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Critical behavior of nonequilibrium 
depinning transitions for vortices 
driven by current and vortex 
density
T. Kaji, S. Maegochi, K. Ienaga, S. Kaneko & S. Okuma*

We study the critical dynamics of vortices associated with dynamic disordering near the depinning 
transitions driven by dc force (dc current I) and vortex density (magnetic field B). Independent of 
the driving parameters, I and B, we observe the critical behavior of the depinning transitions, not 
only on the moving side, but also on the pinned side of the transition, which is the first convincing 
verification of the theoretical prediction. Relaxation times, τ(I) and τ(B) , to reach either the moving 
or pinned state, plotted against I and B, respectively, exhibit a power-law divergence at the depinning 
thresholds. The critical exponents of both transitions are, within errors, identical to each other, which 
are in agreement with the values expected for an absorbing phase transition in the two-dimensional 
directed-percolation universality class. With an increase in B under constant I, the depinning transition 
at low B is replaced by the repinning transition at high B in the peak-effect regime. We find a trend that 
the critical exponents in the peak-effect regime are slightly smaller than those in the low-B regime 
and the theoretical one, which is attributed to the slight difference in the depinning mechanism in the 
peak-effect regime.

Many-particle systems subjected to an external driving force exhibit a variety of nonequilibrium phases and 
phase transitions, such as a plastic depinning  transition1–14 and a reversible-irreversible transition (RIT)15–26. 
The depinning phenomenon of collectively interacting particle systems driven over random substrates has been 
observed  ubiquitously13 in various physical  systems6–14,27–29, including sliding charge density  waves30, Wigner 
 crystals31,32,  colloids3,33, magnetic domain  walls34, and superconducting vortices in type-II  superconductors1,2,4,5,35. 
Using a superconducting vortex system in amorphous (a-)MoxGe1−x films with random pinning centers, we 
have previously  shown9,12,20 that the depinning transition is a nonequilibrium phase transition, as predicted by 
numerical  simulation5. In our experimental protocol, we first prepare an ordered initial vortex configuration 
where many vortices are depinned from random pinning sites or equivalently, an ordered lattice involving a small 
number of dislocations (topological defects). Then, we apply a small dc current I (dc force) with a sharp rise, 
so that the driven vortices are gradually pinned by random pinning centers and transform into a less organized 
configuration. This transient process called a dynamic disordering is detected from the time evolution of a voltage 
V(t) induced by vortex motion that decays toward a steady-state voltage V∞(≡ V(t → ∞)) , where the voltage 
corresponds to the average velocity of vortices. The relaxation time τ(I) for the system to settle into the moving 
steady state ( V∞ > 0 ) exhibits a power-law divergence at the depinning current Id with critical exponents ν = 
1.4 ± 0.49,12,20, within error bars, in agreement with the value expected for an absorbing phase transition in the 
two-dimensional (2D) directed-percolation (DP) universality  class36–38. Using ac  drive39, we have also observed 
the critical behavior of the depinning transition with the critical exponent close to that for the dc drive, further 
demonstrating the universality of the nonequilibrium depinning  transition5.

In these experiments, however, the critical behavior of the depinning transition has been observed only on 
the moving (fluctuating diffusing [active]) side of the  transition9,12,20,39, although that of RIT has been reported 
on both sides of the  transition20,24,26. This is because it is difficult to obtain a reliable data of V(t) in the pinned 
(non-fluctuating quiescent [absorbing]) phase, where V(t) relaxes to V∞ = 0. It was also predicted theoretically 
that one could hardly observe the nonequilibrium absorbing phase transition, since a perfect non-fluctuating 
state could not be realized in actual systems, and that even though the fluctuations were strongly suppressed, 
they could still be strong enough to “soften” the transition, preventing the accurate determination of the critical 

OPEN

Department of Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551, Japan. 
*email: sokuma@o.cc.titech.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-05504-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1542  | https://doi.org/10.1038/s41598-022-05504-4

www.nature.com/scientificreports/

 exponents36. The diverging τ on both sides of the transition has been reported in a vortex system of NbS2 single 
 crystals40. However, the transition is induced by “jamming” of vortices at large dc currents, which is different 
from the usual depinning that occurs at smaller currents. In fact, the values of τ reported  in40 are by approxi-
mately five orders of magnitude larger than those in the depinning transition and the extracted critical exponent, 
1.6± 0.12 , is larger than ν = 1.4 for the depinning transition, indicating a different universality class from that 
of the depinning transition and the absorbing phase transition in the 2D DP universality class.

In the ordinary type-II superconductors, the depinning current Id is a function of the magnetic field B, and 
it decreases with an increase in B and vanishes at the melting field Bm of the vortex solid. This implies that the 
depinning transition occurs not only when the dc current I is increased at constant field B, as conducted in previ-
ous studies, but also when B (i.e., the vortex density) is increased at constant I. Within the linear approximation, 
the critical behavior characterized by the critical exponents is unchanged when B is used as a driving parameter 
instead of I. We consider, however, that this is not a trivial issue in real systems. First, the experimental results 
have shown that the relative width of the critical region of the depinning transition, |I − Ic|/Ic , is very large, 
typically spanning the range up to ∼ 1 , where Ic is the critical current for the depinning transition. This width 
is much larger than that expected for typical equilibrium critical  phenomena41,42 and clearly beyond the linear 
approximation. Second, some experiments studying critical phenomena of phase  transitions43,44 have shown 
that the critical exponents of the transition depend on the parameters that drive the transition. For example, 
critical exponents of the 2D superconductor-insulator transition (SIT) are markedly different depending on 
whether the SIT is driven by decreasing the film thickness (increasing the normal state resistance) or increasing 
the magnetic field B43.

In addition, in the vortex system the presence of the peak effect would make the problem nontrivial and more 
interesting. For superconductors with moderately strong pinning, as a-MoxGe1−x films studied in this work, 
Id(B) exhibits a small peak at a certain field Bp in the high-B region just prior to melting of the vortex lattice. 
Bp marks the structural transition of vortex solids from the ordered lattice or weakly-disordered vortex lattice 
(Bragg glass) to disordered amorphouslike vortex  glass45,46. In our a-MoxGe1−x film the weakly disordered 
vortex lattice (Bragg glass phase) is more likely than the vortex lattice with negligibly small pinning. This peak 
called a peak effect originates from combined effects of the softening of the vortex lattice before its melting and 
the random pinning potential due to quenched disorder in the sample. In the particular field region B � Bp in 
the peak-effect regime, where Id(B) increases with an increase in B, a repinning transition from the moving state 
to pinned state takes place with an increase in B (the vortex density) under the fixed current I slightly below the 
depinning current Id(≡ Id,p) at Bp . This leads to an interesting question of whether the critical behavior of the 
repinning transition in the high-B region (B � Bp) is the same as that of the depinning transition in the low-B 
region (B ≪ Bp) . Moreover, when we select the specific value of I, corresponding to Id,p , and B is swept near Bp , 
the pinned phase appears only at Bp . Thus, we are able to study the critical behavior of the depinning transition 
in an unusual situation where the pinned phase is only a point.

In this work, we observe the critical behavior of the depinning transitions, not only on the moving side, but 
also on the pinned side of the transition, independent of the driving parameters, I and B. The relaxation times, 
τ(I) and τ(B) , to reach either the moving or pinned state, plotted against I and B, respectively, show a power-law 
divergence at the depinning thresholds, Ic and Bc . The critical exponents of both transitions are, within errors, 
identical to each other. In the low-B region below the peak effect regime, these exponents are in agreement with 
the value expected for the absorbing phase transition in the 2D DP class. With an increase in B under constant 
I, the depinning transition at low B(≡ BcL) is replaced by the repinning transition at high B(≡ BcH) in the peak-
effect regime. While the critical behaviors are similar to each other, we find a trend that the critical exponents in 
the peak-effect regime are slightly smaller than those in the low-B regime and than the theoretical one. Its origin 
is attributed to the slight difference in the depinning mechanism in the peak-effect regime. We also find that 
τ(B) obtained under the particular current Id,p shows a power-law divergence at Bp , indicating that the critical 
behavior in the moving phase stays unchanged even when the pinned phase shrinks to a point at Bp.

Results and discussion
In Fig. 1a,c, we show the current-voltage (I–V) characteristics at 4.1 K in 1.27 and 3.8 T, respectively, on a linear-
linear scale. In the insets, the I–V data in the main panels, including additional data, are plotted on a log-log 
scale. We define Id as a threshold current at which the vortices start to move, using a 10−8 V  criterion9. The 
location of Id = 0.375 mA for each field is marked with a vertical arrow and dashed line in the main panel and 
inset, respectively. Upward curvature of the I–V characteristics just above Id in the main panels indicates that 
the vortex flow immediately after the depinning is plastic flow, as described later.

Shown in Fig. 2a is the B dependence of Id , which is interpreted as a phase diagram of the pinned and mov-
ing vortex phases: A full line Id(B) corresponds to the transition line between the pinned phase ( < Id(B) ) and 
the moving phase ( > Id(B) ). The peak effect is clearly observed in the field range B = 2–5.6 T (= Bm) , where 
the peak field Bp =4.6 T marks the structural transition from the Bragg glass to the vortex glass at equilibrium. 
Because of the non-monotonic dependence of Id on B, three fields, such as B =1.27 T(≡ BcL ), 3.8 T(≡ BcH ), and 
5.24 T, give the same Id =0.375 mA.

Figure 3a,b, respectively, show the time-dependent voltage, V(t) and V(t)/V∞ , at 4.1 K in 1.27 T just after 
the dc currents, I = 0.33, 0.35, 0.36, and 0.37 mA from bottom to top and I = 0.42, 0.45, 0.475, 0.55, and 0.80 
mA from top to bottom, below and above Id(= 0.375 mA) were suddenly applied to the initial vortex assemblies 
at t = 0 . Here, the ordered initial vortex configuration was prepared by shaking the vortices, using an ac current 
with a frequency of 10 kHz and an amplitude yielding an ac voltage with an amplitude of 0.1  mV12. We com-
monly observed a decay of V(t) toward a final steady state, indicative of dynamic disordering. This behavior is 
essentially the same as that observed in the similar vortex  system9,20 and originally found in NbSe2 single  crystals2. 
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It has been suggested previously that information on dynamic  disordering7 and the depinning  transition47 may 
be involved in individual voltage pulses in response to the ac drive with a rectangular pulse shape as well as in 
V(t) in response to the dc drive. It is seen from Fig. 3a that the relaxation is longer for larger I, while Fig. 3b 
shows the longer relaxation for smaller I, indicating that a peak in the relaxation time τ(I) occurs at around I = 
0.37–0.42 mA.

To extract τ for the system to reach the steady state, we fit V(t) to the following relaxation function presented 
 in5,17:

Here V0 and V∞ are the initial and steady-state voltages, respectively, and τ is the characteristic time at which the 
relaxation crosses over from a power-law decay with an exponent a to an exponential decay, as shown in Fig. 3c. 
Hence, a is relevant very close to the transition where τ → ∞5,13,17. In Fig. 3c, we replot all the data shown in 
Fig. 3a,b as logV-log t plots. We find that as I approaches closer to 0.37-0.42 mA, the replotted data fall on nearly 
a straight line with a slope of −a = −0.55 , as indicated with a dashed line. The clear and systematic discrepancy 
between the fitting lines and the experimental curves at t < 1 ms is inevitable from the functional form of Eq. 
(1). To extract the values of τ , the fitting in the larger t regime where the relaxation crosses over from a power-
law decay to an exponential decay is important and the deviation from the fitting at smaller t(< 1 ms) does not 
affect the extracted values of τ . The obtained value of a = 0.55± 0.1 is almost consistent with the DP  theory36,37, 
which predicts that the fraction of active (moving) particles, in the case of the depinning transition, obeys the 
power-law time dependence at the critical point with an exponent a ≈ 0.45 for the DP class or a ≈ 0.5 for the 
conserved DP class.

(1)V(t) = (V0 − V∞)exp(−t/τ)/ta + V∞.
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Figure 1.  The critical divergence of the relaxation time τ(I) at the current-driven depinning transition ( Ic ). 
(a, c) I–V characteristics at 4.1 K in (a) 1.27 T and (c) 3.8 T on a linear-linear scale. Inset: I–V data plotted on a 
log–log scale. A vertical arrow and dashed line in each main panel and inset, respectively, indicate the depinning 
current Id = 0.375 mA defined using a 10−8 V criterion. Other lines are guide to the eye. (b, d) The critical 
divergence of τ(I) at the I-driven depinning transition in (b) 1.27 T and (d) 3.8 T. The open and solid red circles 
represent τ for I ≤ 0.37 mA and I ≥ 0.39 mA, respectively, showing a power-law divergence at 0.375 ± 0.005 
mA(≡ Ic ) from both sides, as marked with a vertical dashed line. Inset: log τ versus log |I − Ic| in (b) 1.27 T and 
(d) 3.8 T, where symbols are the same as in the main panel. Both the dotted and full red lines indicate the power-
law fits by τ ∝ |I − Ic|−ν with (b) ν = 1.34 ± 0.13 and (d) ν = 1.02 ± 0.15. The error bars in τ mainly correspond 
to the fitting errors resulting from the uncertainty in determining a.
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The full lines in Fig. 3a,b,c display the results of the fits to Eq. (1) using a = 0.55 . In Fig. 1b, the values of 
τ thus obtained are plotted as a function of I with open and solid red circles for I ≤0.37 mA and I ≥0.39 mA, 
respectively. They show a power-law divergence at 0.375 ± 0.005 mA(≡ Ic ) from both sides, as marked with 
a vertical dashed line. As far as we know, this is the first experimental observation of the critical divergence 
of τ in the pinned phase ( I < Ic ) of the depinning transition. The inset of Fig. 1b displays the plots of all the 
values of τ against |I − Ic| on a double logarithmic scale, i.e., log τ versus log |I − Ic| , where symbols are the 
same as in the main panel. Both the dotted and full red lines in the main panel and inset indicate the power-
law fits by τ ∝ |I − Ic|−ν with ν=1.34 ± 0.13, which is, within error bars, in agreement with the theoretical 
value of ν = 1.295± 0.006 expected for the absorbing phase transition in the DP universality class in  2D36 and 
ν = 1.225± 0.029 for the conserved 2D DP class.

In 3.8 T slightly lower than Bp = 4.6 T in the peak-effect regime, where the pinning is very effective, we also 
measured the transient voltage V(t) just after the dc currents I below and above Id = 0.375 mA were suddenly 
applied to the initial vortex assembly with a relatively ordered configuration, which was prepared by the same ac 
drive as in 1.27 T. We again observed the decay of V(t) to the steady-state voltage V∞ . The relaxation time τ was 
extracted from V(t), using the same analysis as in 1.27 T. The main panel and inset of Fig. 1d display the τ versus 
I and log τ versus log |I − Ic| plots, respectively, where the open and solid red circles correspond to τ measured 
at I ≤0.37 mA and I ≥0.39 mA, respectively. The values of τ(I) again show a power-law divergence at 0.375 ± 
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Figure 2.  The critical divergence of the relaxation time τ(B) at the density-driven depinning transition 
( BcL ) and repinning transition ( BcH ). (a) The B dependence of Id at 4.1 K, where a full line is a guide to the 
eye. Id(B) corresponds to the transition line separating the pinned phase ( < Id(B) ) from the moving phase 
( > Id(B) ). B = 1.27 T(≡ BcL ) and 3.8 T(≡ BcH ) indicated with vertical dashed lines give the same Id = 0.375 
mA marked with a horizontal dashed line. (b) τ measured under constant I = 0.375 mA for B <1.27 T and B >

3.8 T (open blue circles) and for 1.27< B <3.8 T (solid blue circles) plotted against B, showing the power-law 
divergence on both sides of the two threshold fields; BcL = 1.27 T and BcH = 3.8 T, as indicated with vertical 
dashed lines. (c) log τ versus log |B− BcL| and (d) log τ versus log |B− BcH | , where the symbols are the same 
as in (b). All the data below 3.8 T and above 1.27 T are plotted in (c) and (d), respectively. The blue dotted 
line in (c) and that for B < BcL in (b) represent the power-law fits by τ ∝ |B− BcL|−νBL with νBL = 1.26 ± 
0.11. The blue dotted line in (d) and that for B > BcH in (b) indicate the power-law fits by τ ∝ |B− BcH |−νBH 
with νBH = 0.95 ± 0.10. The blue full lines in (b–d) are the fits to the sum of the two power-law functions, 
τ = aL|B− BcL|−νBL + aH |B− BcH |−νBH , with νBL = 1.26 and νBH = 0.95, where aL and aH are the fitting 
parameters of the same order of magnitude. The error bars in τ mainly correspond to the fitting errors resulting 
from the uncertainty in determining a.
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0.005 mA(≡ Ic ) from both sides, as indicated with a vertical dashed line. Both the dotted and full red lines in the 
main panel and inset indicate the power-law fits by τ ∝ |I − Ic|−ν with ν = 1.02 ± 0.15, which is slightly smaller 
than ν = 1.34 ± 0.13 in 1.27 T.

Next, we focus on the critical behavior of the depinning transition that is driven by increasing B in the low-
B region (B ≪ Bp) and by decreasing B in the high-B region (B � Bp) under the constant current I = 0.375 
mA slightly lower than Id,p = 0.415 mA (i.e., the depinning current for Bp ) at 4.1 K. Here, the experiment was 
performed by keeping the field constant and then switching on the current I = 0.375 mA suddenly. Shown in 
Fig. 4a–d are the voltage responses V(t) for the relatively ordered initial vortex configuration, which was prepared 
by the same ac drive as mentioned above, subjected to the dc current I = 0.375 mA in different B: Fig. 4a shows 
V(t) in B = 1.05 and 1.15 T from bottom to top, while Fig. 4b displays V(t)/V∞ in B = 1.42, 1.55, and 2.0 T from 
top to bottom. Figure 4c shows V(t)/V∞ in B = 2.5, 3.4, and 3.65 T from bottom to top, while Fig. 4d displays 
V(t) in B = 3.82 and 3.9 T from top to bottom. It is commonly observed that V(t) decays to the steady-state volt-
age V∞ . All the data of V(t) in Fig. 4a,d show V∞ = 0 , indicative of the pinned phase, whereas those in Fig. 4b,c 
exhibit V∞ > 0 , reflecting the moving phase. Full lines in Fig. 4a–d represent the results of the fits to Eq. (1).

From V(t), we again extract the relaxation time τ for various B. In Fig. 2b, we plot all the values of τ meas-
ured under constant I = 0.375 mA for B <1.27 T and B >3.8 T with open blue circles and for 1.27< B <3.8 T 
with solid blue circles. The power-law divergence of τ is clearly observed on both sides of the two threshold 
fields; i.e., BcL =1.27 T and BcH = 3.8 T, as indicated with vertical dashed lines. Shown in Fig. 2c,d are the 
plots of τ against |B− BcL| and |B− BcH | on a double logarithmic scale, i.e., log τ versus log |B− BcL| and log τ 
versus log |B− BcH | , respectively, where the symbols are the same as in Fig. 2b. The blue dotted line in Fig. 2c 
and that for B < BcL in Fig. 2b represent the power-law fits by τ ∝ |B− BcL|−νBL with νBL = 1.26 ± 0.11. The 
blue dotted line in Fig. 2d and that for B > BcH in Fig. 2b indicate the power-law fits by τ ∝ |B− BcH |−νBH 
with νBH = 0.95 ± 0.10. The blue full lines in Fig. 2b,c,d are the fits to the sum of the two power-law func-
tions, τ = aL|B− BcL|−νBL + aH |B− BcH |−νBH , with νBL = 1.26 and νBH = 0.95, where aL and aH are the fitting 
parameters of the same order of magnitude. We find that the critical behaviors of the depinning and repinning 
transitions at BcL and BcH driven by B (vortex density) for fixed I = 0.375 mA are similar to those of the depin-
ning transitions driven by I (driving force) for fixed B = BcL and BcH , respectively. Specifically, the values of the 
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Figure 3.  The dynamic disordering of vortices driven by dc currents around the depinning transition ( Ic = 
0.375 mA). (a) V(t) and (b) V(t)/V∞ at 4.1 K in 1.27 T just after the dc currents I below and above Id(= 
0.375 mA), respectively, were suddenly applied to the initial vortex assemblies at t = 0 : (a) I = 0.33, 0.35, 
0.36, and 0.37 mA from bottom to top and (b) I = 0.42, 0.45, 0.475, 0.55, and 0.80 mA from top to bottom. 
Horizontal dashed lines in (a) and (b) mark the steady-state values of V(t) = 0 (pinned phase) and V(t)/V∞ = 
1 (moving phase), respectively. (c) Replots of the data shown in (a) and (b) as logV  versus log t : I = 0.33, 
0.35, 0.36, 0.37, 0.42, 0.45, 0.475, 0.55, and 0.8 mA from bottom to top. The dashed line represents the slope of 
−a = −0.55± 0.1 , within errors, nearly consistent with the theoretical value of a ≈ 0.45 for the DP universality 
class in 2D or a ≈ 0.5 for the conserved DP universality class in  2D36,37. Full lines in (a–c) indicate the fits to Eq. 
(1).
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critical exponent νB , i.e., νBL = 1.26 ± 0.11 and νBH = 0.95 ± 0.10, for the B-driven transitions at BcL and BcH are, 
within error bars, in agreement with ν = 1.34 ± 0.13 and ν = 1.02 ± 0.15 for the I-driven transitions in BcL and 
BcH , respectively. The results indicate that the critical exponents for τ are nearly independent of the parameters, 
I and B, that drive the transition.

One can notice the asymmetry in the τ versus I plot about Ic(= 0.375 mA) under 3.8 T in Fig. 1d and in the 
τ versus B plot about BcH(= 3.8 T) under 0.375 mA in Fig. 2b. The asymmetry arises from a smaller relaxation 
time τ in the pinned phase than in the moving phase. As mentioned later, this trend is commonly observed in 
the peak-effect regime. In particular, in the amorphouslike vortex glass phase ( B > Bp ) we can no longer detect 
the clear relaxation ( τ ∼ 0 ). The smaller relaxation time is partly attributed to the fact that the initial vortex 
configuration prepared by the ac drive is not ordered enough. However, we are unable to explain comprehensively 
why the fast relaxation mechanism is present only in the pinned phase of the peak-effect regime. In the vicinity of 
Bp , an emergence of the metastability with respect to vortex configurations may play a role. This is an interesting 
problem to be solved in future research. It is also of interest to note that the asymmetry in τ about the transition 
is observed in different physical systems that exhibit  RIT17,26, which would fall into the same universal class as 
the depinning transition and the absorbing transition in DP.

To examine the extension of the critical regions with respect to the driving parameters, I and B, comparatively, 
in Fig. 5a, we plot with red and blue circles, respectively, log τ measured in B = 1.27 T(= BcL ) against |I − Ic|/Ic 
and log τ measured at I = 0.375 mA(= Ic ) against |B− BcL|/BcL , which are collected from the data in Figs. 1b 
and 2c. All the symbols and lines correspond to those in Figs. 1b and 2c. Similarly, in Fig. 5b, we plot with red and 
blue circles log τ in 3.8 T(= BcH ) against |I − Ic|/Ic and log τ at 0.375 mA(= Ic ) against |B− BcH |/BcH , which are 
collected from the data in Figs. 1d and 2d, respectively. All the symbols and lines are the same as those in Figs. 1d 
and 2d. The open and solid circles in Fig. 5a,b correspond to the data in the pinned and moving phases, respec-
tively. It is found that the relative width of the critical region, |I − Ic|/Ic , |B− BcL|/BcL , and |B− BcH |/BcH , spans 
the broad range up to near 1: It ranges from (4–7)×10−2 to (0.7–2)×100 and from (1–4)×10−2 to (1–2)×10−1 in 
the moving phase and pinned phases, respectively, which are much larger than that of typical equilibrium criti-
cal  phenomena41,42. Note the trivial fact that in the pinned phase, the relative width does not exceed 1, which is 
given when I = B = 0. In general, in the vicinity of the phase transition where the linear approximation is valid, 
the critical exponents of the transition are independent of the parameters that drive the transition. The observed 
independence of the critical exponents from the driving parameters is somewhat surprising, considering that 
the critical regions observed here are very large, clearly going beyond the linear approximation. The similar 
large critical region has been reported in the nonequilibrium RIT in various  systems17,22,25, including the vortex 
 system24, where the parameter-independent critical exponents with ν = 1.3–1.4 have been found for the shear-
driven and density-driven  transitions26.

Some previous experiments showed that the critical exponents are significantly dependent on the driving 
parameters when the underlying mechanisms driving the transition are fundamentally  different44. Our results 
of ν ≈ νB indicate that the driving mechanisms of I and B are essentially the same or not different enough to 
change significantly the universality class of the transition. However, we focus on a trend that ν ≈ νBH ≈1.0 for 
B = 3.8 T (� Bp) obtained in the peak-effect regime is slightly smaller than ν ≈ νBL ≈1.3 for B = 1.27 T obtained 
below the peak-effect regime and than ν = 1.295 (or 1.23) predicted by the 2D DP (or conserved DP) theory. 
This trend was also observed in our previous work, although the critical exponents were derived based only on 
the data in the moving  phase12. While the exact reason remains elusive, it might be in part due to insufficient 
experimental accuracy of determination of the exponents in the peak-effect regime. Since pinning is effective in 
the peak-effect regime, as detailed below, the initial vortex configuration prepared by the ac drive is assumed to 
be not ordered enough for the dynamic disordering to be clearly observed. In fact, in the high-B region above 
Bp , corresponding to the highly disordered amorphouslike vortex-glass phase, we were not able to obtain reliable 
data of V(t) showing the dynamic disordering in the pinned phase even in the vicinity of Id.

t (ms)

V
(�

V
)

0 20 40

0

1

2

t (ms)

V
/V

�

0 20 40 60
0

10

20

t (ms)

V
/V

�

0 20 40 60
0

5

10

t (ms)

V
(�

V
)

0 20 40

0

1

2

3

(a) (b)1.15 T

1.05 T

1.42 T

1.55 T

2.0 T

3.65 T

3.4 T

2.5 T

3.82 T

3.9 T

(c) (d)

Moving
Pinned

Moving
Pinned

Figure 4.  The dynamic disordering of vortices driven by a dc current around the density-driven depinning 
transition ( BcL = 1.27 T) and repinning transition ( BcH = 3.8 T). (a–d) Voltage responses for the relatively 
ordered initial vortex configuration subjected to the dc current I = 0.375 mA at 4.1 K in different B: (a) V(t) 
in B = 1.05 and 1.15 T from bottom to top, (b) V(t)/V∞ in B = 1.42, 1.55, and 2.0 T from top to bottom, (c) 
V(t)/V∞ in B = 2.5, 3.4, and 3.65 T from bottom to top, and (d) V(t) in B = 3.82 and 3.9 T from top to bottom. 
The horizontal dashed lines mark the steady-state values of (a) V(t) = 0 (pinned phase), (b) V(t)/V∞ = 1 
(moving phase), (c) V(t)/V∞ = 1 (moving phase), and (d) V(t) = 0 (pinned phase). Full lines in (a–d) indicate 
the fits to Eq. (1).
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We now consider from the present data that the observed trend is intrinsic and it may originate from the slight 
difference in the depinning mechanism in the peak-effect regime. Below the peak-effect regime, the vortices 
form an ordered triangular lattice or weakly disordered lattice called a Bragg glass, which interact with randomly 
distributed pinning centers. For the relatively stiff lattice, the energy cost to deform the vortex lattice is larger 
than the energy gain obtained from the vortices being pinned to the random pinning  centers13. Therefore, a large 
fraction of the pinning centers remains unoccupied and pinning is ineffective. As the field B is increased and 
an intervortex length a0(≈

√
�0/B) decreases, the stiffness of the lattice increases, so that the pinning becomes 

more ineffective. This explains the observed decrease in Id with an increase in B and, equivalently, the observed 
depinning phenomenon caused by an increased B at constant I. In the peak-effect regime, by contrast, as the field 
is increased and the liquid phase is approached, the vortex lattice becomes softened and can deform easily. As 
a result, many of the pinning centers are occupied by vortices and the pinning becomes effective. This is why Id 
increases with an increase in B and the repinning(/depinning) occurs with an increase(/decrease) in B at constant 
I(< Id,p) . As B is increased up to Bp , the whole vortex system changes to the vortex glass. In the vicinity of Bp , 
the vortex dynamics becomes complex because an energy landscape with different vortex configurations with 
similar free energy, separated by energy barriers,  emerges14. Indeed, we have found earlier from measurements 
of flow noise in the same vortex system of a-MoxGe1−x films that flow noise shows a sharp rise at Bp , indicating 
that the vortex dynamics is most complicated in the vicinity of the order-disorder transition at Bp46.

Intuitively speaking, what we see in the low-B region is the depinning of the relatively stiff lattice that weakly 
couples to the random substrate, whereas in the peak-effect regime we see the depinning of the softer lattice 
that strongly couples to the random  substrate13. In superconductors with a moderately strong random pinning 
potential, such as the a-MoxGe1−x film, local variations in the pinning strength play an important role. When 
the current I close to Id is applied to the vortex lattice, large plastic deformation is produced. As I exceeds Id , 
the vortex system enters a state where the chains or rivers of the vortices begin to move with different average 
velocities, thus exhibiting a plastic  flow13. In our a-MoxGe1−x film, the plastic depinning and plastic flow are 
realized in the entire B region studied rather than the elastic depinning and elastic flow expected in the weak 
pinning limit. The plastic flow is confirmed by the I–V characteristics with positive curvature at I � Id , as shown 
in the main panels of Fig. 1a,c.

In general, crystalline materials exhibit a plastic behavior where a well-defined number of topological defects 
are  present13. A critical behavior appears near yield that is similar to the behavior observed near  depinning48. 
This crystal plasticity is different from the plasticity in amorphous systems where topological defects are not 
well defined. It is not evident whether a similar difference is present between plastic depinning that has proper-
ties similar to those associated with crystal plasticity and depinning that is amorphous in  nature13. The vortex 
system formed in the peak-effect regime at B = 3.8 T is not a complete amorphouslike vortex glass but a softer 
vortex lattice composed of the weakly pinned ordered lattice and strongly pinned amorphouslike vortex  glass46. 
The results obtained in this work suggest that the critical behaviors of the depinning transitions in the low-B 
and peak-effect regimes are fundamentally the same, nearly independent of whether the depinning is associated 
with the crystal plasticity or the plasticity of amorphous systems. However, the subtle difference in the critical 
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behavior originating from the difference in the plasticity may be reflected in slightly smaller values of the expo-
nents ( ν ≈ νBH ≈ 1) in the peak-effect regime, where the crystal plasticity is partially replaced by the plasticity of 
the amorphous system. In the ac driven dynamic reorganization experiment using the linear ac  susceptibility49, 
clear deviations of the critical exponent from a constant value were observed at high frequencies. This observation 
was interpreted in terms of a possible change in the universality class of the nonequilibrium phase transition.

Finally, we examine whether the same critical behavior of the repinning transition is observed in an unusual 
situation where the pinned phase shrinks to a point at Bp . Thus, we have measured V(t) for the relatively ordered 
initial vortex configuration subjected to the dc current Id,p = 0.415 mA in different B. In Fig. 6b, we plot τ 
extracted from V(t) as a function of B, where open and solid blue circles correspond to the data in the pinned and 
moving phases, respectively. As mentioned above, we were not able to detect reliable signals of V(t) for B > Bp 
even in a moving phase. The B dependence of Id shown in Fig. 2a is also plotted in Fig. 6a, where a horizontal 
dashed line marks the location of Id,p = 0.415 mA. The power-law divergence of τ is again visible at the peak 
field Bp = 4.6 T(≡ BcH ,p ) as well as at 1.02 T(≡ BcL,p ), as indicated with vertical dashed lines. The inset of Fig. 6b 
displays the log-log plots of τ versus |B− BcH ,p| . The blue dotted line in the main panel of Fig. 6b represents the 
power-law fit by τ ∝ |B− BcL,p|

−νBL,p with νBL,p = 1.2 ± 0.16. The blue full lines in the main panel and inset are the 
fit to the sum of the two power-law functions, τ = aL,p|B− BcL,p|

−νBL,p + aH ,p|B− BcH ,p|
−νBH ,p , with νBL,p = 1.26 

±0.16 and νBH ,p = 1.0 ±0.14 , where aL,p and aH ,p are the fitting parameters of the same order of magnitude. Again, 
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1.26 and νBH ,p = 1.0 ± 0.14, where aL,p and aH ,p are the fitting parameters of the same order of magnitude. The 
error bars in τ mainly correspond to the fitting errors resulting from the uncertainty in determining a.
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we obtain a smaller value of νBH ,p ≈1.0 in the peak-effect regime than νBL,p ≈1.3 in the low-B regime. The results 
clearly show that the critical behavior on the moving side of the repinning transition remains unchanged even 
when the pinned phase shrinks to a point at Bp , corresponding to the order-disorder transition of vortex matter.

Conclusions
We study the critical dynamics of vortices associated with dynamic disordering near the depinning transitions 
driven by dc force (I) at fixed vortex density (B) and driven by vortex density (B) at fixed dc force (I). Independent 
of the driving parameters, we observe the critical behavior of the depinning transitions, not only on the moving 
side, but also on the pinned side of the transition, which is the first convincing experimental verification of the 
theoretical  prediction5. The relaxation times, τ(I) and τ(B) , to reach either the moving or pinned state exhibit a 
power-law divergence at the depinning thresholds. The critical exponents of the I-driven and B-driven transi-
tions, ν and νB , respectively, are, within error bars, identical to each other, which are in agreement with the value 
expected for the absorbing phase transition in the 2D DP universality class.

With an increase in B under constant I, the depinning transition at low field ( BcL ) is replaced by the repinning 
transition at high field ( BcH ) in the peak-effect regime, whose critical behaviors are similar to each other. The 
relative width of the critical region, (I − Ic)/Ic , (B− BcL)/BcL , and (B− BcH)/BcH , which spans the broad range 
up to near 1, is also nearly independent of the driving parameters. The feature is very similar to that observed 
recently in the shear-driven and density-driven RIT in the cyclically sheared  vortices26. However, we find a trend 
that the critical exponents ν ≈ νBH ≈1.0 in the peak-effect regime are slightly smaller than ν ≈ νBL ≈1.3 in the 
low-B region and than ν ≈ 1.3 expected for the 2D DP class, whose origin is attributed to the slight difference in 
the depinning mechanism in the peak-effect regime. Finally, we also find that τ(B) obtained under the particular 
current Id,p(≡ Id(Bp)) shows a power-law divergence at Bp , indicating that the critical behavior in the moving 
phase stays unchanged even when the pinned phase shrinks to a point at Bp.

We expect that this work will stimulate further studies on the nonequilibrium depinning transition in various 
systems in which the pinning-depinning phenomenon is observed, such as, sliding charge density  waves27,30, 
Wigner  crystals31,32,  colloids3,33, magnetic domain  walls34,  skyrmions28,  friction27 and  yielding21,22,25,48 of solids, 
superfluid vortices in neutron  stars29, as well as superconducting vortices in type-II  superconductors1,2,4,5,27,35.

Methods
The a-MoxGe1−x film with thickness of 0.35 µ m was prepared by RF sputtering deposition onto a Si substrate 
mounted on a water cooled copper stage that rotates at 240  rpm12,20,23,46. The superconducting transition tem-
perature at which the linear resistivity falls to zero is 6.7 K in zero field. The magnetic field B was directed per-
pendicular to the plane of the film. By applying a current I, the vortices move in the direction parallel to the film 
width of 0.3 mm. The voltage V induced by vortex motion was measured with a standard four-probe method, 
using voltage probes separated at 1.2 mm. We measured the time-evolution of voltage V(t) immediately after 
the dc current I with a sharp rise ( � 15 ns) was suddenly applied to the vortex system. The voltage V(t) enhanced 
with a preamplifier was acquired and analyzed using a fast-Fourier transform spectrum analyzer with a time-
resolution of up to 40 kHz. The film was directly immersed into the liquid 4 He and all the data were taken at 
4.1 K. The characteristic length scales for the vortex core and vortex-vortex interaction are the superconduct-
ing coherence length and the London penetration length, respectively, which are of the order of ≈ 1× 10 and 
≈ 5× 102  nm50,51. The mean intervortex spacing a0 ≈

√
�0/B was varied from 69 to 20 nm by changing B from 

0.5 to 5.7 T, respectively, where �0 is a flux quantum. In this paper, the dimensionality is related to or corresponds 
to that of the particle motion in many-particle systems. Thus, the dimensionality of the vortex system is basically 
2D, as treated by 2D  simulations1,13,18. This is supported by the experimental fact that the thickness of the film 
is comparable to or smaller than the magnetic penetration depth and the possible bending distortions of vortex 
lines that may cause the deviation from the 2D particles picture can be  ignored24,26.

Data availability
The data that support the findings of this study are available from the corresponding author upon a reasonable 
request.
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