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Abstract

Summary: Ongoing advances in high-throughput technologies have facilitated accurate proteomic

measurements and provide a wealth of information on genomic and transcript level. In proteoge-

nomics, this multi-omics data is combined to analyze unannotated organisms and to allow more

accurate sample-specific predictions. Existing analysis methods still mainly depend on six-frame

translations or reference protein databases that are extended by transcriptomic information or

known single nucleotide polymorphisms (SNPs). However, six-frames introduce an artificial sixfold

increase of the target database and SNP integration requires a suitable database summarizing

results from previous experiments. We overcome these limitations by introducing MSProGene, a

new method for integrative proteogenomic analysis based on customized RNA-Seq driven tran-

script databases. MSProGene is independent from existing reference databases or annotated SNPs

and avoids large six-frame translated databases by constructing sample-specific transcripts. In

addition, it creates a network combining RNA-Seq and peptide information that is optimized by a

maximum-flow algorithm. It thereby also allows resolving the ambiguity of shared peptides for

protein inference. We applied MSProGene on three datasets and show that it facilitates a database-

independent reliable yet accurate prediction on gene and protein level and additionally identifies

novel genes.

Availability and implementation: MSProGene is written in Java and Python. It is open source and

available at http://sourceforge.net/projects/msprogene/.

Contact: renardb@rki.de

1 Introduction

High-throughput technologies in both genomics and proteomics

have driven the development of a variety of methods to analyze the

large amounts of data generated. RNA-Seq techniques measure the

transcriptome (Wang et al., 2009), while mass spectrometry allows

identification and quantification of proteins that were expressed

(Nilsson et al., 2010). The field of proteogenomics combines this

multi-omics data for more accurate and sample-specific analyses

(Castellana and Bafna, 2010; Nesvizhskii, 2014).

In recent years, proteogenomic studies have become more and

more popular, focusing on deeper understanding of model organ-

isms or exploring currently unannotated genomes (Ahn et al., 2013;

Castellana et al., 2008; Fanayan et al., 2013; Kelkar et al., 2014).

Despite this popularity, methods that are jointly focusing on

genomics, transcriptomics and proteomics so far mainly rely on six-

frame translations (Kelkar et al., 2011; Krug et al., 2013) or exten-

sions of existing reference protein databases (Ahn et al., 2013;

Li et al., 2010). Six-frame translation has the advantage of being in-

dependent from any a priori annotation of the nucleotide sequence.

However, it introduces an artificial sixfold increase of the

(unknown) target database, which can result in a bias in peptide

identification (Blakeley et al., 2012; Branca et al., 2014; Jeong et al.,

2012; Reiter et al., 2009).

In contrast, reference protein databases, for instance extended by

known single nucleotide polymorphisms (SNPs) from databases

such as dbSNP (Sherry et al., 2001), are not as prone to this bias as

six-frame translations. But these approaches depend on existing an-

notations and thus cannot be applied to unannotated organisms

without reference proteomes. Further, they might not contain all in-

formation necessary to identify mutated or novel genes, and even

error-tolerant search approaches (Renard et al., 2012) may not be

sufficient to recover these unannotated genes.

Thus, recent studies also rely on transcriptome information to

provide better suited databases (Krug et al., 2014; Ning and
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Nesvizhskii, 2010; Safavi-Hemami et al., 2014; Wang and Zhang,

2014). They focus on a more specific choice of six-frame translated

open reading frames and on enhancing databases in a data-driven

fashion, for instance by only including spliced parts or variations to

the database (Wang and Zhang, 2013; Wang et al., 2011; Woo

et al., 2013).

These approaches are either only suitable for eukaryotes (having

splicing events) or are still only seen as an addition to or refinement

of the standard approach using protein databases to identify pep-

tides. Other approaches rely on the de novo assembly of transcript

sequences, which are then six-frame translated to provide a sample-

specific database (Evans et al., 2012; Mohien et al., 2013).

Further, all of these efforts are targeted on improving peptide

identification, but rely on standard approaches to perform protein

inference. Because of shared peptides that are present in more than

one protein, often parsimonious approaches are employed that

group proteins instead of selecting one specific match per peptide

(Claassen, 2012; Huang et al., 2012; Serang et al., 2010). However,

a possibility to select the most likely protein per peptide is desirable.

Here, RNA-Seq is a valuable source to assist protein inference, as it

provides an additional layer of confidence for a specific protein.

In this article, we present MSProGene (Mass Spectrometry and

RNA-Seq based Protein and Gene Identification) as an integrative

proteogenomic method that goes beyond the extension of existing ref-

erence databases by constructing customized transcript databases

based on RNA-Seq. This sample-specific database avoids unnecessary

enlargement by six-frame translations and increases the confidence in

identified proteins. Further, RNA-Seq information is used to approach

shared peptide protein inference without the need for protein group-

ing. To do so, MSProGene represents transcriptomic and peptide evi-

dence in a network and performs a maximum-flow optimization

formulated as an integer linear program.

We applied MSProGene on a Bartonella henselae and a

Litomosoides sigmodontis dataset where it shows reliable and accur-

ate identifications. Further, in a simulation based on Escherichia coli

we demonstrate the suitability of the network optimization and RNA-

Seq integration to resolve shared peptides for protein inference.

2 Methods

Figure 1 shows the overall workflow of MSProGene: First, an RNA-

Seq read mapping is analyzed to infer transcript sequences, which are

updated by including variations present in the RNA-Seq reads (Fig.

1.1.). These sequences are translated to amino acid sequences to serve

as a database for a peptide search of tandem mass spectra (Fig. 1.2.).

The resulting set of peptide spectrum matches (PSMs) is represented

by a network. MSProGene then performs protein inference by re-

assigning shared peptides using a linear program approach based on

RNA-Seq information (Fig. 1.3.). Finally, peptide identifications are

controlled with regard to their false discovery rate (FDR) and tran-

scripts with a sufficient number of peptide hits are reported (Fig. 1.4.).

2.1 Transcript database
MSProGene uses evidence from RNA-Seq reads to derive a custom-

ized transcript database for the spectra search. This database reflects

sample-specific mutations present in the reads and is independent

from any a priori knowledge, in particular it is independent from

known annotations or protein sequences. Per default, the gene finder

GIIRA (Zickmann et al., 2014) is used to extract transcripts based

on a mapping of the RNA-Seq reads. However, also other methods

for gene and transcript prediction can be used, for instance

Cufflinks (Trapnell et al., 2010).

MSProGene analyzes the read mapping and refines the transcript

sequence according to mutations present in the RNA-Seq reads.

A variation (SNP or insertion or deletion) is integrated if (i) it is pre-

sent in more than one read (this ensures that regions with low cover-

age are not biased towards more mutations) and (ii) it is supported

by the majority of the reads. Note that the first condition is only a

default threshold specified to reduce bias introduced by low cover-

age. This threshold can be changed by the user. Further, also a vcf

file with previously called mutations by external tools can be pro-

vided. These mutations are directly integrated to the reference

sequence and are thus respected in the transcript reconstruction.

In case a specific database is intended for the peptide spectrum

search, MSProGene can also be provided with custom sequences in

fasta format, without the need for RNA-Seq evidence. Also gene

models based on evidence different from RNA-Seq or the combined

results of varying prediction methods [for instance combinations by

IPred (Zickmann and Renard, 2015), or EVidenceModeler (Haas

et al., 2008)] are accepted as input for MSProGene. Note that in this

case mutations already need to be included in the sequences, and the

sequence header must contain information on the strand and start

and stop position of the gene (an example file is provided with the

MSProGene installation).

To be suitable for spectra search, nucleotide sequences need to

be translated into amino acid sequences. Initially, we rely on a three-

frame translation since in RNA-Seq experiments the ends of genes

are often not recovered with high precision. Hence, the predicted

start codon might not be the correct one and translating only one

frame would potentially lead to a loss in peptide identifications.

However, (i) increasing the transcript database with a six-frame

translation is only necessary if no strand information is available (as

it for instance is the case for unspliced Cufflinks predictions). Thus,

bias resulting from unnecessary extension of the database can be

avoided. Further, (ii) in order to create a tailored transcript database

without artificial increase we perform a second MSProGene iter-

ation based on the analysis of the first spectra search.

Fig. 1. The overall workflow of MSProGene. (1) An RNA-Seq read mapping is

analyzed to infer transcript sequences, which (2) provide the database for

spectra search. (3) The resulting PSMs are represented by a network, which is

analyzed to resolve protein inference and to select the correct frame per tran-

script. (4) Finally, peptide identifications are controlled with regard to their

FDR
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Note that only one out of the initial three frames is correct;

hence, the translated protein sequence of the incorrect frames might

contain stop codons. Since an early stop codon can also be due to an

incorrectly inserted mutation, MSProGene does not stop the entire

translation in case of a stop codon but can extract several amino

acid subsequences per transcript frame. Since the user can specify a

minimum peptide length for spectra search (per default 5 amino

acids), subsequences with smaller length are removed.

Finally, each transcript t with sequence length lt is initially scored

based on the original GIIRA gene score (or score from other predic-

tion methods) sg and its read coverage ct. The coverage is calculated

by taking the number of reads nt mapping to the transcript and their

corresponding length lr into account:

ct ¼ nt � lr
lt

: (1)

The initial transcript score st is normalized over minimum (mi)

and maximum (ma) score of all original gene scores to indicate the

relative evidence for a transcript in comparison to other transcripts:

st ¼ sg � ct

ma �mi þ 1
: (2)

2.2 Peptide spectrum search
Once the transcript database has been created, the input tandem

mass spectra are searched against the resulting set of amino acid

sequences. Per default, MSProGene uses MSGFþ (Kim and Pevzner,

2014) as the search engine, but can easily be adapted to also work

with other search methods. After the search, the resulting PSMs are

extracted by MSProGene, independent of whether they are unique

peptides or shared peptides (i.e. one peptide mapping to more than

one transcript sequence). Further, the PSM score provided by the

search engine is extracted, and normalized to the [0,1] interval.

2.3 Proteogenomic network
After the spectra search, each identified spectrum is assigned to one

peptide sequence that can be found in one or more transcript se-

quences. Since each spectrum can only arise from one peptide and one

transcript, we (i) need to assign shared peptides to their most likely

origin. An additional challenge is the presence of potentially multiple

supported reading frames per transcript. Since we initially provide at

least three frames (sister frames) per transcript, a peptide can inde-

pendently be mapped to each of the frames, although only one of the

frames can be correct. Hence, (ii) we also have to identify the correct

frame for each transcript and erase all incorrectly mapped peptides.

Furthermore, not necessarily all PSMs are correct. Thus, (iii) we have

to detect and remove incorrect identifications.

To meet these three objectives we first represent the inference

problem as a network, which is then optimized in order to solve the

inference. The network G ¼ fN;Eg (depicted in Fig. 2) with edge

set E and node set N ¼ P \ F \ T \ so \ si \ d has nodes pi 2 P rep-

resenting the individual peptides and nodes fj 2 F representing the

sister frames of each transcript. Further, also the transcript itself is

included as a node tk 2 T. For technical purposes, also a source

node so and a sink node si are integrated to the network, as well as a

dummy node d.

For each match between peptide pi and frame fj, a directed edge

epi ;fj
2 E is integrated to G connecting the two nodes. Further, all sis-

ter frames are connected to their corresponding transcript. Note that

each peptide node is not only connected to its mapped frames but also

to the dummy node. This ensures that whenever no target frame re-

mains possible for a peptide, this peptide can be assigned to

the dummy without creating inconsistency. The set of connections of

a peptide pi can become infeasible in case pi only maps to frames that

were marked as incorrect because their competing sister frames have

more support. In this case, pi is likely to be an incorrect identification,

which is indicated by assigning pi to d. For an example refer to Figure

2: here p2 and p3 match to different frames of the same transcript;

hence, only one match can be correct, and the other peptide is as-

signed to d.

Since we aim at choosing connections between nodes that reflect

the most likely correct identification, each edge is assigned a cap-

acity representing the reliability of the associated match. Edges start-

ing from the source are connected to peptide nodes and have an

unlimited capacity, whereas edges epi ;fj
connecting peptides to

frames have a capacity upi ;fj
that is initially determined by the score

calculated by the peptide search engine. Further, it is restricted by a

binary variable ypi ;fj
2 f0;1g indicating whether this connection is

chosen as the most likely connection (ypi ;fj
¼ 1) or not (ypi ;fj

¼ 0):

0�upi ;fj
� ypi ;fj

8epi ;fj
2 E: (3)

Further, edges etk ;si 2 E connecting transcript nodes tk 2 T to si have

a capacity xk that is determined by the initial transcript score calcu-

lated in step 1 (Equation 2) of the overall workflow. The capacity

hfj ;tk
of connections of sister frames to their transcript is initially set

to this transcript score, weighted by the number of peptides origin-

ally associated to the frame.

Since only one of the sister frames can be correct, hfj ;tk
is also re-

stricted by a binary variable mfj ;tk
2 f0; 1g that indicates whether a

frame is chosen or not:

0� hfj ;tk
�mfj ;tk

8efj ;tk
2 E: (4)

Two additional constraints ensure that only one match per peptide

(Equation 5) and only one frame per transcript (Equation 6) is se-

lected, respectively:

X

j

ypi ;fj
¼ 18i jpi 2 P; (5)

X

j

mfj ;tk
¼ 18k j tk 2 T: (6)

The capacities define the maximal throughput that is allowed to be

passed through an edge. Given these capacities, we can formulate a

maximum-flow problem in order to optimize the throughput—in

Fig. 2. Simplified example of a proteogenomic network: peptide nodes pi are

connected to the frames fj they map to, and all sister frames are connected to

their corresponding transcript node tk. A so called dummy node d ensures

that incorrect peptide identifications can be reassigned. All edges are labeled

according to their capacity indicating the support from experimental data for

a connection between the two neighboring nodes. The capacities define the

overall throughput that can be passed through the network, starting from

source node so towards the sink si
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this case the reliability of connections—that is passed from source

towards sink node:

max
X

epi ; fj 2E

upi ; fj
þ

X

efj ; tk 2E

hfj ; tk
þ

X

etk ; si2E

xk þ
X

epi ;d2E

kpi ;d ypi ;d;

(7)

where kpi ;d corresponds to a penalty term similar to a Lagrange

multiplier for connections to the dummy node: In the maximum-

flow description above, all capacities of chosen edges add to the

overall maximal flow. However, an important difference holds for

the dummy node d: since assignments to d are required for peptides

that are likely incorrect identifications, a chosen connection to the

dummy results in a penalty on the overall flow. This is realized by a

form of Lagrangian relaxation on constraints describing edges to the

dummy node. Whenever such a connection is chosen (i.e. ypi ;d ¼ 1),

a penalty k (i.e. the Lagrange multiplier) that equals the confidence

score of the PSM is applied to the overall objective.

Although nodes have an unlimited throughput, a requirement of

the maximum-flow is that for each node the input has to equal the

output flow. Hence, the number of peptides that can be assigned to

each frame and transcript is restricted by the overall evidence for

this transcript because the higher xk, the more flow can be assigned

to the transcript. Given the capacities hfj ;tk
�xk of the connections of

sister frames to their corresponding transcript, we derive the follow-

ing constraint:

X

i j epi ; fj
2E

upi ; fj
�hfj ; tk

8efj ; tk
2 E: (8)

Note that the dummy node has an unlimited outgoing capacity, such

that in theory an unlimited number of peptides can be assigned to d.

However, due to the penalty this connection is only chosen if the

penalty is balanced by the benefit of supporting the competing

frames.

Finally, the described maximum-flow problem is formulated as

an integer linear program, which can be solved for instance using

the CPLEX Optimizing studio (CPLEX, 2011). As a result, each

peptide is either indicated as an incorrect match or associated to the

most likely transcript frame. Note that thereby the graphical model

ensures that the reassignment is performed in a non-greedy fashion

that for instance distributes peptides between multiple observed

alternative isoforms, rather than selecting only one isoform.

2.4 Postprocessing
After all PSMs have been reassigned to their most likely frame or are

indicated as likely incorrect predictions, the confidence in each tran-

script sequence and corresponding frame has to be recalculated.

MSProGene proceeds through the original transcripts and as-

signs the frame chosen in the linear program. Note that at this point

MSProGene uses the sequences supported by the spectra search for a

second iteration: The supported frames are used to create a second

and more specific amino acid database for a second run with a pep-

tide spectrum search engine. The initial database was artificially

increased by the three-frame translation, whereas the updated data-

base is tailored to the (unknown) true database. Also the second

PSM results are represented in a network to resolve shared peptides

and identify incorrectly mapped peptides (refer to former section).

Afterwards, the transcripts are finally analyzed for their peptide sup-

port and FDR controlled.

Since decoy protein sequences which are classically used for

FDR computation in proteomics are artificial sequences without

RNA-Seq evidence, the network representation and maximum-flow

optimization is not applicable to decoy identifications. Hence, only

target peptide hits are reassigned in the maximum-flow and can thus

be used for FDR calculation. Therefore, the FDR cannot be calcu-

lated by a standard target-decoy approach, but is determined in a

decoy-free approach based on the expectation-maximization (EM)

algorithm (Dempster et al., 1977). The aim is to fit two distributions

on the frequencies of overall scores, one that explains the correct

(i.e. target) and one the incorrect (i.e. decoy) identifications, similar

to the approach in (Renard et al., 2010). The observed frequencies

of scores should be a mixture of these two distributions, where we

assume an underlying normal distribution for both target and decoy

identifications (assumption confirmed in independent experiments,

data not shown).

Note that since the EM is not guaranteed to find the global max-

imum, the search is performed several times with differing initial

values to identify the model best fitting the data. With the resulting

target NT and decoy ND distribution we can compute a false discov-

ery rate FDRi at each PSM pi with score sp
i , using the cumulative

density functions FTðsp
xÞ for NT and FDðsp

xÞ for ND:

FDRi ¼
wD � ð1� FDðsp

i ÞÞ
wT � ð1� FTðsp

i ÞÞ þwD � ð1� FDðsp
i ÞÞ

; (9)

where wT and wD are the weights of the target and decoy distribu-

tion, respectively.

2.5 Output
After the reassigned peptides are FDR controlled and hits below the

threshold are removed, the set of transcripts with spectra support is

reported. For postprocessing and visualization, the coordinates as

well as confidence score and number of spectrum matches are pre-

sented in the well-established GTF format, accompanied by the ac-

tual sequences in fasta format.

The final confidence score sc combines the original transcript

score st with its coverage and quality of PSMs (set denoted as Pt):

sc ¼ st � 1
lt
�
X

i jpi2Pt

sp
i � l

p
i ; (10)

where lt is the length of the transcript sequence and lpi is the length

of a peptide pi 2 Pt with score sp
i .

Since the combination of RNA-Seq read support and tandem

mass spectra support does not only increase the confidence in pro-

tein identifications, but can also be used to verify variation observed

in the read mapping, MSProGene additionally outputs a VCF file.

This file contains all mutations present in the transcripts compared

to the given reference sequence. Further, we indicate whether muta-

tions are also supported by spectra (as an additional layer of

confidence).

3 Experimental setup

3.1 Algorithm evaluation
As a proof-of-principle evaluation of the algorithm for peptide re-

assignment we conducted a simulation experiment. We used the

NCBI reference annotation of Escherichia coli (NCBI accession:

NC_000913.3) and integrated SNPs simulated with a mutation-rate

of 1% to the gene sequences (to simulate deviances from the refer-

ence sequence as occurring in real datasets). Based on the mutated

sequences, we simulated Illumina RNA-Seq reads with the read

simulator Mason (Holtgrewe, 2010) in varying expression levels.
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Tandem mass spectra were generated with the spectra simulator

MSSimulator (Bielow et al., 2011; OpenMS Release1.11) with a

gradient of 3000s, an instrument resolution of 200 000, 10 tandem

mass spectra per retention time bin, and default settings otherwise.

Each of the resulting spectra is linked to its original peptide and pro-

tein, such that we can compare the peptide assignments of the net-

work optimization integrated in MSProGene against the ground

truth peptides.

3.2 Bartonella henseale
MSProGene was tested on data of B.henselae, a pathogenic bacter-

ium that causes infections such as the cat scratch disease (Omasits

et al., 2013). Tandem mass spectra and RNA-Seq reads originate

from a study by Omasits et al. (2013) (GEO Series accession num-

ber: GSE44564). We pooled data from the two conditions (induced

and uninduced) of replicate 1 resulting in 1.16 million tandem mass

spectra and 211 million AB-Solid RNA-Seq reads. Reads were

mapped to the B.henselae reference genome (strain Houston-1,

NCBI accession: NC_005956) using BFAST (Homer et al., 2009;

version: 0.7.0 a). For settings we followed the mapping pipeline and

parameters recommended in the BFAST manual. As in the original

study, the resulting mapping was filtered using samtools (Li et al.,

2009) to remove contamination with rRNA. Further, all raw spectra

were converted to MGF format using the Trans-Proteomic Pipeline

(Deutsch et al., 2010). MSProGene was applied with default set-

tings, using GIIRA in prokaryote mode for construction of the tran-

script database, also with default settings.

To analyze the performance of reference-independent methods,

we compared MSProGene to the approach by (Evans et al., 2012; in

the following called Assembly) based on de novo assembly with

Trinity (Grabherr et al., 2011), as well as a standard six-frame trans-

lation of the B.henselae genome (in the following denoted as

six-frame). Assembly was applied with default settings in its gen-

ome-guided mode (using the BFAST mapping as a guide). The result-

ing assembly contained 1907 transcripts, which were six-frame

translated to identify open reading frames. These frames served as

the database for MSGFþ search. Six-frame translation was per-

formed using the program getorf from the EMBOSS package (Rice

et al., 2000; version EMBOSS:6.4.0.0), requiring a minimum length

of 200bp. These three reference-independent methods were analyzed

regarding the overall number of identified proteins and the spectra

coverage of identifications.

For a general analysis of the robustness of our method we also

randomly divided the original set of 1.16 million spectra into two

smaller sets, each including half of the spectra. The compared meth-

ods were applied using the smaller samples of spectra separately and

the resulting predicted protein sequences were compared between

runs. The higher the overlap between two runs on differing input

samples, the more robust the method. As a measure of overlap we

counted the number of proteins coinciding in both runs and divided

it by the highest number of proteins predicted in one run.

Further, we compared our method to a standard database search

(in the following denoted as Standard) on the 1488 annotated

B.henselae proteins available at NCBI (http://www.ncbi.nlm.nih.

gov/). In addition, we performed a standard search on a database

including SNPs indicated by a samtools (Li et al., 2009) mpileup

variant call on the RNA-Seq mapping (in the following denoted as

Mutated).

For all evaluations we chose the set of annotated B.henselae

proteins as a ground truth reference protein set (note that not neces-

sarily all of these proteins are actually expressed simultaneously).

The output of the Standard and Mutated approach was directly

compared to the reference. In contrast, for the reference-free meth-

ods we first compared the coordinates of predicted proteins to the

reference coordinates in order to map predictions to reference

proteins.

For evaluation of method quality we employed the metrics of re-

call and precision. Recall is calculated as the number of identified

annotated proteins, divided by the total number of annotations

(1488). Precision is calculated as the number of predicted proteins

matching the annotation, divided by the total number of proteins

predicted by the method. Note that by nature of the analysis, the

Standard and Mutated method always have a precision of 100% be-

cause they are exclusively searched against the reference annotation.

We also calculated an annotation-based FDR on the protein

identifications of reference-free methods, sorted by identification

score. We regard an identified protein as incorrect in case it did not

match the reference annotation. We note that since not necessarily

all unmatched predictions are false positives, this is a conservative

estimate that likely overestimates the actual rate of incorrect

identification.

3.3 Litomosoides sigmodontis
We also compared MSProGene to a six-frame based analysis on

a L.sigmodontis dataset (assembly nLS.2.1 from www.nematodes.

org). Litomosoides sigmodontis is a popular model organism for

filarial nematodes, that amongst other diseases cause lymphatic

filariasis (‘elephantiasis’) and are the human-parasitic species

with the highest overall impact on public health (Armstrong et al.,

2014).

Tandem mass spectra originate from a study by Armstrong et al.

(2014) (PRIDE Project PXD000756, in total 856 380 spectra).

For this organism only very few proteins are already annotated

(a search at NCBI on January 9, 2015 resulted in 75 protein se-

quences). Hence, here we only compare methods in regard to their

overall identification confidence, the number of predicted proteins

and their spectra coverage.

Transcript prediction methods such as Cufflinks (Trapnell et al.,

2010) and GIIRA work best on high coverage RNA-Seq datasets.

Hence, since at the time of this study only low coverage 454 tran-

scriptome data was available for L.sigmodontis, we chose RNA-Seq

data from Brugia malayi, a close relative of L.sigmodontis. We

pooled 14 samples from different life cycle stages of B.malayi

(BioProject-accession: PRJEB2709) and mapped the reads to the

L.sigmodontis draft genome using TopHat2 (Kim et al., 2013; ver-

sion 2.0.11) with error tolerant parameter setting (N 5, read-gap-

length 5, read-edit-dist 5). Transcript coordinates were obtained

using Cufflinks (version 2.2.0) on the resulting mapping. The result-

ing GTF file was converted using in-house scripts to generate a fasta

file with transcript sequences for MSProGene analysis. For the six-

frame analysis the L.sigmodontis draft genome was translated using

the program getorf from the EMBOSS package, requiring a min-

imum length of 200 bp.

In addition to the transcripts predicted by either Cufflinks or

getorf, we included protein sequences from the Wolbachia symbiont

of L.sigmodontis, obtained from www.nematodes.org (release wLs

2.0, 1042 sequences) for spectra search.

For further evaluation, we used BLAST (Altschul et al., 1997) to

compare the identified sequences to B.malayi proteins. Similar to

(Armstrong et al., 2014), we specified a bit score cutoff of 50. We

did not use the BLAST E value for threshold definition to allow a

fair comparison since an E value threshold may have favored the
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evaluation towards MSProGene because it has a smaller query data-

base size than the six-frame translation.

3.4 Peptide search parameters
All spectra searches were conducted using MSGFþ (Kim and

Pevzner, 2014; version v9881) with a precursor mass tolerance of

5 ppm, a minimum peptide length of five amino acids, specifying a

high-resolution LTQ, and using default settings otherwise. All ana-

lyses were performed in regard to a 1% FDR cutoff and excluding

proteins with fewer than two spectra hits.

4 Results and discussion

4.1 Algorithm evaluation
We analyzed the PSMs before and after the network optimization of

MSProGene. Details are shown in Figure 3. Of 21 715 spectra that

MSGFþ matched to the original protein (sometimes among multiple

proteins), 21 617 were assigned correctly (99.5%) by MSProGene.

Overall, the algorithm correctly reassigned over 90% of the spectra

that had multiple protein hits (933 of 1031).

This demonstrates that the network representation with inte-

grated RNA-Seq information and its optimization is suitable to suc-

cessfully resolve shared peptide protein inference, without the need

for protein grouping.

4.2 Bartonella henselae data
4.2.1 Verification of transcripts with spectra support

First, we investigated the effect of integrating RNA-Seq evidence

and spectra on the actual identification accuracy. As shown in

Table 1, the transcript database constructed for spectra search con-

tains 1568 sequences. This number is reduced to 1397 when taking

spectra support into account. This leads to a decrease in recall from

78.2 to 76.5%. This shows that although generally transcriptome

and proteome correlate well, we have to be aware of potential losses

in protein identifications. For comprehensive studies on mRNA and

protein level correlation we refer to Vogel and Marcotte (2012) and

Nagaraj et al. (2011). Here, it is shown that the mRNA undergoes

several modification steps that can reduce the correlation to the pro-

tein level. However, overall the transcriptome is regarded as a valu-

able source and verification technique for protein level analysis and

evidence on the transcriptome level is a good indication for protein

measurements. However, if possible, combinations with other

searches should be considered in order to detect additional protein

candidates.

In contrast to sensitivity, the precision strongly increases from

79.0% to 85.1% when spectra support is taken into account. This

shows that the combination of RNA-Seq data and tandem mass

spectra is a suitable verification method for accurate protein

identification.

4.2.2 Comparison to reference-free methods

For the three methods compared we counted the number of annota-

tions that were identified and the number of predictions that actu-

ally match the annotation. Both numbers can differ since a single

annotated protein might be covered by several smaller predictions.

The results of the analysis are summarized in Table 2. The transcript

database constructed for spectra search by MSProGene contains

1568 sequences. This is significantly smaller than the number of se-

quences searched in the six-frame analysis and Assembly and shows

the suitability of RNA-Seq data to provide smaller and more tailored

search databases.

Overall the six-frame approach predicts the highest number of

spectra-supported genes and also achieves the highest recall given

the peptide level FDR. At first this is surprising given the supposedly

high number of spurious sequences in six-frame translated databases

(which should lead to reduced sensitivity). We suspect that the over-

all high coverage of this dataset (1.16 million spectra) prevents the

originally expected loss in protein identifications. A loss in sensitiv-

ity is rather reflected in the spectra coverage of protein identifica-

tions, where six-frame shows 77 median spectra hits per protein,

compared to 90 for MSProGene. The drawback of six-frame

Fig. 3. Figure illustrating the distribution of peptides correctly and incorrectly

reassigned by MSProGene. 99.5% of the peptides were assigned to their ori-

ginal ground truth protein

Table 1. Prediction results of MSProGene, exclusively based on

RNA-Seq, verified by spectra support, and in addition excluding

proteins with only one spectrum hit

Without

spectra

With

spectra

With spectra

Without

single hits

Predicted 1568 1397 1286

#matches to annotation 1238 1189 1143

#identified annotations 1164 1139 1109

Recall (%) 78.2 76.5 74.5

Precision (%) 79.0 85.1 88.9

Evaluation on the B.henselae dataset, compared to the reference annota-

tion comprising 1488 genes. Best values for each category are marked in bold.

Table 2. Prediction of reference-free methods on the B.henselae

dataset, compared to the reference annotation comprising 1488

genes

MSProGene Six-frame Assembly

Database size 1568 6091 5894

Predicted 1286 1502 1276

# matches to annotation 1143 1207 447

# identified annotations 1109 1163 372

Recall (%) 74.5 78.2 25.0

Precision (%) 88.9 80.4 35.0

Recall 1%-AnnotationFDR (%) 51.5 1.1 0.0

Median # spectra per protein 90 77 50

The row indicated as ‘1%-AnnotationFDR’ shows results for an additional

1% annotation-based FDR on the protein level. The best value for each cat-

egory is marked in bold.
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translations is also reflected on the precision level, where the high re-

call comes at the cost of specificity: six-frame has 3.7% higher recall

but 8.5% less precision than MSProGene (also refer to Fig. 4).

Hence, although MSProGene identifies slightly fewer proteins, it

provides higher confidence in the resulting predictions. Further, if in

addition to the peptide level FDR also an annotation-based FDR is

applied on the protein level, the recall of six-frame decreases to

1% because of early false positive identifications. In contrast,

MSProGene still achieves a recall of 51%.

The Assembly approach shows low agreement between pre-

dicted transcripts and the annotation, resulting in reduced precision

and recall. This indicates that the two-step integration of RNA-Seq

data (first de novo assembly followed by six-frame translation

and later the independent spectra search) is not as suited for

proteogenomic analysis as the integrative approach employed by

MSProGene.

As illustrated in Figure 5, MSProGene and the six-frame ap-

proach coincide in 941 of the 1488 annotations. In contrast,

Assembly only shared 304 and 317 annotations with MSProGene

and six-frame, respectively.

Taken together, the three methods identified 1340 of the 1488

annotated B.henselae proteins. However, all methods identified pro-

teins that were not predicted by the other methods, such that no ap-

proach shows a complete prediction by itself. Six-frame is sensitive,

but lacks confidence and precision. MSProGene is specific but de-

pendent on the quality of predicted transcript sequences. Here, gene

identifications exclusively based on RNA-Seq (as performed by

GIIRA for this dataset) might not identify all possible transcripts

and a more comprehensive RNA-Seq based prediction might be

more sensitive. Some of the missing transcripts can be recovered by

the de novo assembly used in Assembly; however, this approach

overall has the least accuracy. Hence, in regard to precision, custom-

ized transcript databases as employed by MSProGene should be

preferred.

All three methods performed well in the robustness analysis. The

overlap of six-frame (97.5%) is slightly higher than for MSProGene

(96.0%) and Assembly (95.5%). However, all three approaches

only vary little, indicating that they are robust to differing input

data.

4.2.3 Comparison to reference-based methods

To generate the mutated database 2592 variants were called with

samtools on the RNA-Seq read mapping and included in the refer-

ence protein sequences. Both Standard and Mutated method identi-

fied 1274 of the annotated proteins (recall: 85.6%). Interestingly,

including mutations observed in the RNA-Seq mapping did not im-

prove the overall recall, but instead even decreases the median spec-

tra support for identified proteins from 106 (Standard) to 95

(Mutated) spectra. This indicates that some of the included SNPs are

incorrect. Since thresholds for the filtering of incorrect mutations

are hard to define (Giese et al., 2014), this is a likely bias when

including sample-specific mutations to reference proteins.

With 1109 identified proteins, MSProGene has a lower recall

than both Standard and Mutated method. However, as shown in

Figure 6, it identifies 84 proteins not detected by the standard

searches.

When comparing MSProGene and the Mutated approach, 92

proteins are unique to MSProGene, and 257 proteins are unique to

Mutated. The latter are not identified due to missing or incorrectly

constructed transcript sequences. MSProGene not only needs to cor-

rectly identify the correct PSMs for a protein sequence, but also the

correct coordinates of a transcript. Hence, the sensitivity of

MSProGene strongly depends on the quality of constructed tran-

script sequences. Since RNA-Seq is challenging as the exclusive

source for gene prediction (performed by GIIRA for this dataset),

integrating additional evidence or other methods for prediction

might lead to a more comprehensive set of transcripts and hence im-

proved recall. We believe that the extensive studies dedicated to

RNA-Seq analysis (a search of the term ‘RNA-Seq’ on google

scholar resulted in more than 17 300 entries in year 2014) will also

benefit MSProGene. Since our method is independent of the method

used for transcript construction (except scores and mutations that

need to be provided), better methods for RNA-Seq based gene and

transcript prediction will lead to improved recall by MSProGene.

The proteins exclusively detected by MSProGene often have

shared peptide support and in addition are supported by peptides

that have scores below the FDR threshold in the Mutated approach.

For instance, 51 of the missing 92 proteins of Mutated can be identi-

fied with an FDR threshold of 5%. This indicates the precision of

MSProGene peptide assignments since it identifies these proteins

under a more conservative FDR.

In general, the comparison against the complete reference can

only be regarded as a relative rather than an absolute comparison

between methods (since not all genes are necessarily expressed at the

same time). Further, transcripts that do not match the reference are

Fig. 4. Receiver operating curve illustrating recall and precision of

MSProGene, six-frame and Assembly for the B.henselae dataset. MSProGene

shows the highest precision of all three methods. In particular, for highly

scored predictions it achieves better sensitivity at the same precision level

Fig. 5. Venn diagram illustrating the number of identified annotated proteins

of the B. henselae dataset for MSProGene, six-frame, and Assembly.

Together, 1340 of the annotated proteins were identified, although no method

shows a complete prediction by itself
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not necessarily false positives but might be unannotated genes.

However, for the evaluation of sensitivity and specificity all

transcripts not matching the annotation are regardless counted as

false positives. Hence, the evaluation is slightly biased against

MSProGene.

Reference-dependent approaches fail to detect novel genes

(examples detailed below) and in addition, even databases adapted

or extended with SNPs are not always suited to identify mutated

proteins. Hence, even for annotated organisms or fast evolving

organisms such as viruses it is worth to employ alternative search

strategies.

When compared to the annotated reference database comprising

1488 genes, MSProGene predicted 76 genes with RNA-Seq and

spectra support that do not match the annotation. Two of these

genes (located at position 1 357 979 to 1 358 722 and 1 180 052 to

1180672, respectively) were chosen for further verification with

BLAST (Altschul et al., 1997). The first protein with length 248 was

supported by 94 spectra, the second one of length 207 received 36

spectra.

A protein BLAST search of the two sequences (predicted by

MSProGene on the Houston-1 reference strain) revealed that both

proteins are annotated in other B.henselae strains. The first sequence

shows high similarity to a peptide ABC transporter substrate-bind-

ing protein (BLAST E value: 1 e�178, identity: 99%), for instance

present in strain BM1374165. The second one shows high similarity

to a hemin binding protein E, for instance present in strain

BM1374163 (BLAST E value: 5 e�145, identity: 100%).

Thus, both genes are likely candidates for novel genes in the

Houston-1 reference strain of the B.henselae taxonomy. This high-

lights the relevance of reference database independent approaches

because standard database searches cannot identify genes that are

not already annotated.

4.3 Litomosoides sigmodontis data
The results of the evaluation on the L.sigmodontis dataset are

shown in Table 3. Also for this dataset the RNA-Seq based tran-

script database used by MSProGene is significantly smaller than the

six-frame translation.

Although the overall number of predicted sequences is higher for

the six-frame approach, MSProGene sequences receive higher spec-

tra support. The greater confidence of MSProGene transcripts is

also significantly shown in the BLAST search: As illustrated in

Figure 7, the confidence of BLAST hits is considerably improved for

MSProGene sequences. Further, only 42% of the six-frame

sequences receive a BLAST hit at all, while in contrast 68% of

MSProGene predictions can be mapped. With 1804 hits, the overall

number of hits for the six-frame approach is still higher, but only in

case no score cutoff for confidence control for the BLAST search is

applied. When using a bit score cutoff of 50 as in (Armstrong et al.,

2014), the number of remaining BLAST hits of MSProGene is an

order of magnitude higher than for the six-frame analysis. Hence,

MSProGene identifies fewer transcripts with more confidence.

We are aware that the comparison against a B.malayi database

can only identify proteins that are L.sigmodontis orthologs and does

not determine proteins specific to L.sigmodontis. However,

L.sigmodontis and B.malayi are close relatives. Hence, the BLAST

search against B.malayi is a good indicator of the quality of

L.sigmodontis protein identifications.

4.4 System requirements
The computational performance of MSProGene is evaluated using

the transcripts predicted by GIIRA (for B.henselae) or Cufflinks (for

L.sigmodontis). The main contributors to run time are the two spec-

tra searches performed by MSGFþ: The search of 1.16 million spec-

tra on the B.henselae dataset required 35.7h. The search of 856 380

spectra on the L.sigmodontis dataset required 40.8h. Overall,

Fig. 6. Venn diagram illustrating the number of identified annotated proteins

of the B.henselae dataset for MSProGene, Standard, and Mutated. Together,

1376 of the annotated proteins were identified, although no method shows a

complete prediction by itself

Table 3. Evaluation for L.sigmodontis dataset, with best values for

each category marked in bold

MSProGene Six-frame

Database size 28 009 189 512

Predicted 2146 4297

Median spectra count 8 6

BLAST hits all 1462 1804

Median bit score all 54.5 25.8

BLAST hits above threshold 779 42

Median bit score 89.7 70.1

BLAST hits were reported with a bit score threshold of 50. Although at first

glance the six-frame approach predicted more proteins than MSProGene, less

than half of them can be mapped by BLAST, with less confidence than

MSProGene hits. Further, only a small fraction of six-frame predicted pro-

teins passes the confidence score threshold.

Fig. 7. The frequency of bit scores for MSProGene and the six-frame ap-

proach for the BLAST search of predicted sequences against a B.malayi refer-

ence. The confidence of MSProGene sequence alignments significantly

exceeds the confidence of six-frame sequence alignments
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MSProGene used 30 GB RAM and 36.5 h to analyze the B.henselae

dataset, and 30 GB RAM and 41.6 h to analyze the L.sigmodontis

dataset.

5 Conclusion and outlook

We present MSProGene as a novel proteogenomic method for inte-

gration of proteomic, genomic and transcriptomic data beyond six-

frame translation and the dependency on reference databases. We

demonstrate the benefits of the new method in a comparison on

three datasets and show that MSProGene provides an automated in-

tegrative framework for robust and precise proteogenomic analysis.

We show that MSProGene performs peptide and protein identifica-

tion with higher specificity than existing methods and constructs

smaller customized spectra search databases. It is independent of a

priori annotations and allows the identification of mutated and

novel genes. Further, the network optimization employed by

MSProGene successfully resolves shared peptides for protein infer-

ence without the need for protein grouping. This way, MSProGene

distinguishes alternative isoforms and genes sharing homologous re-

gions. Since the algorithm for peptide reassignment is independent

of the constructed gene model, MSProGene can be combined with

any prediction method or previously defined gene sequences of

choice. Thus, given a suitable gene prediction, our method is also

applicable to higher eukaryotes and polyploid organisms and can re-

spect polyploid SNPs. Future applications of the software include a

more thorough analysis of the simultaneous verification of SNPs on

the transcriptome and proteome level and the analysis of variant

peptides.
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