drugs and Corresponding Targets via Literature Mining and Curation

We developed a standard literature mining workflow to obtain COVID-19-related
drugs and their corresponding human target genes (Figure 1). Specifically, we searched
PubMed using the keyword set [“COVID-19”, “COVID 19”, “SARS-CoV-2”, “SARS CoV 2”],

https://covid19-balf.cells.ucsc.edu
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which led to > 250,000 non-redundant abstracts. Then, we used a clinical natural language
tool, Med7, to extract all drug names from the downloaded abstracts. In total, 1419 drug
names were detected and collected by Med7. To study the most widely used drugs and
filter out potential noise, we set an empirical cutoff of log10 (times drug mentioned in the
collected abstracts) > 1 to prioritize the drug list. Therefore, roughly the top 20% (269)
of the drugs were left (Figure S1). Next, we manually curated the abstracts containing
these 269 candidates to exclude drugs with a potentially negative effect on COVID-19
outcomes. As a result, 212 drugs that were directly used or proposed for treating COVID-19
were retained for the drug target curation. To avoid the inconsistent annotation strategies
among different drug annotation databases [50], we collected the target gene information
from DrugBank [51]. Overall, we curated 803 unique genes targeted by 174 distinct drugs
(Table S2). We also mapped these drugs to the PharmGKB database and identified 12, 7,
and 16 drugs that were annotated for inhibiting viral entry, inhibiting viral replication, and
anti-cytokine/anti-inflammatory function, respectively (Table S2 and Figure S2).
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Figure 1. Literature mining and subnetwork extraction workflow: text mining of COVID-19 drugs,
drug target curation, and Steiner tree network analysis. Abstracts with matching keywords were
downloaded from PubMed. Drug names were extracted from the downloaded abstracts using Med7
and a cutoff was applied based on the empirical distribution, to further narrow down the drug
list. Target gene information for each drug was collected from DrugBank. Starting from the target
genes of ten credible drugs ascertained by CTDbase, Steiner tree algorithm was applied to a human
protein–protein interaction network to extract a core target interaction subnetwork.

3.2. COVID-19 Drug Target-Protein Network

We constructed a global PPI reference network using experimentally validated data
from BioGRID [52], in which we identified 783 genes out of 803 unique genes from our
compiled COVID-19 drug targets. In accordance with one comprehensive viral–host PPI
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study [53], we identified another set of 314 “host factor” proteins in the PPI network
that were confirmed to have a physical interaction with the SARS-CoV-2 virus in human
cell lines. The shortest paths between our drug target genes and the host factors in the
global BioGRID network averaged 2.46, whereas the shortest path distance between any
two genes in the global network was 2.86. We randomly sampled 314 vertices from the
global network and recorded the average shortest path distance between our drug target
genes and the random vertex set. For 100 random sampling experiments, the average
shortest path distance was always larger than the observed distance of 2.46 between our
drug target genes and the 314 experimentally confirmed host factors (Figure S3). Therefore,
our compiled 783 COVID-19 drug target genes were significantly more adjacent to SARS-
CoV-2 host factors than random vertices in the BioGRID PPI network (p < 0.01).

Next, we extracted a medium-scaled subnetwork from the global PPI network that
only involved our curated COVID-19 drug targets. This subnetwork excluded the iso-
lated genes that were not directly connected to the major component. It consisted of
4245 edges of 680 genes (Table S3). We denoted this medium-scaled subnetwork the
COVID-19-related parental network, because we intended to next narrow it down to a
small-scaled subnetwork. The vertex degree and vertex frequency showed a linear rela-
tionship on a logarithm scale (Figure S4), conforming to the typical scale-free property of a
molecular biology network. The degree and betweenness of vertices had a Pearson correla-
tion coefficient of 0.84. Genes of the highest degree included the well-known transcription
factor genes TP53, MYC, and EGFR (Table 1).

Table 1. The top ten genes with the highest degree in the COVID-19-related parental PPI network.

Gene Symbol Degree Betweenness

HSP90AA1 196 37,757.90

TP53 148 17,451.41

APP 145 32,447.83

NTRK1 141 15,363.83

MYC 134 12,058.01

EGFR 125 19,208.06

ESR1 114 7602.044

ESR2 89 8696.631

EGLN3 83 5614.034

XPO1 82 4984.01

Then, we cross-validated our parental network with another COVID-19 drug curation
from CTDbase [37] (data accessed on 4 January 2022). There were 10 common COVID-19-
related drugs between CTDbase and our compilation (Table 2). The union of these target
genes had 25 vertices overlapped with the COVID-19-related parental network, which were
not fully interconnected. Lastly, we took these 25 genes as credible COVID-19 drug targets
and employed the Steiner tree algorithm [34] to extract a subnetwork from the parental
PPI network that most parsimoniously interconnected the 25 terminal genes. Finally,
this resulted in a COVID-19-related core subnetwork (COVID19-DrugNET) involving
34 genes (25 terminals and 9 mediators) with 47 edges (Figure 2A, Table S4). In addition
to the 10 CTDbase-curated drugs, another 26 drugs were associated with these 34 core
drug target genes, and 10 of the 26 drugs had their target genes significantly enriched in
COVID19-DrugNET by the COVID-19-related parental network (Table 3).
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Figure 2. Steiner-tree-inferred protein–protein interaction network that interconnects 25 convincing
COVID-19 drug target genes and functional enrichment. (A) Red node: credible COVID-19 drug
target genes as terminals of the inferred Steiner tree. Blue node: a minimum set of genes (mediators)
through which the interconnected subnetwork was formed. Node size was proportional to the
degree. (B) Top 20 significant enrichment results for Gene Ontology (GO) analysis of biological
process, molecular function, and cellular component. Each row is the GO term. The color of the
circle is proportional to the value of −log10 (PBH) for each term, from blue to red. The circle size is
proportional to the number of intersected genes between the 34 COVID19-DrugNET genes and the
term genes.
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Table 2. The number of target genes of 10 common COVID-19-related drugs between our compilation
and CTDbase.

Drug Compilation CTDbase Overlapping Union PharmGKB Annotation

acalabrutinib † 1 3 0 4 other

aliskiren 1 3 0 4 NA

Argatroban ‡ 1 1 0 2 NA

baricitinib †‡ 4 11 3 12 anti-cytokine/
anti-inflammatory

bicalutamide 1 4 0 5 NA

dapagliflozin †‡ 1 3 0 4 other

Ibrutinib † 1 4 1 4 NA

montelukast †‡ 2 6 0 8 NA

ruxolitinib † 4 4 0 8 other

tofacitinib †‡ 4 8 0 12 anti-cytokine/
anti-inflammatory

We queried the clinical trials information of the 10 drugs on clinicaltrials.gov as of 28 February 2022. † Indicates
that the drug was in phase 2/3 of clinical trial(s) for testing to treat COVID-19. ‡ Indicates that the drug was in
phase 4 of clinical trial(s) for testing to treat COVID-19.

Table 3. Plausible COVID-19 drugs with target genes significantly enriched in COVID19-DrugNET.

Drug p.hyper Target Reservation Rate Reserved Target Genes

adalimumab 0 1/1 TNF

bromhexine 0.0018 1/2 TMPRSS2

canakinumab 0 1/1 IL1B

deferoxamine 0 1/1 APP

epinephrine 0.0036 2/8 ADRB2, TNF

formoterol 0.0053 1/3 ADRB2

infliximab 0 1/1 TNF

leflunomide 0.0053 1/3 PTK2B

progesterone 0.0073 2/10 ESR1, AR

tocilizumab 0 1/1 IL6R

3.3. Functional Enrichment and Tissue-Cell-Type Specificity of COVID19-DrugNET Genes

As shown in Figure 2B, the over-representation analysis of COVID19-DrugNET
genes highlights the following functions: (1) cell surface receptor responses to an ex-
ternal stimulus such as “GO:0032103, positive regulation of response to external stimulus
(PBH = 4.34 × 10−13)”; “GO:0005126, cytokine receptor binding (PBH = 3.62 × 10−12)”;
“GO:0097696, STAT cascade (PBH = 1.59 × 10−10)”; “GO:0001664, G protein-coupled recep-
tor binding (PBH = 3.79 × 10−7)”and (2) immune responses such as “GO:0002526, acute
inflammatory response (PBH = 1.91 × 10−7)”; “GO:0002237, response to molecule of bacte-
rial origin (PBH = 1.91 × 10−7)”; and ”GO:0050727, regulation of inflammatory response
(PBH = 3.54 × 10−7)”.

We conducted a cell-type-specific enrichment analysis (CSEA), using our in-house
method, for the 34 COVID19-DrugNET genes (Figure 3A,B) [42,54] and identified that
lung mast cell has a nominal significance (Padjust = 0.0003, Figure 3C). The mast cell is
a long-lived tissue-resident cell with an important role in immune response, indicating
that our COVID19-DrugNET genes could be targeted to human lung mast cells that mit-
igate severe COVID-19 symptoms [55,56]. In addition, microglia in the fetal cerebellum
(Padjust = 0.001) and monocyte in the adult liver (Padjust = 0.001) also reached nominal signif-
icance. Overall, immune-related cell types were mostly enriched by COVID19-DrugNET.

clinicaltrials.gov


Genes 2022, 13, 1210 9 of 15

Genes 2022, 13, x FOR PEER REVIEW 9 of 16 
 

 

Table 3. Plausible COVID-19 drugs with target genes significantly enriched in COVID19-DrugNET. 

Drug p.hyper Target Reservation Rate Reserved Target Genes 
adalimumab 0 1/1 TNF 
bromhexine 0.0018 1/2 TMPRSS2 

canakinumab 0 1/1 IL1B 
deferoxamine 0 1/1 APP 
epinephrine 0.0036 2/8 ADRB2, TNF 
formoterol 0.0053 1/3 ADRB2 
infliximab 0 1/1 TNF 

leflunomide 0.0053 1/3 PTK2B 
progesterone 0.0073 2/10 ESR1, AR 
tocilizumab 0 1/1 IL6R 

3.3. Functional Enrichment and Tissue-Cell-Type Specificity of COVID19-DrugNET Genes 
As shown in Figure 2B, the over-representation analysis of COVID19-DrugNET 

genes highlights the following functions: 1) cell surface receptor responses to an external 
stimulus such as “GO:0032103, positive regulation of response to external stimulus (PBH = 
4.34 × 10−13)”; “GO:0005126, cytokine receptor binding (PBH = 3.62 × 10−12)”; “GO:0097696, 
STAT cascade (PBH = 1.59 × 10−10)”; “GO:0001664, G protein-coupled receptor binding (PBH 

= 3.79 × 10−7)”and 2) immune responses such as “GO:0002526, acute inflammatory re-
sponse (PBH = 1.91 × 10−7)”; “GO:0002237, response to molecule of bacterial origin (PBH = 
1.91 × 10−7)”; and ”GO:0050727, regulation of inflammatory response (PBH = 3.54 × 10−7)”. 

We conducted a cell-type-specific enrichment analysis (CSEA), using our in-house 
method, for the 34 COVID19-DrugNET genes (Figure 3A,B) [42,54] and identified that 
lung mast cell has a nominal significance (Padjust = 0.0003, Figure 3C). The mast cell is a 
long-lived tissue-resident cell with an important role in immune response, indicating that 
our COVID19-DrugNET genes could be targeted to human lung mast cells that mitigate 
severe COVID-19 symptoms [55,56]. In addition, microglia in the fetal cerebellum (Padjust 
= 0.001) and monocyte in the adult liver (Padjust = 0.001) also reached nominal significance. 
Overall, immune-related cell types were mostly enriched by COVID19-DrugNET. 

 
Figure 3. Cell-type-specificity of COVID19-DrugNET genes. The red dashed line indicates the
Bonferroni-corrected significant threshold −log10 (p = 3.69 × 10−5). The grey solid line indicates
the nominal significance −log10 (p = 1 × 10−3). (A) In each category of organ systems, each dot
represents one tissue cell type from that organ system, in a different color by column. We highlighted
the top cell type, i.e., lung mast cell in respiratory system. (B) In each category of tissue, each dot
represents one cell type from that tissue, in a different color by column. We highlighted the top cell
type, i.e., lung mast cell in one lung single-cell RNA sequencing (scRNA-seq) study. (C) Heatmap for
the COVID19-DrugNET gene cell-type-specific enrichment analysis results in one lung scRNA-seq
panel. The color is proportional to the p-values. The first column is the tissue cell type in this
scRNA-seq panel. The second column is the raw p-values. The third column is the combined p-value
calculated by WebCSEA.

3.4. COVID19-DrugNET Is Highly Related to Risk Genes Underlying Severe COVID-19 Symptoms

Genetic factors play important roles in terms of COVID-19 severity and susceptibil-
ity [44,57,58]. To test whether our COVID19-DrugNET genes had an average higher risk
for severe COVID-19 symptoms, we further explored the 34 genes from the core network
relevant to COVID-19 GWAS traits. Specifically, we obtained summary statistical data for
six GWAS, for COVID-19-related traits from case-control studies (Table S1) and performed
a GWAS z-score permutation test for the genes from our COVID19-DrugNET. We iden-
tified that our gene list had significantly higher mean z-score enrichments for one of the
COVID-19 severe symptoms traits, i.e., “Severe COVID-19 infection with respiratory failure
(analysis I)”, (p = 0.049, Figure S5). We failed to identify any significant p-value from three
COVID-19 susceptibility-related traits, suggesting our COVID19-DrugNET genes overall
had severity-related risks rather than susceptibility-related risks.

To analyze the relationships between COVID19-DrugNET genes and COVID-19-
disease-related products, we adapted one COVID-19 scRNA-seq dataset from bronchoalve-
olar lavage fluid (BALF) [48]. We systematically compared the COVID19-DrugNET genes
with DEGs between the COVID-19 severe vs. the healthy group (Figure 4A) and the severe
vs. the moderate group (Figure 4B) (Table S5). We identified the corresponding number of
overlapping genes in macrophages (16:14) and T cells (14:11) among the comparison groups
(Figure 4A,B). These findings indicate that the COVID19-DrugNET genes overlapped with
almost half of the COVID-19 dysregulated genes in T cells and macrophages of severe
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disease patients. These are the major contributors of cytokine storm and hyperinflamma-
tory response [59].
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Figure 4. Comparison of COVID19-DrugNET genes with the differentially expressed genes (DEGs)
from single-cell RNA-seq COVID-19 bronchoalveolar lavage fluid dataset. (A) In the severe and
healthy groups, the UpSet plot shows the shared and uniqued components among the top 5 cell types
with overlapping genes between the corresponding DEGs and COVID19-DrugNET genes. The set
size indicates the overlapping genes. NK: natural killer cell; mDC: myeloid dendritic cell. (B) In the
severe and moderate groups, the UpSet plot shows the shared and unique components among the top
5 cell types with overlapping genes between the corresponding DEGs and COVID19-DrugNET genes.
The set size indicates the overlapping genes. mDC: myeloid dendritic cells; pDC: plasmacytoid
dendritic cells.

4. Discussion

This work explored the COVID-19 drugs from >250 K literature studies using Med 7
and validated them with other resource curations. First, through a series of filtrations, we
identified ten drugs shared with the drugs list from CTDbase. We used Steiner tree analysis
to connect the target genes of the ten drugs from the human reference PPI, which led to
the final COVID19-DrugNET, containing 34 genes and 47 edges. These genes are enriched
with “response to external stimulus” and “immune response” functions. Interestingly,
the tissue and cell-type enrichment analysis for the 34 genes identified that the lung mast
cell (the resident immune system in the lung) had the most significant signal. Lastly, the
COVID-19 scRNA-seq DEGs analysis and severe GWAS phenotypes all indicated that our
COVID19-DrugNET genes highly overlapped with COVID-19-severity-related genes.

Our findings on the overlapping ten drugs with human gene targets are mainly re-
lated to anti-cytokine/anti-inflammatory and other unknown drug mechanisms, according
to the COVID-19 drug classification of PharmGKB (Table 2). The drug baricitinib is a
Janus kinase (JAK) inhibitor for treating adult patients with moderate-to-severe active
rheumatoid arthritis via interfering with the pathway that leads to inflammation [60]. The
drug tofacitinib is also in the JAK inhibitor class of drugs that suppress pro-inflammatory
cytokine activity [61]. For the drugs in other categories: (1) acalabrutinib is a Bruton’s
tyrosine kinase (BTK) inhibitor on the B-cell receptor signaling pathway that communi-
cates with other immune cells and results in B-cell proliferation and activation [62] and
(2) dapagliflozin is a sodium–glucose cotransporter 2 inhibitor used as the antihyper-
glycemic treatment for diabetes. This drug showed clinical status improvement, although
it was not statistically significant, in a phase 3 trial in patients with cardiometabolic
risk factors [63]. Finally, (3) ruxolitinib is a JAK inhibitor with a similar mechanism to
baricitinib [64].

For the other five drugs without PharmGKB annotation: (1) The non-peptidic drug
aliskiren could interact with the catalytic site of SARS-CoV-2 main protease and interfere
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with the viral function [65]; (2) argatroban is a trypsin-like serine protease, which has po-
tential therapeutic benefits in COVID-19 patients via its antithrombotic, anti-inflammatory,
and antiviral effects [66]; and (3) bicalutamide is an antiandrogen therapy for male prostate
cancer, which was used to tackle the viral entry via regulating TMPRSS2. However, one
recent phase 2 clinical trial failed to identify significant improvement from using this
drug [67]. (4) The drug ibrutinib is a kinase inhibitor that decreases the B-cell proliferation
and survival by irreversibly blocking the BTK B-cell receptor pathway and was reported
to treat COVID-19 hyperinflammation [68]; and (5) montelukast is a cysteinyl leukotriene
receptor antagonist with an anti-inflammatory effect, cytokine production reduction, and
oxidative stress suppression [69].

Overall, eight out of these ten drugs are either in phase 2/3 or phase 4 of clinical trials
(Table 2). Their targets and involved pathways are mainly related to anti-cytokine activity
and inhibiting viral entry, which explains the functions of the module genes enriched
in the immune cell membrane receptors and the downstream cellular signaling cascade.
Nevertheless, many antiviral agents and anti-inflammatory drugs have been reported for
combination use [70–72], providing better treatment efficacy than monotherapies.

We conducted a systematic exploration to understand the features of the 34 COVID19-
DrugNET genes derived from 36 credible drugs. Our cell-type-specific enrichment analysis
identified that the resident innate immune cell (mast cell) in the lung, microglia in the fetal
cerebellum, and monocyte in the adult liver are enriched with COVID19-DrugNET genes
with a nominal significance, indicating that immune-related cell types are the major cellular
targets of COVID19-DrugNET genes. Moreover, our GWAS z-score permutation identified
that the COVID19-DrugNET genes have higher mean z-scores than random gene sets in
GWAS severity-related traits, not in susceptibility-related traits. These findings all align
with the composition of 34 COVID19-DrugNET genes, which are mainly anti-cytokine/anti-
inflammatory drug targets for treating patients with severe symptoms. Our, scRNA-seq
analysis of BALF COVID-19 data suggests that the macrophages and T cells contain more
COVID19-DrugNET drug targets for treating severe COVID-19 patients, probably raised
by the hyperinflammation and cytokine storms [59].

Lastly, this is a fast-moving field. Our approach might not capture all the latest drugs.
After we finished our literature-mining on 4 October 2021, several new drugs have been
approved by the FDA, including Paxlovid [6] and molnupiravir [7]. Although the antiviral
replication drugs are the most effective monotherapies for mitigating virus activities directly
and therefore reducing mortality rates, severe symptoms rates, and time to recovery, we
expect to see more combination use of antiviral agents and anti-inflammatory drugs, which
will shed new light on fighting SARS-CoV-2 infection.

5. Conclusions

We identified 174 COVID-19 drugs via extensive literature mining, including ten
drugs shared with the CTDbase curation. We connected the targets of these ten drugs
with PPI references and expanded them to a network module containing 34 genes that
are enriched with membrane receptors of immune-related cell types and the downstream
cellular signaling cascade. Our CSEA identified lung mast cell as the most relevant cell
for COVID19-DrugNET. Genes in COVID19-DrugNET had higher than random GWAS
z-scores, probably carrying severity-related rather than susceptibility-related genetic risks.
Lastly, the DEGs of macrophages and T cells between severe and moderate/healthy indi-
viduals covered half of the drug targets from COVID19-DrugNET, indicating that these two
cell types are the major targets of anti-inflammatory treatment for severe COVID-19 symp-
toms. Overall, our work constructed the COVID19-DrugNET, with drugs and therapeutic
targets with high confidence, providing a systematic view of the underlying biological
bases of various treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071210/s1. Figure S1. Overall distribution of the log10
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(frequency) for 1419 drugs; Figure S2. Pie chart showing the distribution of 41 widely used COVID-19
drugs with PharmGKB function annotation; Figure S3. Distribution of 100 random sampling ex-
periments for the mean shortest distance between any two genes in BioGRID.; Figure S4. scale-free
property of our medium-scaled subnetwork consisting of 4245 edges of 680 genes; Figure S5. The
z-score permutation result for GWAS trait “Severe COVID-19 infection with respiratory failure (anal-
ysis I)”; Table S1. GWAS summary for six COVID-19 related phenotypes; Table S2. Summary of
174 COVID-19-related drugs; Table S3. Medium-scaled subnetwork as a COVID19-related parental
network; Table S4. The 34 COVID19-DrugNET genes; Table S5. Shared genes in COVID19-DrugNET
genes and differentially expressed genes in each cell type.
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