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Low-Valent Group 14 Phosphinidenide Complexes [({SIDipp}P)2M]
Exhibit P–M pp–pp Interaction (M = Ge, Sn, Pb)

Markus Balmer,[a] Yannick J. Franzke,[b] Florian Weigend,[c] and Carsten von H-nisch*[a]

Abstract: Herein, the synthesis of new low-valent

Group 14 phosphinidenide complexes [({SIDipp}P)2M] ex-
hibiting P–M pp–pp interactions (SIDipp = 1,3-bis(2,6-di-

isopropylphenyl)-imidazolidin-2-ylidene, M = Ge, Sn, Pb), is
presented. These compounds were investigated by means

of structural, spectroscopic, and quantum-chemical meth-

ods. Furthermore, the monosubstituted compounds [(SI-
DippP)MX]2 (M = Sn, X = Cl; M = Pb, X = Br) are presented,
which show dimeric structures instead of multiple bond-
ing interaction.

In 2010, the group of Robinson reported the synthe-
sis of the first “parent” phosphinidene stabilized by
complexation of the PH moiety with an N-heterocy-

clic carbene (NHC).[1] Since then, the synthesis of
phosphinidenes and the subsequent investigation of

their characteristics have been a popular research
area evinced by a considerable number of publica-
tions and review articles.[2–19] Especially main-group
moieties with NHC- or rather cAAC-stabilized phos-
phinidenide ligands (cAAC = cyclic (alkyl)(amino)car-

bene) are in the spotlight of recent research. More-
over, transition-metal phosphinidenide complexes
like (IDipp)PMLn (MLn = h5-Cp*RuCl, h5-Cp*IrCl, h6-
para-cymene-RuCl, and h6-para-cymene-OsCl) (Cp* =

C5Me5 ; IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazo-
lin-2-ylidene) have been described by Tamm and co-
workers.[7, 20] In our recent work, we focused on the

synthesis of solely phosphinidenide substituted group 14 (Ge,

Sn, Pb) compounds in the oxidation state ++II.[2] The group of
Roesky was able to synthesize a cAAC-stabilized silylene with

two terminal phosphinidenide ligands (I, Scheme 1).[14] Very re-
cently the group of Inoue the synthesis of germylene and stan-

nylene phosphinidene NHC complexes [MesTerMP(IDipp)] (II)
(M = Ge, Sn; MesTer = Bis-2,6-(2,4,6-trimethylphenyl)phenyl),
which show a multiple M@P bond character.[21] Only a few oli-

gomeric compounds with bridging phosphandiide ligands like
the dimeric species [{M(m-P{C6H3-2,6-(C6H3-2,6-iPr2)2}]2

[22] (M =

Ge, Sn, Pb), the hexameric [Ge(m-PSiiPr3)]6
[23] or the tetrameric

[Sn(m-PSitBu3)]4
[24] as well as other cage-like compounds are re-

ported.[23, 25–27] As far as we know, no compound of the type

M(PR)2 (M = Ge(++2), Sn(++2), Pb(++2)) is reported in literature.
Only some rare representatives of the type M(PR2)2, like
[{(Tripp)(tBu)(F)Si}(iPr3Si)P]2M (M = Sn, Pb; Tripp = 2,4,6-tri-iso-

propylphenyl)[28] (IV) are known, which were the first crystallo-
graphically characterized diphosphanyl-substituted tetryl-

enes.[28] In contrast, the group of Izod was able to isolate
[(Dipp)2P]2E and [(Tripp)2P]2E (E = Ge, Sn; Dipp = 2,6-diisopropyl-

phenyl) (III), which show a significant pp–pp interaction appar-

ent by a deep color of these compounds.[29, 30] The compounds
show one nearly planar as well as one pyramidal-surrounded

phosphorus atom, which indicates that only one pp–pp inter-
action is present. Compounds with less sterically demanding

substituents tend to dimerize in solution or solid state.[31] Fur-
thermore, the group of Flock examined the effects that stabi-

Scheme 1. Selected examples of tetrylene compounds.
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lize diphosphastannylenes by means of theoretical as well as
experimental investigations leading to the presumption that

the formation of a Sn=P double bond is less important regard-
ing molecular stabilization. They draw the conclusion that

steric shielding is the important driving force for the planariza-
tion of the phosphorus atom.[32] In our previous work, we were

able to show the possibility of the synthesis of main-group
phosphinidenide compounds through salt elimination reaction
using the deprotonated compound (SIMes)PK (SIMes = 1,3-

bis(2,4,6-trimethylphenyl)imidazolidine-2-ylidene) as a precur-
sor.[2–5]

However, reactions between (SIMes)PK and (SIMes)MX2 (M =

Ge, Sn, Pb; X = Cl or Br) yielded not the expected NHC-stabi-

lized phosphinidenide substituted tetrylenes. Instead, the
Group 14-ate complexes K[(SIMesP)3M] (M = Ge, Sn, Pb; VI)
were formed.[2] To avoid the formation of these -ate complexes,

we used a new precursor with a sterically more demanding
NHC ligand. The deprotonation of (SIDipp)PH (1) with the

strong base benzyl potassium (BzK) under rigorous exclusion
of air and moisture, as well as solvents containing heteroatoms

(e.g. pyridine, THF, and other ethers like diethyl ether), yielded
(SIDipp)PK (2) as a red-orange powder. As expected, the solid

is completely insoluble in aliphatic or aromatic solvents (e.g.

benzene, toluene, or pentane) and unstable in the presence of
solvents containing heteroatoms (e.g. amines or ethers). Thus,

the possibilities of characterization are rather limited. The IR
spectra clearly shows that the powder is not benzyl potassium

and the absence of a PH stretching mode (for (SIDipp)PH ob-
served at ñ= 2300.3 cm@1) leads to the presumption that the

product is the desired compound, which was confirmed with

elemental analysis.
Subsequent reactions of (SIDipp)PK with (SIMes)MX2 (M = Ge,

Sn, Pb; X = Cl or Br) at low temperatures in toluene in a 1:2
molar ratio led to deep purple colored suspensions. After re-

moval of the formed KCl and exchange of the solvent storage
of the saturated solutions in pentane at low temperatures (6 8C

for 3 and 5 or @32 8C for 4) yielded single crystals of [(SI-

Dipp)P]2M (M = Ge 3, Sn 4, Pb 5) as dark violet crystals in mod-
erate yield (Scheme 2).

All three compounds crystallize isotypically in the monoclinic
space group P21/c with one molecule of pentane in the asym-

metric unit. All compounds were characterized by 1H NMR,
13C NMR, 31P NMR, IR spectroscopy, and elemental analysis. It is

worth mentioning that all compounds, especially compound 5,
are sensitive towards light, particularly in solution, shown by a

color change from deep purple towards pale yellow, associated
with precipitation of the respective metallic powder. The
31P NMR spectrum of 3 shows a singlet at 145.2 ppm, which is

a dramatic lowfield shift compared with other germanium sub-
stituted phosphinidenides (K[(SIMesP)3Ge] @11.4;[2] (IDipp)P@
GePh3 @145.1;[18] (SIDipp)PGePh3 @114.7 ppm[18]). This is in line
with the trends of calculated partial charges at the M atom

(see Tables S11 and S12, Supporting Information), but one
should be aware, that the main effect usually comes from the

differences in the response of the density to the magnetic

field. This presumption is supported by the fact that this kind
of lowfield shift in the 31P NMR spectra has also been observed

for planarly coordinated phosphorus atoms with Ge=P multiple
bonds (e.g. Mes2GePAr“, 175.4 ppm, Ar” = 2,4,6-tri-tert-butyl-

phenyl).[33] Another indication of a pp–pp interaction is the in-
tensive color of the compounds. In contrast to the compounds

[(Dipp)2P]2E and [(Tripp)2P]2E (E = Ge, Sn) of Izod and co-work-

ers, only one signal and no line broadening are observed in
the NMR spectra indicating that the phosphorus atoms are

chemically and magnetically equivalent and both are involved
in the p–p interaction.[29, 34] The NCN group shows a pseudo-

triplet splitting in the 13C{1H} NMR spectrum.
In the solid state, compound 3 (Figure 1) shows a V-shaped

structure of the GeP2 moiety. Comparing the P-Ge-P angle of 3
(87.4(1)8) with the respective ones in [(Dipp)2P]2Ge (107.40(4)8)
and [(Tripp)2P]2Ge (103.98(8)8), a remarkable sharper angle is

observed in 3, which can be assigned to the greater distance
between the sterically demanding substituents in 3, because

the Dipp substituents are not directly bound to the phospho-
rus atoms.[29, 30] The Ge@P distance in 3 (229.6(1)–230.2(5) pm)

is in between the short and the long one in [(Dipp)2P]2Ge

(223.1(2) and 236.7(2) pm) or [(Tripp)2P]2Ge (223.37(11) and
238.23(12) pm).[29, 30] This is reasonable given that germanium is

Figure 1. Molecular structure of 3. Hydrogen atoms are omitted for clarity.
Thermal ellipsoids for 3 represent a 50 % probability level, carbon atoms are
shown as wire frame for better visibility. For selected bond lengths and
angles see the Supporting Information.Scheme 2. Synthesis of compounds 2–7.
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probably part of two pp–pp interactions in 3. However, the
Ge@P distance in 3 is in good accordance with the one found

in (IDipp)PGePh3 (228.37(4)) or [(Me3Si)2PGe(Tripp)]
(229.1(4) pm).[18, 35] Comparison of the C@P bond length

(177.0(2)–177.3(2) pm) with other literature known compounds
shows only minor differences (e.g. (IDipp)PGePh3

177.48(16) pm).[18] The average angle of the N-C-N plane (N1-
C1-N2 and N3-C28-N4) towards the P1-Ge-P2 plane is 33.08,
showing a slight twist through the whole molecule. However,

this slight twist does not disable a p-interaction across the C-
P-Ge-P-C moiety (see Figure S23, Supporting Information). Fur-

thermore, this compound show many similarities with the
compound [(IDippCH)2Ge] (V), which was published by Rivard

and co-workers in 2017, due to its shape as well as the analog-
ical p-electron density delocalized in the central C-Ge-C

moiety.[36] This is a vivid example for the diagonal relationship

between phosphorus and carbon.
Compound 4 shows a downfield shift in the 31P NMR spec-

trum (121.4 ppm with 119Sn satellites 1J119Sn@P = 1334 Hz) as ob-
served for compound 3. The P-M-P angle in 4 (85.8(1)8) is only

a little bit sharper than in 3, but again much sharper than in
other literature known compounds (e.g. [(Dipp)2P]2Sn

106.20(3)8 ;[29] [{(Tripp)(tBu)(F)Si}(iPr3Si)P]2Sn 98.78(4)8[28]) but in

good accordance with [(Tripp)2P]2Sn (90.50(3)8).[29] The Sn@P
bond lengths in 4 (249.2(2)–249.9(2) pm) is between the Sn@P

distance (244.58(8) pm) showing a pp–pp interaction in
[(Dipp)2P]2Sn and the one (257.57(7) pm) which is only single

bonded (Figure 2).[29] The Sn@P distance is also significantly
shorter than in other compounds without any multiple bond

character (e.g. [(Tripp)2P]2Sn 256.84(9)–258.24(8) pm;[29]

[{(Tripp)(tBu)(F)Si}-(iPr3Si)P]2Sn 256.7(1) pm[28]).
Following the synthetic procedure for the germanium as

well as the tin derivative, the synthesis of the lead compound
(5) was successful. In comparison with the analytical data ob-

tained for 3 and 4, compound 5 meets all expectations
(Table 1). The 31P NMR spectrum of 5 displays a signal at

116.8 ppm (1JPb@P = 1673 Hz) which is once again lowfield shift-

ed in comparison with K[(SIMesP)3Pb], indicating multiple-
bond character between the phosphorus and the lead atom.[2]

Again, no magnetic distinction of the phosphorus atoms is as-
certainable in the 31P NMR spectra. As far as we know, com-
pound 5 is the second known representative of solely twofold
phosphorus-substituted plumbylenes and the first one to ex-

hibit pp–pp interaction. The other known is [{(Tripp)(tBu)(F)-
Si}(iPr3Si)P]2Pb, which was synthesized by Driess, Janoschek,

and co-workers in 1995.[37] Since then, to the best of our

knowledge no compound of this type has been published.
Compound 5 exhibits notably shorter P@Pb distances

(258.0(3)–258.2(3) pm) than found in [{(Tripp)(tBu)(F)-

Si}(iPr3Si)P]2Pb (265.4(4) pm), which clearly provides the as-
sumption of a higher bond order.[37] Other literature-known

compounds containing threefold exclusively phosphorus coor-
dinated lead atoms show even longer P@Pb distances ([K(SI-

MesP)3Pb]: 274.5(19)–278.3(18) pm;[2] [PbPR]4 with R = SitBu2Ph:
271.1(4)–274.6(4) pm;[38] for R = Si(SiMe3): 271.5(1)–

274.1(1) pm[39] or [Pb(m-PtBu2)PtBu]2 : 278.1(4)–281.2(3) pm[40]).

The P-Pb-P angle (84.6(1)8) is slightly sharper than in 3 or 4
and but significantly sharper than in [{(Tripp)(tBu)(F)-

Si}(iPr3Si)P]2Pb (97.88(4)8),[37] which is assigned to the steric
strain exerted by the large substituents.

To verify the presumption of pp–pp interactions between
the tetrel atom and both phosphorus atoms, we performed

quantum chemical calculations with the scalar-relativistic local

exact two-component (DLU-X2C) Hamiltonian[41–43] employing
all-electron triple-zeta basis sets.[44, 45] Several common density

functionals (see the Supporting Information) were selected to-
gether with fine grids for numerical integration[45] and the mul-
tipole-accelerated resolution of the identity approximation for
the Coulomb term[46] as implemented in the latest version of

the TURBOMOLE program package.[47] Based on the analytical
data, the TPSSh[48] functional performs best (see the Support-

Figure 2. Molecular structure of 5. Hydrogen atoms are omitted for clarity.
Thermal ellipsoids for 5 represent a 50 % probability level, carbon atoms are
shown as wire frame for better visibility. For selected bond lengths and
angles see the Supporting Information.

Table 1. Analytical data on compounds 3–5 (M = Ge, Sn, Pb).

3 4 5

d(C@P) [pm] 177.0(2)–177.3(2) 176.5(4)–176.8(5) 174.3(10)–175.4(10)
d(P@M) [pm] 229.6(1)–230.2(1) 249.2(2)–249.9(2) 258.0(3)–258.2(3)
ff(C-P-M) [8] 104.8(1)–105.7(1) 104.1(2)–105.8(2) 103.3(4)–105.6(3)
ff(P-M-P) [8] 87.4(1) 85.8(3) 84.6(1)
d(31P) [ppm}] 145.2 121.4 116.8
1JM@P[Hz] – 1334 1673
d(13C) CNHC [ppm] 191.3 192.3 186.3
First absorption maxima UV/Vis [nm] 542.5 554.0 569.0
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ing Information for the results of all functionals). Thus, only the
results with TPSSh will be discussed herein. The P@M and C@P

bond lengths are overestimated by 1 and 2 pm, respectively.
The trend of the 31P NMR shifts from Ge to Sn is in reasonable

agreement with the experimental findings whereas the individ-
ual shifts are overestimated by about 20 ppm. This does not

hold for compound 5 as for lead spin-orbit effects are impor-
tant for the magnetic properties.[49, 50] A similar behavior is ob-
served for the 13C NMR shifts. As expected, the Wiberg bond

index (WBI) for the P@M bonds is greater than one for both
bonds in all three compounds, especially for compound 3
(Table 2). This is a clear indicator for the multiple-bond charac-

ter. We note in passing that for the recently reported com-

pound K[(SIMesP)3M][2] (M = Ge, Sn, Pb), in which all M@P
bonds have single-bond character, the WBI resulting from our

calculations is even somewhat smaller than one (between 0.78
for M = Pb and 0.85 for M = Ge). The WBI for the P@M bonds

of 3 to 5 decreases with rising atom number. In the same
manner the WBI for the C@P bonds rises, indicating that these

p-bonds (C=P vs. P=M) are contrary effects. Moreover, the p-

system is delocalized over the C@P@M@P@C bonds. The effect
on the C@P bond is observable in the slight shortening of

d(C@P) going from 3 to 5. Spin-orbit effects do not significantly
alter the WBI (see the Supporting Information for details on

the quantum chemical calculations).
In all three compounds, the HOMO is represented particular-

ly by the lone pairs at the tetrel atoms. Furthermore, there is a

considerable amount of electron density at the phosphorous
atoms (Figure 3). The HOMO@1 is the p-C@P bond, the

HOMO@2 (see Figure 3) is the p-bonding combination of p or-
bitals of the metal atom and the phosphorus atoms, slightly
deformed due to the twisting of the NHC ligands. The corre-
sponding p*-orbital is the LUMO orbital (see Figure 3). Accord-
ing to time-dependent (TD)-DFT[51–54] calculations with the
DLU-X2C Hamiltonian, the UV/Vis absorption maxima (see
Table 2) correspond to singlet excitations from the HOMO@1

to the LUMO, that is, mainly from the p-orbitals of the phos-
phorus atoms to the p-orbitals of the metal center. We note

that the HOMO@1 and the HOMO are close in energy (energy
differences: 3 : 0.1, 4 : 0.1, 5 : 0. 05 eV) but differ in shape and

symmetry. The redshift observed in the UV/Vis spectra from 3
to 5 with rising atomic number is explained by the energetic
position of the p-orbital of the metal atom, which decreases

from Ge to Sn to Pb, resulting in decreasing LUMO energies
from 3 to 4 to 5 and thus in decreasing excitation energies.

To investigate the necessity of two (SIDipp)P ligands for the
formation of compounds showing pp–pp interaction, reactions

of 2 with (SIMes)MX2 (M = Ge, Sn, Pb; X = Cl or Br) in a 1:1

molar ratio were performed. In all cases mixtures of (SI-
DippP)2M, [(SIDippP)MX]2, (SIMes)MX2, SIMes, and KX were ob-

tained. It was possible to separate (SIDippP)2M and SIMes
(which are soluble in pentane) after changing the solvent to

pentane and collection of the insoluble residue ([(SI-
DippP)MX]2, (SIMes)MX2 and KX). After dissolving this residue
in toluene and subsequent separation of the insoluble KX

through centrifugation, the isolation of [(SIDippP)SnCl]2 (6) and
[(SIDippP)PbBr]2 (7) was possible in moderate yields. However,

the isolation of the germanium compound was not successful
because in this reaction the obtained compounds are (SI-

DippP)2Ge and (SIMes)GeCl2.
Compound 6 crystallizes in the monoclinic space group

P21/n with three molecules of toluene. In solid state, the com-
pound forms a dimer with a central bended P2Sn2 cycle (see
Figure 4). The central P2Sn2 cycle shows a butterfly conforma-

tion. Both phosphorus atoms are pyramidally coordinated by
the NHC ligand and two tin atoms (sum of angles at P1: 309.8

and P2: 303.68). The orientation of the ligands with respect to
the central cycle is unusual, because two sterically demanding

substituents and one chlorine ligand are situated at the same

side of the ring, which leads to smaller P-Sn2-Cl2 angles
(93.1(1) and 91.8(1)8) in comparison with the P-Sn1-Cl1 angles

(96.0(1) and 96.6(1)8). This kind of P2Sn2 cycles are already
known in the literature, but usually the tin atoms are in oxida-

tion state Sn(++IV) (e.g. [Tripp2SnPH][55] or [tBu2SnPH][56]). With
SnII higher aggregates like heterocubanes were formed.

Table 2. Computational data (at the scalar-relativistic x2c-TZVPall/TPSSh
functional level) of compounds 3–5 (M = Ge, Sn, Pb).

3 4 5

WBI (C@P) 1.33 1.34 1.38
WBI (P@M) 1.20 1.13 1.08
lmax abs [nm] 507 528 539

Figure 3. HOMO@2 (top left), HOMO@1 (top right), HOMO (bottom left) and
LUMO (bottom right) of compound 4 (hydrogen atoms are omitted for clari-
ty) with an isovalue of 0.04 a.u.
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The P@Sn bond lengths in 6 (259.6(1)–266.3(2) pm) are in

good accordance with literature known P@SnII compounds,
whereby however, P1@Sn2 is slightly shorter.[23] Compound 6
was characterized by 1H NMR, 13C NMR, 31P NMR, 119Sn NMR, IR

spectroscopy and elemental analysis (Table 3). In the 31P NMR

spectrum, compound 6 shows a singlet signal at @66.2 ppm

(1JSn@P&1000 Hz), which is quite a usual chemical shift for tin
substituted phosphinidenides.[2] In the 1H NMR spectrum two
signals for the isopropyl substituents are observed, which re-
sults from an inhibited rotation along the P@C bond in solu-

tion. The 119Sn NMR spectrum of 6 shows only one triplet
signal at 235.8 ppm (1JP@Sn = 1027 Hz), showing that the tin
atoms are equivalent on the NMR time scale and that com-

pound 6 is a dimeric compound also in solution.
The reaction of 2 with (SIMes)PbBr2, in a 1:1 molar ratio,

yielded the heavier congener [(SIDippP)PbBr]2 (7, see Figure 5).
Compound 7 exhibits the same butterfly shaped central P2Pb2

cycle. Even the bromine and NHC ligands are arranged in the

same manner, but the crystal structure of 7 is not isotypic, due
to the lack of lattice solvent.

The phosphorus atoms are again pyramidal surrounded by
the NHC ligand and two lead atoms (sum of angles at P1:

297.9 and P2: 318.88). The P@Pb distances (269.2(1)–
276.8(1) pm) are similar to literature known compounds (e.g.

[(Pb(m-PtBu2)PtBu2]2 278.1(4)–281.2(3) pm;[40] [Pb(P(SiMe3)2)2]2

269.6(7)–279.6(7) pm;[57] [(Me3Si)3SiPPb]4 271.5(1)–

274.1(1) pm[38]). Compounds that exhibit a comparable ar-
rangement of ligands towards the central P2Pb2 cycle are the

phosphanylhaloplumbylene [Fe(C5H4PtBu)2(PbX)2] with X = Cl,

Br, Mes) descripted by Pietschnig.[58] The C@P bond lengths
found in 7 (179.8(3)–179.6(3) pm) are in good accordance with

them in 6 (180.1(5)–179.9(4) pm). In the 31P NMR spectrum,
compound 7 displays a singlet at @47.6 ppm (1J207Pb@P =

1205 Hz), which is in the expected region of chemical shifts for
phosphinidenide substituted lead(II) compounds.[2] Com-

pound 6 as well as 7 exhibit no pp–pp interaction, which can

be verified by quantum chemical calculations (WBI P@M for 6 :
0.70–0.77; 7: 0.66–0.75, for details on the calculations see the

Supporting Information) and analytical data (especially
31P NMR spectroscopy data and P@M bond lengths).

Conclusions

Herein we presented the new twofold phosphinidenide-substi-
tuted tetrylenes (SIDippP)2M (M = Ge 3, Sn 4, Pb 5) exhibiting

unique pp–pp interaction, which resembles with the stabiliza-
tion of the singlet state found in NHC ligands. As far as we

know, compound 5 is the first example for this kind of interac-
tion between phosphorous and lead atoms. For the lighter

congener, only very few examples are described in literature.
The character of the multiple bond between the tetrel atom
and the NHC stabilized phosphinidenide was shown by means

of structural, spectroscopic and quantum-chemical methods.
Furthermore, we were able to show that the twofold coordina-

tion with phosphinidenides at the tetrel is necessary, because
the monosubstituted compounds [(SIDippP)MX]2 (M = Sn, X =

Cl; M = Pb, X = Br) tend to dimerize in solution as well as in the

solid state and show no sign of pp–pp interaction. Moreover,
these compounds show the influence of the NHC ligand, since

the SIDipp ligand is necessary to obtain the low valent com-
pounds 2–4. With the slightly smaller NHC substituent SIMes

the ate-complexes [(SIMesP)3M]@ are formed.[2]

Figure 4. Molecular structure of 6. Hydrogen atoms are omitted for clarity.
Thermal ellipsoids for 6 represent a 50 % probability level, carbon atoms are
shown as wire frame for better visibility. For selected bond lengths and
angles see the Supporting Information.

Table 3. Analytical data on compounds 6 and 7 (M = Sn, Pb; X = Cl, Br).

6 7

d(C@P) [pm] 179.9(4)–180.1(5) 179.6(3)–179.8(3)
d(P@M) [pm] 259.6(1)–266.3(2) 268.9(1)–276.8(1)
d(M@X) [pm] 251.5(2)–254.8(2) 280.0(1)–285.0(1)
ff(C-P-M) [8] 103.7(2)–111.9(2) 99.4(1)–119.3(1)
ff(P-M-P) [8] 71.9(1)–73.3(1) 73.6(1)–75.4(1)
SffM 258.2–264.5 262.0–262.2
SffP 303.7–309.9 297.9–319.3
d(31P) [ppm] @66.2 @47.6
1JM@P [Hz] 997.8 1205.1

Figure 5. Molecular structure of 7. Hydrogen atoms are omitted for clarity.
Thermal ellipsoids for 7 represent a 50 % probability level, carbon atoms are
shown as wire frame for better visibility. For selected bond lengths and
angles see the Supporting Information.
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Future investigations will focus on the reactivity of the low-
valent tetrylenes towards multiple bonds in small molecules

(e.g. CO, CO2, or NO) as well as the coordination towards Lewis
acids. Also, reductive cluster formation starting from the com-

pound 6 and 7 will be a key issue. This provides access to ex-
clusively NHC coordinated binary cage compounds.
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