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1  | INTRODUC TION

For a few decades, state‐space models have provided a powerful 
methodology for exploring the effects of environmental covariates 
on population growth and dispersal in wildlife populations from 
spatio‐temporal count data (Wikle, 2003). These models are widely 

used in population ecology and conservation biology, such as for 
evaluating the influence of climate change on species distribution 
ranges (Pagel & Schurr, 2012), restoring populations of threatened 
species (Lindley, 2003), establishing effective plans for wildlife man‐
agement (Iijima, Nagaike, & Honda, 2013; Osada, Kuriyama, Asada, 
Yokomizo, & Miyashita, 2015), and predicting the range expansion 
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Abstract
Dispersal as well as population growth is a key demographic process that determines 
population dynamics. However, determining the effects of environmental covariates 
on dispersal from spatial‐temporal abundance proxy data is challenging owing to the 
complexity of model specification for directional dispersal permeability and the ex‐
tremely high computational loads for numerical integration. In this paper, we present 
a case study estimating how environmental covariates affect the dispersal of 
Japanese sika deer by developing a spatially explicit state‐space matrix model cou‐
pled with an improved numerical integration technique (Markov chain Monte Carlo 
with particle filters). In particular, we explored the environmental drivers of inhomo‐
geneous range expansion, characteristic of animals with short dispersal. Our model 
framework successfully reproduced the complex population dynamics of sika deer, 
including rapid changes in densely populated areas and distribution fronts within a 
decade. Furthermore, our results revealed that the inhomogeneous range expansion 
of sika deer seemed to be primarily caused by the dispersal process (i.e., movement 
barriers in fragmented forests) rather than population growth. Our state‐space ma‐
trix model enables the inference of population dynamics for a broad range of organ‐
isms, even those with low dispersal ability, in heterogeneous landscapes, and could 
address many pressing issues in conservation biology and ecosystem management.
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of invasive or pest species (Bled, Royle, & Cam, 2011; Hooten & 
Wikle, 2008; Veran et al., 2015; Wikle, 2003). By explicitly separat‐
ing the observation processes from population dynamic processes, 
state‐space models explore useful information about the underlying 
non‐stationary dynamics of wildlife (Guisan & Thuiller, 2005; Pagel 
& Schurr, 2012).

In wildlife populations, dispersal is a key demographic process 
especially when the target population forms a metapopulation struc‐
ture or shows range expansion dynamics (Hanski & Thomas, 1994; 
Hastings et al., 2005). The dispersal process has been explicitly mod‐
eled by so‐called matrix models (or first‐order Markov models) in pre‐
vious state‐space modeling studies (Conn et al., 2015; Hooten, Wikle, 
Dorazio, & Royle, 2007; Pagel & Schurr, 2012; Wikle, 2003; Williams 
et al., 2017). In particular, these studies modeled the dispersal as the 
result of diffusion process to describe expanding and/or shifting hab‐
itat range. While the development is critical to non‐stationary spatio‐
temporal modeling, there still remain two challenging difficulties for 
assessing the dispersal process using state‐space models.

The first difficulty is the complexity of model specification for 
directional dispersal permeability (i.e., advection) originating from 
spatially variable environments. If environmental elements have 
negligible effects on advection, the dispersal probability between 
locations is approximately expressed by symmetric Gaussian or 
long‐tailed exponential kernels (i.e., isotropic dispersal permeability, 
or diffusion), which are widely used for animals with relatively high 
dispersal ability, such as birds and insects (Bled et al., 2011; Prasad 
et al., 2010; Wikle, 2003). However, such an approximation may be 
invalid for most mammals and amphibians because their dispersal 
can be directional depending on environmental elements (Coulon et 
al., 2006; Niedziałkowska, Fontaine, & Jędrzejewska, 2012; Pérez‐
Espona et al., 2008). In this situation, we need to specify the proba‐
bility of dispersal between locations considering the presence of an 
infinite number of dispersal pathways (Ovaskainen, 2008). To illus‐
trate this issue, we consider a simple case of animal dispersal from 
location A to B. If the animal disperses directly between habitats, the 
pathway is simply A → B. However, when the animal passes through 
another location C, the process becomes much more complicated 
because the potential pathways increase exponentially (for exam‐
ple, A → C → B, A → C → A → B, and so on). Furthermore, the per‐
meability of these pathways may be different (e.g., between A → B 
and A → C) and the dispersal direction may be asymmetric (e.g., 
between A → C and C → A) owing to environmental heterogeneity 
in the landscape. The second difficulty with incorporating dispersal 
process into state‐space models is the extremely high computational 
load for the numerical integration of posterior densities (or likeli‐
hoods) when modeling demographic stochasticity in the dispersal 
process. Imagine the two‐habitat situation, in which 95% of individ‐
uals stay in their native habitat and 5% disperse to the other habitat. 
If there are 10 individuals before dispersal, the number of dispersed 
individuals will be around the expectation of 0.5 according to bino‐
mial distribution, Bin (10, 0.05). We refer to this variation as disper‐
sal‐related demographic stochasticity. In many‐habitat situations, 
this dispersal‐related demographic stochasticity can be addressed 

by multinomial distribution (i.e., the extension of binomial distribu‐
tion). Using common techniques, including the Markov chain Monte 
Carlo (MCMC) method, it is usually virtually impossible to obtain the 
posterior probability of population growth and dispersal parameters 
under dispersal‐related demographic stochasticity. Recently, a nu‐
merical technique combining MCMC with particle filters (PFMCMC) 
has been used effectively to estimate complex population state‐
space models (Knape & de Valpine, 2012). However, it is unclear 
whether PFMCMC is also effective for state‐space modelling with 
dispersal because increasing the number of locations (or state vari‐
ables) may lead to a notorious problem known as “particle shrinkage” 
in the particle filter algorithm (See Supporting Information Appendix 
C for details).

In this paper, we present a case study estimating how environ‐
mental covariates affect the dispersal of a wildlife pest, Japanese 
sika deer (Cervus nippon). We circumvent the above modeling issues 
by developing a state‐space matrix model and an improved method 
for the numerical integration of particle filters. Japanese sika deer 
are undergoing range expansion, and this is a major target for wildlife 
management in most parts of Japan. Their browsing and grazing be‐
haviors are known to clear forest‐floor vegetation, harm the bark of 
timber trees, and cause agricultural crop damage (Agetsuma, 2007). 
We are particularly interested in the drivers of the inhomogeneous 
range expansion of sika deer under a heterogeneous landscape, 
which may be explained by differences in population growth among 
habitats, differences in permeability among dispersal pathways or 
both. The main aim of our model was to specify movement on an ex‐
tremely short, unobservable timescale; annual dispersal is expressed 
as repeated short‐term movements, in which we can assume that 
animals either stay at the same location or move to neighboring 
locations. Our model development allows us to reproduce the cir‐
cumventions of dispersal barriers in range expansion dynamics by 
modeling directional dispersal permeability.

In our case study, we used long‐term monitoring data for 
Japanese sika deer in central Japan obtained in 2000–2010. Based 
on previous findings, our model accounted for the effects of broad‐
leaf forest area and forest edge length on deer population growth 
(Conradt, Clutton‐Brock, & Guinness, 1999; Iijima et al., 2013; 
Miyashita et al., 2008; Weerasinghe & Takatsuki, 1999) as well as 
the effects of the total forest area (i.e., both broad‐leaf forest and 
coniferous plantation area) and the presence/absence of rivers on 
deer dispersal (Coulon et al., 2006; Niedziałkowska et al., 2012; 
Pérez‐Espona et al., 2008). To the best of our knowledge, this is the 
first study to explicitly incorporate the effects of environmental co‐
variates on advection into hierarchical state‐space models of wildlife 
population dynamics.

2  | METHODS

2.1 | Study site

Our study site was located in Boso peninsula, Chiba, central Japan 
(34°91′–35°55′N, 139°75′–140°47′E; Figure 1). The climate is warm 
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temperate, with a monthly mean temperature of 4–25°C and a 
mean annual precipitation of 1,400 mm. Snow accumulation affects 
sika deer mortality and dispersal (Igota et al., 2004; Jędrzejewski, 
Jędrzejewska, Okarma, & Ruprecht, 1992), but deep snow is un‐
common in this area. The dominant vegetation is characterized by 
a broad‐leaf evergreen forest of Castanopsis sieboldii and coniferous 
plantations of Cryptomeria japonica. There are no major predators of 
sika deer, such as wolves, in the Boso peninsula. The sika deer popu‐
lation in this area was once isolated to a restricted area by pressure 
from urban development and overhunting, but the population began 
increasing in the 1970s to 1980s and the range has since expanded 
(Asada, 2014). The Chiba prefectural government administered an 
implementation plan to control sika deer abundance with monitoring 
since 1996 (Chiba Prefectural Government, 2015).

From published reports and unpublished records of the prefec‐
tural government, we compiled sika deer abundance proxies (fecal 
pallet count survey in 2000–2010, Supporting Information Figure 
S1; block count survey in 2000–2008, Supporting Information 
Figure S2a–i; and preferred plant damage survey in 2001, Supporting 
Information Figure S2j) and the number of hunted sika deer in 2000–
2009 (Supporting Information Figure S3). As environmental factors 
affecting deer population growth and dispersal process, broad‐leaf 
forest area, forest edge length, total forest area (both broad‐leaf 
forest and coniferous plantation area), and the presence/absence 

of rivers were extracted using a geographical information systems 
approach (Supporting Information Figure S4). The details of data 
collection and preliminary processing are described in Appendix A.

3  | MODEL FORMUL ATION

A state‐space matrix model was developed to describe spatio‐tem‐
poral changes in sika deer abundance at 578 discretized grid cells 
(ca. 2 × 2 km2; Figure 1) in 2000–2010. Our state‐space matrix 
model is explained by three component models: process models, 
parameter models, and data models (Berliner, 1996; Pagel & Schurr, 
2012; Wikle, 2003; Figure 2). In this section, the vector notation 
xi∈S = {xi|i∈S} is used (S is the set of vector elements). The grid size 
was determined from the daily deer movement capacity (Chiba 
Prefectural Government, 2004).

3.1 | Process models (population dynamics model)

Our process models describe the population dynamics of sika deer 
considering demographic stochasticity. In the study area, sika 
deer dynamics are influenced by three main demographic pro‐
cesses: population growth (birth and natural mortality in spring 
and summer), hunting mortality (in fall and winter), and dispersal 

F I G U R E  1   Study area in Boso 
peninsula, central Japan. The gray grid 
cells represent analytical units (2 × 2 km2) 
in which we estimated the population 
dynamics of sika deer. Boso peninsula is 
surrounded by Tokyo Bay and the Pacific 
Ocean
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(in winter). Let Nr
i,t

, Nh
i,t

, and Nd
i,t

 be the deer abundance before pop‐
ulation growth, hunting mortality, and dispersal process at grid 
cell i in year t. Poisson and multinomial distributions were used 
to model demographic stochasticity related to population growth 
and dispersal, respectively. Using the population growth rate at 
grid cell i (ri) and dispersal probability from grid cell i to j (Mij), pro‐
cess models were specified as follows:

(i) population growth process:

(ii) hunting mortality process:

where Hi,t is the number of hunted individuals at grid cell i in year t; 
and

(iii) dispersal process:

where Nm
j,i,t

 is the number of dispersed individuals from grid cell j to i in 
year t. We incorporated dispersal‐related demographic stochasticity 
(represented by the multinomial distribution) into the process model 
because range expansion to new locations is strongly determined by 

chance, particularly for relatively small grid sizes. Note that Nh
i,t
≥Hi,t 

is necessarily satisfied at each grid.
The deer distribution range in 2000 is considered to reflect ear‐

lier historical range expansion (Osada et al., 2015; Williams et al., 
2017). Thus, we modeled spatial autocorrelation in the initial distri‐
bution range using a Poisson distribution as follows:

where Ai is the deer habitat (i.e., broad‐leaf forest and coniferous 
plantation) area at grid cell i and ni is the set of adjacent grid cells to 
grid cell i. Because damage of the preferred plant Aucuba japonica 
in 2001 is a reliable proxy of sika deer presence/absence (Suzuki, 
Miyashita, Kabaya, Ochiai, & Asada, 2008; Appendix A), we set 
Nr

i,2000
 to zero if no feeding damage was observed at grid cell i.

3.2 | Parameter models

Our parameter models describe the relations between sika deer 
demographic parameters (population growth rate and dispersal 
probability) and environmental covariates. First, we expressed pop‐
ulation growth rates by standardized broad‐leaf forest area (BLFi) 
and standardized forest edge length (EDGEi):

where α = {α0, α1, α2} is the intercept and coefficients of environmental 
covariates. Because a sika deer female produces one calf each year at 
most, we imposed an additional constraint on α such that ri must be <1.5

Nh
i,t
∼Pois (riN

r
i,t
);

Nd
i,t
=Nh

i,t
−Hi,t,

N
m

i,j∈{1,2,…,578},t
∼Multin (Nd

i,t
;Mi,j∈{1,2,…,578}),

Nr

i,t+1
=

578
∑

j=1

Nm
j,i,t
,

Nr

i,2000
∼Pois

�

Ai

∑

j∈ni
Nr

j,2000
∑

j∈ni
Aj

�

log (ri)=�0+�1BLFi+�2EDGEi,

F I G U R E  2   Schematic diagram of the 
model structure. White and gray boxes 
represent estimated quantities and data, 
respectively. Our model consists of three 
component models: process models, 
parameter models, and data models. Solid 
and dashed arrows represent stochastic 
and deterministic relationship between 
boxes
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Second, we expressed the dispersal probability (Mi,j) by stan‐
dardized total forest area and presence/absence of rivers. For this 
purpose, we define MΔ

i,j
 as the short‐term movement probability 

during a fraction of a year, ∆t. Considering the short‐term movement 
probability (with a sufficiently short ∆t), we can ignore the disper‐
sal between distant grid cells, and readily specify this probability by 
the dispersal distance between adjacent grid cells (DISTi,j) and envi‐
ronmental covariates (standardized total forest area, FRTi, and pres‐
ence/absence of rivers, RIVi):

where β = {β0, β1, β2} denotes the coefficients of dispersal distance 
and environmental covariates. If habitat preference, hi,i, is positive, 
sika deer stay in grid cell i more frequently than by chance. On the 
other hand, negative habitat preference means that sika deer move 
from grid cell i more frequently than by chance. Owing to the dis‐
tance decay of dispersal rates, we assumed that β0 must be negative 
in our model. The annual dispersal probability can be expressed as 
repeated short‐term movement:

We used ∆t = 1/16 year (i.e., 22.8 days) in our analysis, which ap‐
peared to be a sufficiently short time period compared to the observed 
speed of sika deer range expansion. As most elements of the short‐
term movement probability are zero, the annual dispersal probability 
can be efficiently calculated by sparse matrix implementation. We 
chose a reflective boundary condition for considering dispersal prob‐
ability across the edge of our study area (Conn et al., 2015; Williams 
et al., 2017). This choice was trivial in our results because sika deer 
abundance was zero at the boundary during our study periods. Our 
modeling of dispersal probability naturally specifies advection and dif‐
fusion by using a parameter model, although we can also express these 
dispersal processes separately by different parameter models.

3.3 | Data models

Our data models describe the relations between sika deer abundance 
before population growth (Nt

i,t
) and its proxies from the fecal pellet 

count survey (Fi,t) and block count survey (Bi,t). We modeled nega‐
tive binomial or Poisson distributions as the detection uncertainty 
related to each survey. Using a proportionality constant between 
sika deer densities and fecal pellet counts (γ > 0) and the dispersion 
parameter of fecal pellet counts (θ > 0), data models of abundance 
proxies were obtained as follows:

where AB
i
 is the unit area of block count survey (0.95–2.21 km2) and 

ft and bt are the sets of grid cells in which a fecal pellet count sur‐
vey and block count survey were conducted in year t, respectively. 
Note that our notation for the negative binomial distribution uses 
shape and inverse‐scale parameters. The overdispersion of fecal pel‐
let counts is considered to result from local microtopography and 
microclimate.

Records of hunted sika deer were summarized for 66 manage‐
ment units (4.22–109.92 km2) by government officials (see details 
in Appendix A). Thus, we additionally modeled the data uncertainty 
related to the number of hunted individuals at each grid cell (Hi,t). 
Assuming that the hunting rate was constant at each grid cell within 
a management unit (i.e., hunted numbers are proportional to abun‐
dance at grid cells), we expressed this data uncertainty with a multi‐
nomial distribution as follows:

where Hu
k,t

 is the number of hunted individuals at management unit k 
in year t and mk is the set of grid cells included in management unit k. 
Based on our assumption, different hunting rates are assured among 
different management units.

3.4 | Model assimilation

The full specification of posterior and prior probabilities is described 
in Appendix B. We set uniform or vague normal distributions as the 
prior probabilities of estimates (Supporting Information Table S1) 
and checked that all prior distributions were weakly informative by 
result summaries and trace plots (Supporting Information Figure S5). 
Owing to the high computational cost of modeling multiple dispersal 
pathways and dispersal‐related demographic stochasticity in the in‐
tegration of the posterior probability, we implemented Bayesian in‐
ference via the PFMCMC algorithm (Andrieu, Doucet, & Holenstein, 
2010; Knape & de Valpine, 2012). Our PFMCMC algorithm is largely 
consistent with that of Knape & de Valpine (2012), but the particle 
filter algorithm was modified to approximate the appropriate poste‐
rior probability (see details of the PFMCMC algorithm and our modi‐
fication in Appendix C). Our modification dramatically improved 
particle approximation by the direct sampling of state variables in 
the first year from the filtered probability (Supporting Information 
Figure S6–7).

We ran eight MCMC chains for 10,000 iterations after finishing 
the adaptive stage according to Vrugt et al. (2009). To obtain the 

hij=�0 DISTi,j+�1FRTj+�2RIVj,

MΔ
i,j
=

ehi,j
∑

k∈{i,ni}
ehk,j

,

M= (M
Δ
)1∕Δt

Fi,t∼Negbin

(

�,
�Ai

�Nr
i,t

)

(i∈ ft),

Bi,t∼Pois

(

AB
i

Nr
i,t

Ai

)

(i∈bt),

pi,t=
Nh
i,t

∑

i∈mk
Nh
i,t

(i∈mk),

Hi∈mk ,t
∼Multin

(

Hu
k,t
;pi∈mk ,t

)

,
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summaries of posterior distributions, we sampled the MCMC simu‐
lations once every 50 iterations and defined credible intervals (CIs) 
as the highest posterior density intervals. We confirmed Gelman–
Rubin convergence diagnostics R̂ <1.1 for all parameters. The good‐
ness‐of‐fit of our model was assessed based on posterior predictive 
p value (or Bayesian p value), measured by Freeman‐Tukey statistic 
(Kéry & Royle, 2016).

4  | RESULTS

Our results showed that sika deer expanded their distribution range and 
increased from 1,506 individuals in 2000 to 3,054 in 2010 in the south‐
ern Boso peninsula (Figure 3). Sika deer clearly exhibited inhomogene‐
ous range expansion (Figures 3a–f). The 50% CIs of total abundance in 
2000–2002 was narrow but those in 2010 were comparatively wide 
(Figure 3g). The goodness‐of‐fit estimated by posterior predictive p was 
0.306, suggesting no lack of model fit. We also checked our model fit‐
ting by the comparison between observed abundance from block count 
survey and our estimates (Figure 3h). Most estimates were well fitted 
to the observed data, but the fitting was not greatly successful, as one 
of the survey units (of different years) with extraordinarily high densi‐
ties exhibited profound difference between data and estimates. For the 
fecal pellet count survey, 36.4 fecal pellets correspond to an individual 

sika deer on average, and the dispersion parameter (i.e., detection un‐
certainty) was 0.368 (Table 1).

We found no significant effects of environmental covariates on 
demographic parameters of sika deer, whose 95% CIs overlapped 
with zero (Table 1); the effects of broad‐leaf forest area and forest 
edge length on deer population growth rate were 0.008 and −0.004, 
and the effects of total forest area and the presence/absence of riv‐
ers on the dispersal habitat preference were 0.247 and −0.18. We 
detected an inhomogeneous spatial structure of dispersal habitat 
preference (Figure 4b), but population growth rates were constant 
in most of our study area (ri ≈ 1.39; Figure 4a). The distance effect on 
movement preference was estimated to be −1.852, indicating that 
mean dispersal distance of sika deer is about 6.5 km per year if the 
landscape was homogeneous.

5  | DISCUSSION

By expanding a previous state‐space matrix model to address the 
effect of environmental covariates on directional dispersal per‐
meability and dispersal‐related demographic stochasticity, we in‐
vestigated how different environmental elements affect not only 
population growth but also dispersal of Japanese sika deer in a het‐
erogeneous landscape. We used species‐specific assumptions in our 

F I G U R E  3   Estimated trends in sika deer abundance at analytical grid cells. Our results showed that sika deer expanded their distribution 
range (a–f) and increased in total abundance (g) in 2000–2010. In panel g, bold and thin lines represent the median and 50% credible interval 
of the estimated total abundances, respectively. We used the 50% credible interval to clarify trends in total abundances. To check model 
fitting, we conducted comparisons between observed and estimated abundances obtained from block count surveys in 2000–2008 (h). A 
solid line represents identity line. Although we failed to fit a survey unit (of different years) with extraordinarily high density (i.e., 40–95 
observed values) among fifteen survey units, most estimates were well fitted to observed values
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model to prevent biologically unrealistic estimates (e.g., sika deer 
cannot bear two or more calves in a year). However, these assump‐
tions can be readily modified and extended to fit available data and 
characteristics of focal species (e.g., Hostetler & Chandler, 2015). 
Because our model can estimate population dynamics even for or‐
ganisms with low dispersal ability in heterogeneous landscapes, our 
model has a wilder applicability to many organisms in the wild.

The most important finding of our results is that forest area 
seemed to have a positive effect on dispersal and lead to an in‐
homogeneous spatial structure (Figure 4b), suggesting that small, 
fragmented forests may act as movement barriers. Although the 
significance level was marginal (0.090), the effect size was relatively 
large. This finding agrees with evidence from previous deer studies 
(Niedziałkowska et al., 2012; Sakuragi et al., 2003). Niedziałkowska 
et al. (2012) indicated that natural or semi‐natural forest habitats 

provide nesting vegetation and resources to sika deer, but forest 
habitats with high hunting pressure and man‐made construction 
induce strong avoidance behaviors (Takii, Izumiyama, Mochizuki, 
Okumura, & Sato, 2012). Because our study area is characterized by 
relatively low human activity, sika deer may gain behavioral advan‐
tages from forest habitats.

We also found that sika deer exhibited high, homogeneous popu‐
lation growth in their distribution range. Although broad‐leaf forests 
and forest edges are known to provide abundant food resources, 
such as nuts and edge vegetation, in our study area (Asada & Ochiai, 
1996; Miyashita et al., 2008) and in other study areas (Weerasinghe 
& Takatsuki, 1999), we did not detect effects of these habitat types 
at the population level. As the estimated population growth rate was 
around 1.39, which is close to the maximum (1.5), the lack of effects 
of environmental factors on the population growth rate is probably 
explained by the sufficient food supply throughout the study area. 
Another possibility of homogeneous population growth is that we 
could not detect significant effects due to low estimability arising 
from model complexity and limited available data. As explained 
below, high overdispersion and spatial sparseness of our data make 
it difficult to simultaneously estimate population growth and disper‐
sal process. However, given the striking spatial structure of dispersal 
process (Table 1, Figure 4b), our results supported the conclusion 
that the inhomogeneous range expansion of sika deer in the Boso 
peninsula mainly resulted from the dispersal process, rather than the 
population growth process.

The estimated total population size of sika deer displayed high 
uncertainty (Figure 3). This uncertainty appeared to reflect the high 
overdispersion and spatial sparseness of abundance proxy data. In 
our negative binomial model, the estimated variance of fecal pellet 
counts was about 100 × (population density) times larger than that 
of the Poisson model. This result suggests that our fecal pellet count 
survey may provide a rough estimate of population density in areas in 
which deer are abundant. The data dispersion could be improved by 
capturing influential local environmental covariates and/or modifying 
survey protocols. The data sparseness led to many unobserved hab‐
itat areas in space‐state matrix models that include many small grid 
cells. In our case study, grid cells with fecal pellet counts accounted 
for 14.3% of the whole area (910 counts/578 grid cells/11 years). The 
population density in the unobserved area thus exhibited high esti‐
mation errors, resulting in a high uncertainty for total population size 
and demographic parameters (i.e., the effects of environmental fac‐
tors on population growth and dispersal). It is important to point out 
that the success of previous state‐space matrix models (e.g., Hooten 
et al., 2007; Pagel & Schurr, 2012; Conn et al., 2015; Williams et al., 
2017) may be partially attributed to spatially intensive observations. 
When using sparse spatio‐temporal count data, we will need careful 
specification of informative priors for abundance by conducting pre‐
liminary surveys or collecting data from other sources.

For dispersal process, advection and diffusion are definitely 
distinguished by directionality of movement. An earlier study 
developed model framework with variable diffusion rate and ac‐
counted for colonization dynamics of sea otters (Williams et al., 

F I G U R E  4   Maps of the estimated population growth rate (a) 
and habitat preference with respect to movement (b). White to 
red colors represent low to a high population growth rate, while 
blue to red colors represent a negative to positive dispersal habitat 
preference
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2017). To our knowledge, this paper is the first study to explic‐
itly account for the effects of environmental covariates on the di‐
rectional dispersal permeability (i.e., advection) in a state‐space 
model of wildlife population dynamics. Because our modeling 
approach pose the challenging numerical computation of poste‐
rior probabilities, computational improvement is essential for es‐
timating spatio‐temporal wildlife dynamics that are affected by 
environmental drivers at various spatial and temporal scales. The 
PFMCMC algorithm is a promising tool for such complex state‐
space models, but it has only been applied to a few population 
models to date (Knape & de Valpine, 2012). Our modification of 
a numerical integration technique for particle filtering allows us 
to use the PFMCMC algorithm more effectively for applications 
to ecological issues. We provide theoretical validation and simple 
numerical experiments in Appendix C; further studies are needed 
to evaluate its application to more complex numerical experiments 
with realistic conditions.

Despite the urgent demand for the conservation and manage‐
ment of mammalian and amphibian taxa, few studies have estimated 
the effects of environmental covariates on directional dispersal 
permeability at an ecological timescale. An important future de‐
velopment of state‐space model is to address density‐dependent 
dispersal. This is still computationally impractical in our modeling, 
but applying rough approximation (e.g., ignoring dispersal‐related 
demographic stochasticity; Wikle, 2003; Williams et al., 2017) 
may help in modeling density‐dependent dispersal. In a recently 
changing world, our modeling framework may become increasingly 
important because many animals, including native and non‐native 
species, move or expand their distribution ranges by global warm‐
ing and land‐use changes. Our modeling framework can be applied 
to address many pressing issues in population ecology and conser‐
vation biology.

ACKNOWLEDG EMENTS

We are grateful to the public officers of municipalities in Chiba for data 
collection. We also thank G. Fujita and S. Nishijima for constructive ad‐
vice and S. Tsuchikane for valuable support. This work was supported 
financially by a Grant‐in‐Aid for JSPS Fellows (Grant Number 24‐7455), 

The Mitsui & Co., Ltd. Environment Fund (Grant Number R10‐C074), 
the Japan Society for the Promotion of Science (Grant Number 
25281057, 17H01916), and the Environment Research and Technology 
Development Fund of the Environmental Restoration and Conservation 
Agency (Grant Number 4‐1704). Finally, we specially thank to our asso‐
ciated editor and reviewers for many important suggestions.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

YO conceived the study, organized field data, carried out the statisti‐
cal analyses and drifted the manuscript. TK collected and organized 
field data. MA coordinated the study and collected field data. HY 
participated in the design of the study and helped draft the manu‐
script. TM designed the study, coordinated the study and drifted the 
manuscript. All authors gave final approval for publication.

DATA ACCE SSIBILIT Y

All the data are available at Dryad digital repository (https://doi.
org/10.5061/dryad.pt38f8s).

ORCID

Yutaka Osada  https://orcid.org/0000‐0001‐5967‐194X 

R E FE R E N C E S

Agetsuma, N. (2007). Ecological function losses caused by monotonous 
land use induce crop raiding by wildlife on the island of Yakushima, 
southern Japan. Ecological Research, 22, 390–402. https://doi.
org/10.1007/s11284‐007‐0358‐z

Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain 
Monte Carlo methods. Journal of the Royal Statistical Society Series 
B, 72, 269–342. https://doi.org/10.1111/j.1467‐9868.2009.00736.x

Asada, M. (2014) Estimation of deer abundance in Chiba using a Bayesian 
state‐space model (2012) (in Japanese). In Report of the Chiba 

Description
Posterior median [95% 
credible interval]

γ Proportionality constant used for conversion between 
sika deer densities and fecal pellet counts

36.38 [6.43, 90.33]

θ Overdispersion parameter for fecal pellet counts 0.368 [0.083, 1.590]

α0 Intercept of population growth function 0.332 [0.206, 0.390]

α1 Effect of broad‐leaf forest area on population growth 0.008 [−0.018, 0.055]

α2 Effect of forest edge length on population growth −0.004 [−0.058, 0.022]

β0 Effect of distance on movement −1.852 [−2.120, −0.102]

β1 Effect of forest area on movement 0.247 [−0.315, 1.170]

β2 Effect of rivers on movement −0.184 [−1.006, 0.709]

TA B L E  1   Summary of our state‐space 
model: descriptions and posterior medians 
(95% credible intervals) of model 
parameters

https://doi.org/10.5061/dryad.pt38f8s
https://doi.org/10.5061/dryad.pt38f8s
https://orcid.org/0000-0001-5967-194X
https://orcid.org/0000-0001-5967-194X
https://doi.org/10.1007/s11284-007-0358-z
https://doi.org/10.1007/s11284-007-0358-z
https://doi.org/10.1111/j.1467-9868.2009.00736.x


326  |     OSADA et Al.

Biodiversity Center No. 8, pp. 1–13. Chiba, Japan: Chiba Prefectural 
Government Office.

Asada, M., & Ochiai, K. (1996). Food habits of sika deer on the Boso 
Peninsula, central Japan. Ecological Research, 11, 89–95. https://doi.
org/10.1007/bf02347823.

Berliner, L. M. (1996). Hierarchical Bayesian time series models. In K. M. 
Hanson & R. N. Silver (Eds.), Maximum entropy and Bayesian methods 
(pp. 15–22). Santa Fe, NM: Springer.

Bled, F., Royle, J. A., & Cam, E. (2011). Hierarchical modeling of an in‐
vasive spread: The Eurasian Collared‐Dove Streptopelia decaocto in 
the United States. Ecological Applications, 21, 290–302. https://doi.
org/10.1890/09‐1877.1

Chiba Prefectural Government (2004). Science report on the manage‐
ment of Japanese sika deer in Chiba prefecture (in Japanese). Chiba, 
Japan: Chiba Prefectural Government Office.

Conn, P. B., Johnson, D. S., Ver Hoef, J. M., Hooten, M. B., London, J. 
M., & Boveng, P. L. (2015). Using spatiotemporal statistical models 
to estimate animal abundance and infer ecological dynamics from 
survey counts. Ecological Monographs, 85, 235–252. https://doi.
org/10.1890/14‐0959.1

Chiba Prefectural Government (2015).The 3rd sika deer management 
program in Chiba prefecture (in Japanese).Chiba, Japan: Chiba 
Prefectural Government Office.

Conradt, L., Clutton‐Brock, T. H., & Guinness, F. E. (1999). The relation‐
ship between habitat choice and lifetime reproductive success in 
female red deer. Oecologia, 120, 218–224. https://doi.org/10.1007/
s004420050851

Coulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., 
Cargnelutti, B., … Hewison, A. J. M. (2006). Genetic structure is 
influenced by landscape features: Empirical evidence from a roe 
deer population. Molecular Ecology, 15, 1669–1679. https://doi.
org/10.1111/j.1365‐294X.2006.02861.x

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering 
more than simple habitat models. Ecology Letters, 8, 993–1009. 
https://doi.org/10.1111/j.1461‐0248.2005.00792.x

Hanski, I., & Thomas, C. D. (1994). Metapopulation dynamics 
and conservation—A spatially explicit model applied to but‐
terflies. Biological Conservation, 68, 167–180. https://doi.
org/10.1016/0006‐3207(94)90348‐4

Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf, S., 
Freestone, A., … Malvadkar, U., et al. (2005). The spatial spread of in‐
vasions: New developments in theory and evidence. Ecology Letters, 
8, 91–101. https://doi.org/10.1111/j.1461‐0248.2004.00687.x

Hooten, M. B., & Wikle, C. K. (2008). A hierarchical Bayesian non‐linear 
spatio‐temporal model for the spread of invasive species with appli‐
cation to the Eurasian Collared‐Dove. Environmental and Ecological 
Statistics, 15, 59–70. https://doi.org/10.1007/s10651‐007‐0040‐1

Hooten, M. B., Wikle, C. K., Dorazio, R. M., & Royle, J. A. (2007). 
Hierarchical spatiotemporal matrix models for characterizing inva‐
sions. Biometrics, 63, 558–567.

Hostetler, J. A., & Chandler, R. B. (2015). Improved state‐space mod‐
els for inference about spatial and temporal variation in abun‐
dance from count data. Ecology, 96, 1713–1723. https://doi.
org/10.1890/14‐1487.1.sm

Igota, H., Sakuragi, M., Uno, H., Kaji, K., Kaneko, M., Akamatsu, R., & 
Maekawa, K. (2004). Seasonal migration patterns of female sika deer 
in eastern Hokkaido, Japan. Ecological Research, 19, 169–178. https://
doi.org/10.1111/j.1440‐1703.2003.00621.x

Iijima, H., Nagaike, T., & Honda, T. (2013). Estimation of deer popula‐
tion dynamics using a Bayesian state‐space model with multiple 
abundance indices. Journal of Wildlife Management, 77, 1038–1047. 
https://doi.org/10.1002/jwmg.556

Jędrzejewski, W., Jędrzejewska, B., Okarma, H., & Ruprecht, A. (1992). 
Wolf predation and snow cover as mortality factors in the ungulate 

community of the Bialowieża National Park, Poland. Oecologia, 90, 
27–36. https://doi.org/10.1007/BF00317805

Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology. 
Oxford, UK: Academic Press.

Knape, J., & de Valpine, P. (2012). Fitting complex population models by 
combining particle filters with Markov chain Monte Carlo. Molecular 
Ecology, 93, 256–263. https://doi.org/10.1890/11‐0797.1

Lindley, S. T. (2003). Estimation of population growth and extinc‐
tion parameters from noisy data. Ecological Applications, 13, 
806–813. https://doi.org/10.1890/1051‐0761(2003)013[0806
:eopgae]2.0.co;2

Miyashita, T., Suzuki, M., Ando, D., Fujita, G., Ochiai, K., & Asada, M. 
(2008). Forest edge creates small‐scale variation in reproduc‐
tive rate of sika deer. Population Ecology, 50, 111–120. https://doi.
org/10.1007/s10144‐007‐0068‐y

Niedziałkowska, M., Fontaine, M. C., & Jędrzejewska, B. (2012). Factors 
shaping gene flow in red deer (Cervus elaphus) in seminatural land‐
scapes of central Europe. Canadian Journal of Zoology, 90, 150–162. 
https://doi.org/10.1139/z11‐122

Osada, Y., Kuriyama, T., Asada, M., Yokomizo, H., & Miyashita, T. (2015). 
Exploring the drivers of wildlife population dynamics from insuffi‐
cient data by Bayesian model averaging. Population Ecology, 57, 485–
493. https://doi.org/10.1007/s10144‐015‐0498‐x

Ovaskainen, O. (2008). Analytical and numerical tools for diffusion‐
based movement models. Theoretical Population Biology, 73, 198–
211. https://doi.org/10.1016/j.tpb.2007.11.002

Pagel, J., & Schurr, F. M. (2012). Forecasting species ranges by statis‐
tical estimation of ecological niches and spatial population dy‐
namics. Global Ecology and Biogeography, 21, 293–304. https://doi.
org/10.1111/j.1466‐8238.2011.00663.x

Pérez‐Espona, S., Pérez‐Barberia, F. J., McLeod, J. E., Jiggins, C. D., Gordon, 
I. J., & Pemberton, J. M. (2008). Landscape features affect gene flow 
of Scottish Highland red deer (Cervus elaphus). Molecular Ecology, 17, 
981–996. https://doi.org/10.1111/j.1365‐294X.2007.03629.x

Prasad, A. M., Iverson, L. R., Peters, M. P., Bossenbroek, J. M., Matthews, 
S. N., Sydnor, T. D., & Schwartz, M. W. (2010). Modeling the inva‐
sive emerald ash borer risk of spread using a spatially explicit cellu‐
lar model. Landscape Ecology, 25, 353–369. https://doi.org/10.1007/
s10980‐009‐9434‐9

Sakuragi, M., Igota, H., Uno, H., Kaji, K., Kaneko, M., Akamatsu, R., & 
Maekawa, K. (2003). Seasonal habitat selection of an expanding sika 
deer Cervus nippon population in eastern Hokkaido, Japan. Wildlife 
Biology, 9, 141–153.

Suzuki, M., Miyashita, T., Kabaya, H., Ochiai, K., & Asada, M. (2008). Deer 
density affects ground‐layer vegetation differently in conifer planta‐
tions and hardwood forests on the Boso Peninsula, Japan. Ecological 
Research, 23, 151–158. https://doi.org/10.1007/s11284‐007‐0348‐1

Takii, A., Izumiyama, S., Mochizuki, T., Okumura, T., & Sato, S. 
(2012). Seasonal migration of sika deer in the Oku‐Chichibu 
Mountains, central Japan. Mammal Study, 37, 127–137. https://doi.
org/10.3106/041.037.0203

Veran, S., Simpson, S. J., Sword, G. A., Deveson, E., Piry, S., Hines, J. E., 
& Berthier, K. (2015). Modeling spatiotemporal dynamics of out‐
breaking species: Influence of environment and migration in a locust. 
Ecology, 96, 737–748. https://doi.org/10.1890/14‐0183.1

Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, 
J. M., & Higdon, D. (2009). Accelerating Markov chain Monte Carlo 
simulation by differential evolution with self‐adaptive random‐
ized subspace sampling. International Journal of Nonlinear Sciences 
and Numerical Simulation, 10, 271–288. https://doi.org/10.1515/
IJNSNS.2009.10.3.273

Weerasinghe, U. R., & Takatsuki, S. (1999). A record of acorn eating by 
sika deer in western Japan. Ecological Research, 14, 205–209. https://
doi.org/10.1046/j.1440‐1703.1999.00296.x

https://doi.org/10.1007/bf02347823
https://doi.org/10.1007/bf02347823
https://doi.org/10.1890/09-1877.1
https://doi.org/10.1890/09-1877.1
https://doi.org/10.1890/14-0959.1
https://doi.org/10.1890/14-0959.1
https://doi.org/10.1007/s004420050851
https://doi.org/10.1007/s004420050851
https://doi.org/10.1111/j.1365-294X.2006.02861.x
https://doi.org/10.1111/j.1365-294X.2006.02861.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1016/0006-3207(94)90348-4
https://doi.org/10.1016/0006-3207(94)90348-4
https://doi.org/10.1111/j.1461-0248.2004.00687.x
https://doi.org/10.1007/s10651-007-0040-1
https://doi.org/10.1890/14-1487.1.sm
https://doi.org/10.1890/14-1487.1.sm
https://doi.org/10.1111/j.1440-1703.2003.00621.x
https://doi.org/10.1111/j.1440-1703.2003.00621.x
https://doi.org/10.1002/jwmg.556
https://doi.org/10.1007/BF00317805
https://doi.org/10.1890/11-0797.1
https://doi.org/10.1890/1051-0761(2003)013[0806:eopgae]2.0.co;2
https://doi.org/10.1890/1051-0761(2003)013[0806:eopgae]2.0.co;2
https://doi.org/10.1007/s10144-007-0068-y
https://doi.org/10.1007/s10144-007-0068-y
https://doi.org/10.1139/z11-122
https://doi.org/10.1007/s10144-015-0498-x
https://doi.org/10.1016/j.tpb.2007.11.002
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1111/j.1365-294X.2007.03629.x
https://doi.org/10.1007/s10980-009-9434-9
https://doi.org/10.1007/s10980-009-9434-9
https://doi.org/10.1007/s11284-007-0348-1
https://doi.org/10.3106/041.037.0203
https://doi.org/10.3106/041.037.0203
https://doi.org/10.1890/14-0183.1
https://doi.org/10.1515/IJNSNS.2009.10.3.273
https://doi.org/10.1515/IJNSNS.2009.10.3.273
https://doi.org/10.1046/j.1440-1703.1999.00296.x
https://doi.org/10.1046/j.1440-1703.1999.00296.x


     |  327OSADA et Al.

Wikle, C. K. (2003). Hierarchical Bayesian models for predicting the 
spread of ecological processes. Ecology, 84, 1382–1394. https://doi.
org/10.1890/0012‐9658(2003)084[1382:HBMFPT]2.0.CO;2

Williams, P. J., Hooten, M. B., Womble, J. N., Esslinger, G. G., Bower, 
M. R., & Hefley, T. J. (2017). An integrated data model to estimate 
spatiotemporal occupancy, abundance, and colonization dynamics. 
Ecology, 98, 328–336. https://doi.org/10.1002/ecy.1643

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Osada Y, Kuriyama T, Asada M, 
Yokomizo H, Miyashita T. Estimating range expansion of 
wildlife in heterogeneous landscapes: A spatially explicit state‐
space matrix model coupled with an improved numerical 
integration technique. Ecol Evol. 2019;9:318–327. https://doi.
org/10.1002/ece3.4739

https://doi.org/10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2
https://doi.org/10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2
https://doi.org/10.1002/ecy.1643
https://doi.org/10.1002/ece3.4739
https://doi.org/10.1002/ece3.4739

