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H I G H L I G H T S  

• A CT-based radiomics model was developed to differentiate COVID-19 from other causes of GGOs. 
• Classification model for GGO lesions could improve specificity of detecting COVID-19 in a general population. 
• Using radiomics for novel infectious diseases is an advantage when the initial case is limited.  
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A B S T R A C T   

Purpose: The coronavirus disease 2019 (COVID-19) has evolved into a worldwide pandemic. CT although sen
sitive in detecting changes suffers from poor specificity in discrimination from other causes of ground glass 
opacities (GGOs). We aimed to develop and validate a CT-based radiomics model to differentiate COVID-19 from 
other causes of pulmonary GGOs. 
Methods: We retrospectively included COVID-19 patients between 24/01/2020 and 31/03/2020 as case group 
and patients with pulmonary GGOs between 04/02/2012 and 31/03/2020 as a control group. Radiomics fea
tures were extracted from contoured GGOs by PyRadiomics. The least absolute shrinkage and selection operator 
method was used to establish the radiomics model. We assessed the performance using the area under the curve 
of the receiver operating characteristic curve (AUC). 
Results: A total of 301 patients (age mean ± SD: 64 ± 15 years; male: 52.8 %) from three hospitals were enrolled, 
including 33 COVID-19 patients in the case group and 268 patients with malignancies or pneumonia in the 
control group. Thirteen radiomics features out of 474 were selected to build the model. This model achieved an 
AUC of 0.905, accuracy of 89.5 %, sensitivity of 83.3 %, specificity of 90.0 % in the testing set. 
Conclusion: We developed a noninvasive radiomics model based on CT imaging for the diagnosis of COVID-19 
based on GGO lesions, which could be a promising supplementary tool for improving specificity for COVID-19 
in a population confounded by ground glass opacity changes from other etiologies.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) now 
officially termed coronavirus disease 2019 (COVID-19) has rapidly 
spread globally, and on 11th March 2020 was declared a global 
pandemic by the World Health Organization [1]. As of Aug 15 2020, 

there have been over 21,000,000 confirmed cases reported in 216 
countries [2]. For the diagnosis of COVID-19, next-generation 
sequencing or real-time reverse transcription polymerase chain reaction 
methods are used as reference standards [3] but computed tomography 
(CT) has also been reported to be effective in assisting the early detec
tion of COVID-19 cases [4]. CT imaging appearances of COVID-19 
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pneumonia have been previously described [5]. The predominant im
aging pattern of COVID-19 pneumonia is ground-glass opacity (GGO) in 
the lung periphery with occasional consolidation on CT [6]. GGOs are 
frequently observed and found to be present in 77%–100% of the 
confirmed COVID-19 cases [7–9]. Pure GGO lesions could be seen at the 
early stage of COVID-19 pneumonia [5] and were reported to be the 
main finding after symptom onset [10]. Chung et al. [11] found GGOs 
were observed in 12/21 (57 %) of the patients and one patient had 
normal CT at the initial scan, followed by a scan after 3 day showing 
disease progression of a new solitary, rounded peripheral GGO. 
Although CT has a high sensitivity for detection of COVID-19, the 
specificity for COVID-19 was low, particularly in regions of low disease 
prevalence. A recent meta-analysis showed a pooled specificity was 37 
% for chest CT [12]. 

Fleischner Society Glossary of Terms for Thoracic Imaging defined 
GGO as an area with hazy increased opacity of lung with preserved 
bronchial structures and vascular markings [13]. The underlying path
ogenesis could be partial displacement of the air, thickening of the 
interstitium, increased blood volumes in the pulmonary capillary sys
tem, partial alveoli collapse, or overlaps of these [14]. For patients with 
pure GGO as primary findings in CT images, the identification of 
COVID-19 could be confounded by malignancy or other pulmonary in
fections. Currently, and in the future, it is conceivable that we may see 
more COVID-19 pneumonia mixed in with other pathologies of similar 
GGO appearances. There will be a need to be able to discriminate be
tween them. Along with clinical assessment, quantitative imaging may 
have a role in improving specificity in identifying GGO caused by 
COVID-19 pneumonia. 

Radiomics refer to a data-driven methodology that extracts large 
amounts of advanced quantitative image-based features [15]. This has 
been more commonly applied to cancer, but has also been used to 
non-invasively capture lesion heterogeneity effectively for infectious 
diseases [16,17]. Peripheral GGO is a common morphological change in 
CT images. The classification of patients with similar GGO signs could 
provide valuable clinical and diagnostic information. The purpose of this 
study is to investigate the use of radiomics analysis in GGOs. We hy
pothesize that CT radiomics features can be used to improve specificity 
for detection of COVID-19, and can discriminate GGO of COVID-19 to 
non-COVID-19 patients. 

2. Methods 

2.1. Patient recruitment 

This study was approved by multiple Institutional Review Boards of 
Queen Mary hospital (QMH), The University of HK PET CT unit (HKU) 
and Pamela Youde Nethersole Eastern (PYNEH) hospital. Patients 
informed consent was waived due to the retrospective nature of this 
study. The diagram for the flow of participants through the study was 
summarized in Supplementary Fig. 1. Case group: data were screened 
between 24/01/2020 to 31/03/2020 2020 from QMH and PYNEH. 
Patients with laboratory-confirmed COVID-19 by reverse transcription 
polymerase chain reaction were included, and their initial CT scans were 
retrieved. Control group: data were screened between 04/02/2012 and 
31/03/2020 from HKU. Patients with reported GGOs in the radiological 
report were included in this study. A board-certified radiologist with 
fellowship training in cardiothoracic imaging (V.V., with 10 years’ 
experience) then reviewed cases and included cases that have similar 
ground glass opacity appearances. For patients in the control group 
collected after December 2019, underwent strict clinical +/− laboratory 
assessment prior to entering the unit to exclude potential infection with 
COVID-19. Clinical details such as history and clinical assessment was 
obtained as standard for diagnosis, in conjunction with histological and 
laboratory tests if they were available. Patients with incomplete data 
were excluded. A total of 301 patients (age mean ± SD: 64 ± 15 years; 
male: 52.8 %) were enrolled in this study. The images acquisition details 

are listed in Supplementary Method. 
With a balanced distribution of the clinical outcome (COVID-19), 

recruited patients were separated into the training and testing sets at a 
proportion of 3:1 by a stratified randomization approach. 

2.2. Contour of the regions of interest (ROI) 

All CT images were obtained and reviewed by two radiologists 
jointly (C.X. and V.V., of 2 and 10 years’ experience respectively) 
independently without clinical information to avoid bias. Patients with 
GGOs fulfilling the definition from the Fleischner Society Glossary of 
Terms for Thoracic Imaging [13] on lung window (− 600 Hounsfield unit 
[HU] level, 1500 HU width) were included for further analysis. GGOs 
were manually contoured in one representative slice by the ITK-SNAP 
software [18]. We excluded the large vessels and arteries when draw
ing the ROI. GGOs appearing as nodules were also excluded. A test-retest 
study was conducted in a subset of 30 patients with ROI contoured by 
two radiologists from the training set for the determination of feature 
robustness. Features with intraclass correlation coefficients above 0.80 
were included for further analysis. 

2.3. Feature extraction 

Radiomics features were extracted using PyRadiomics [19]. The 
resampled voxel sizes were set to 1 × 1 mm2 pixels for standardization. 
Defined radiomics features were extracted from original and wavelet 
filtered images. Wavelet filtration (high pass filter and low pass filter) 
filtered original images directionally with x and y directions respec
tively, resulting in 4 combinations of decompositions. Filtered images 
could present more detailed information of the images from different 
orientations. Additional details are specified in Supplementary Method. 

2.4. Feature harmonization 

As CT images were collected from different hospitals using different 
acquisition and reconstruction parameters, radiomics features were first 
harmonized using ComBat method to reduce the batch effect [20]. 

2.5. Feature selection 

Feature selection was conducted in two steps. First, the top 100 
features correlated with the outcome analyzed by univariate analysis 
were selected. Second, regularized multivariate logistic regression with 
the least absolute shrinkage and selection operator (LASSO) penalty was 
applied [21]. The LASSO algorithm could select features with a coeffi
cient of larger than zero by the optimal λ. 

2.6. Model construction 

Because of limited access to the COVID-19 data across different 
medical centers, labelled positive cases are insufficient at the early stage 
of disease outbreak, which could lead to data imbalance problems. The 
uneven distribution of positive and negative cases could result in pre
dictions skewed towards the negative class. To solve this problem, we 
adopted re-sampling techniques during the training process. An open- 
source solution for automatic calculations of different re-sampling 
techniques was adopted for the selection of optimal resampling tech
niques [22]. 

A radiomics score (Rad-score) was calculated for each patient using 
the Radial Basis Function kernel support vector machine (SVM) with 
selected features. According to the optimal prediction threshold of the 
radiomics model in the training set, each patient was divided into 
different risk groups (COVID-19 and non COVID-19) by the diagnostic 
possibility. 
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2.7. Statistical analysis 

We used Python version 3.7. for statistical analyses. Categorical 
variables were compared using Chi-squared test/ Fisher’s exact test, 
while continuous variables were compared using Kruskal-Wallis test. We 
used the area under the curve of the receiver operating characteristic 
curve (AUC), accuracy, sensitivity and specificity to assess the predic
tion performance and their 95 % confidence intervals were provided. 
The optimal prediction threshold is defined by Youden index [23]. The 
calibration performance was shown by calibration plots. Clinical use
fulness was evaluated by decision curve analysis. A two-tailed P value of 
less than 0.05 was considered statistically significant. 

3. Result 

3.1. Patient baseline characteristics 

Fig. 1 depicts the workflow processes. A total of 301 patients were 
enrolled in this study, including 33 in the case group. The remaining 268 
were collected as the control group, including 136 non-COVID19 
pneumonia, 48 malignant tumors, and 84 benign lesions of indetermi
nate nature. No significant differences between the training and testing 
datasets in terms of COVID-19 events (p = 0.44) were found. The base
line characteristics of the patients are shown in Table 1. 

3.2. Model evaluation 

A total of 474 radiomics features were extracted (102 original and 
372 with wavelet filtration). In the test-retest experiment, 417 features 
demonstrated intraclass correlation coefficients above 0.80 and were 
included for further analysis (Supplementary Table 1). After LASSO, this 
reduced the feature number to 13. 

The Adaptive Synthetic oversampling technique was used for the 
data re-sampling process in the training set [22]. The radiomics model 
using linear regression comprised of 13 selected features achieved an 
AUC of 0.905, accuracy of 89.5 %, sensitivity of 83.3 %, specificity of 
90.0 % in the testing cohort (Table 2, Fig. 2). The details of feature se
lection are presented in Table 3. Basic metrics first order statistic and 
high-dimensional textual features (Gray Level Co-occurrence Matrix, 
Gray Level Run Length Matrix, Gray Level Size Zone Matrix features, and 
Neighboring Gray Tone Difference Matrix features) contributed to the 
model construction. The calibration curve presented appropriate 
agreement between the actual and predicted probabilities of COVID-19 
infection and are specified in Supplementary Fig. 2. Decision curve 
analysis showed clinical usefulness (Supplementary Fig. 3). Patients 
could be divided into low-risk group (predicted non COVID-19) and 
high-risk group (predicted COVID-19) by the Rad-scores for the diag
nostic possibility (Fig. 3). 

4. Discussion 

Our proposed radiomics risk screening method achieved good pre
diction performance with an AUC of 0.905, accuracy of 89.5 %, sensi
tivity of 83.3 %, specificity of 90.0 % in the independent testing set. 
Imaging features have previously been shown to correlate with the 
pathogenesis of viral infections and could indicate the viral pathogens 
[24]. Recent COVID-19 studies based on CT images were predominantly 
of diagnostic [25–28] and prognostic models [29,30]. Diagnostic models 
mainly focused on detecting COVID-19 pneumonia in suspicious pa
tients with symptoms (body temperature, and signs and symptoms). 
Most of the previous studies were performed at the image level for the 
diagnosis of COVID-19. Texture features have been shown to be pre
dictive of COVID-19 infection in early literature using a combination of 
machine learning and deep learning techniques with quantitative im
aging analysis, with a few adopting radiomics analysis. Yue et al. [30] 
demonstrated that CT radiomics models showed feasibility and accuracy 
for predicting hospital stay in COVID-19 patients. Barstugan et al. [25] 
reported a prediction model built based on the textural feature of 
Grey-Level Size Zone Matrix could achieve a classification accuracy of 
99.7 %, sensitivity of 97.6 % and specificity of 99.7 %. This study used a 
square-shaped patch rather than image segmentation comparing 
diseased vs normal lungs in same COVID-19 patients. This differed from 
our study as we focused our comparison on GGO of COVID-19 patients 
compared to other etiologies with a separate control group. Our study is 

Fig. 1. Analysis workflow. (A) Data collection. (B) Contour of regions of interest. (C) Feature extraction. (D) Feature selection. (E) Model construction and eval
uation. ROI = region of interest, 2D = two-dimensional, LASSO = least absolute shrinkage and selection operator, SVM = support vector machine, Rad- 
score = radiomics model score. 

Table 1 
Patient baseline characteristics.  

　Characteristic Case group Control group  
(COVID-19) (non COVID-19)  

33 268 
Age (mean ± SD) 50 ± 22 65 ± 13 
Sex (n) 

Male 18 141 
Female 15 127  

Disease (n) 
Pulmonary infection (COVID19) 33 0 
Pulmonary infection (other causes) 0 136 
Pulmonary adenocarcinoma 0 48 
Benign lesions of indeterminate nature 0 84  

Signs (%) 
Fever (>37.5 ◦C) 59 % 25 % 
Cough 47 % 13 % 
Dyspnea 24 % 18 % 
Chest Pain 12 % 5 % 
Vomiting 3 % 2 % 
Diarrhea 12 % 2 % 

Note—COVID-19 = coronavirus disease 2019. 
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the first to provide a classification model for COVID-19 diagnosis on 
GGO lesions, which could be a promising supplementary tool for clini
cians in the future. With the aid of automation, for example, automatic 

lesion detection, segmentation and radiomics analysis, it is conceivable 
that an alert system could be set up to screen patients undergoing a CT 
scan for unsuspecting COVID-19 infection in the future. 

Using handcrafted radiomics features for model construction for 
novel emerging infectious diseases is of advantages when the initial case 
of COVID-19 is limited. The dataset is required to pass through the 
machine learning training network only once. While maintaining the 
classification accuracy, we could significantly reduce the computation 
time and downscale the hardware environment such as GPU. The feature 
extraction process is based on formulaic calculation [15]. The sample 
size needed for radiomics studies is less than deep learning-based 
studies. Radiomics model could be developed fast and be used at the 
early stage of disease outbreak because of the less computational con
sumption, lower calculation complexity and smaller sample size 
required for training. In Shen’s comparison study in non-small cell lung 
cancer patients [31], radiomics 2D features were reported to have better 
performance than 3D features, partly because the spatial resolutions of 
medical imaging is often inconsistent for different hospitals. Considering 
the multi-center generalizability, labor consumption and calculation 
costs, we adopted 2D ROI for the feature extraction in this study. 

A few limitations are worth noting. First, biopsy or laboratory 
confirmation in the control groups was not available in most patients. 
Most of the scans that were performed prior to September 2019, can be 
deemed almost certain to be negative of COVID-19. Only a few scans 
were performed after that time that was included in the control group, 
with none of these had clinical suspicion of COVID-19, with some also 
having negative RT-PCR tests results. Further work in looking at using 
radiomics to differentiate from other viral or bacterial pneumonia will 
be a useful future direction. Second, we did not include clinical history, 
risk factors, or demographics into the predictive model. This will be 
important in the clinical scenario, but the purpose of this study was to 
ascertain discriminability based on radiomics features. Third, this is a 
retrospective study and therefore has the potential for selection bias. 
Given the limited access to COVID-19 cases, patients in case and control 
groups were collected from different institutions, although we used 
feature harmonization to minimize the batch effect. Confirmation of 
findings in prospective studies is needed for future research. 

5. Conclusion 

In conclusion, we developed a noninvasive radiomics model based 
on CT imaging for the diagnosis of COVID-19 based on GGO lesions, 
which could be a promising supplementary tool for improving speci
ficity for COVID-19 in a population confounded by ground glass opacity 
changes from other etiologies. 

Author statement 

This original study has not been published elsewhere and has not 
been submitted simultaneously for publication elsewhere. All the au
thors have approved the final version of the manuscript for this 
submission. 

Table 2 
Prediction performance of radiomics model in the training set and test set.  

Patients TP TN FP FN AUC Accuracy % Sensitivity % Specificity % 

Training Set 27 187 11 0 0.995 95.1 100 94.4 
(0.988, 0.999) (91.4, 97.5) (100.0,100.0) (91.3, 97.6)  

Testing Set 5 63 7 1 0.905 89.5 83.3 90.0 
(0.777, 0.999) (80.3, 95.3) (53.5, 1.00) (83.0, 970) 

Note—95 % confidence intervals included in parentheses. TP, TN, FP and FN presented as counts. Accuracy, sensitivity and specificity present as percentages. 
TP = True positive, TN = true negative, FP = false positive, FN = false negative, AUC = area under the receiver operating characteristic curve. 

Fig. 2. Predictive performance of the radiomics models. ROC curves showing 
the predictive power of the Rad-score model using radiomics feature. 
ROC = receiver operating characteristic curve, AUC = area under the receiver 
operating characteristic curve. 

Table 3 
Description of selected radiomic features in the Rad-score model.  

Feature 
Index 

Filter Feature 
Class 

Feature 

1 Original First order Kurtosis 
2 Original First order Total Energy 
3 Original GLCM Informational Measure of 

Correlation 2 
4 Original GLCM Maximal Correlation Coefficient 
5 Wavelet 

(LH) 
GLRLM Long Run Low Gray Level 

Emphasis 
6 Wavelet 

(LH) 
GLSZM Large Area Emphasis 

7 Wavelet 
(LH) 

GLSZM Large Area Low Gray Level 
Emphasis 

8 Wavelet 
(LH) 

GLSZM Zone Variance 

9 Wavelet 
(HL) 

GLCM Maximal Correlation Coefficient 

10 Wavelet 
(HL) 

NGTDM Busyness 

11 Wavelet 
(HH) 

GLSZM Small Area Low Gray Level 
Emphasis 

12 Wavelet (LL) First order Skewness 
13 Wavelet (LL) NGTDM Strength 

Note—For wavelet filtration, “H” and “L” represent high pass filter and low pass 
filter on the x and y directions. 
GLCM =Gray Level Co-occurrence Matrix, GLRLM =Gray Level Run Length 
Matrix, GLSZM = Gray Level Size Zone Matrix, NGTDM =Neighboring Gray 
Tone Difference Matrix. 
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