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Abstract: Alterations of gut microbiota have been identified before clinical manifestation of type
1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and
disease markers, the 16S rRNA-based microbiota profiling and 1H-NMR metabolomic analysis were
performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects
(CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic
integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and
Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were
higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, mal-
onate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared
to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium
and Alistipes and those with normal blood pH and low serum HbA1c levels showed high levels of
purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both
T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles
in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker
associated progression and severity of T1D.

Keywords: gut microbiota ecology and metabolome; type 1 diabetes (T1D); pediatrics; ketoacidosis;
anti-GAD antibody; insulin need; omics data integration; microbial biomarkers
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1. Introduction

Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the progressive
immunomediated destruction of pancreatic β-cells by autoreactive T lymphocytes in genet-
ically susceptible individuals [1]. Patients with T1D develop a severe insulin deficiency that
leads to hyperglycemia, requiring accurate exogenous insulin administration [2]. Markers
of the β-cell destruction comprise islet cell autoantibodies (ICA), insulin autoantibodies
(IAA), anti-glutamic acid decarboxylase antibodies (anti-GAD), and autoantibodies to
the tyrosine phosphatases IA-2 and IA-2β [3]. However, the rate of β-cells destruction is
subject-dependent, then it can be very fast in some individuals and slower in others [3].
Moreover, especially in early onset cases, some patients may show ketoacidosis as the
first manifestation of the disease. Diabetic ketoacidosis (DKA) is characterized by hy-
perglycemia, ketosis, and metabolic acidosis [3]. During ketoacidosis, ketone bodies are
produced via hepatic beta oxidation of fatty acids and released in the blood flow. This
condition leads to dehydration and acidosis and it is associated with increased morbidity
and mortality [4]. In general, T1D patients are characterized by a rise of inflammatory
cytokines, as well as C-reactive protein (CRP) [5]. This proinflammatory condition seems to
be mainly related to hyperglycemia [6]. High levels of blood glucose can activate the proin-
flammatory transcription factor nuclear κB (NF-κB), resulting in increased inflammatory
chemokine and cytokine release [7].

In the “SEARCH for Diabetes in Youth” study, performed on 1396 young T1D patients
at onset of disease, the DKA value at the diagnosis of T1D was identified as predictor of
poor long-term glycemic control in children, independently of established risk factors [8].
DKA and age influence disease outcome and may thus be used to early identify those
patients with rapidly deteriorating metabolic control, who might benefit from a more
intensive therapeutic approach [9]. Ketoacidosis in T1D patients is indeed considered a
serious complication that requires prompt intervention [10].

External factors such as life environment, diet, antibiotic exposure, and activation
of the gut immune systems, have been associated with T1D pathophysiology [11,12].
Moreover, the composition of the intestinal mucus glycans can shape the gut microbiota
depending on the fucosyltransferase 2 (FUT2) gene expression of the individual [13] and,
indeed, FUT2 polymorphisms have been associated with several conditions, including
chronic diseases and infections [14]. Recently, a possible role of the FUT2 phenotype has
been suggested also in T1D pathogenesis [15].

Different studies report on an aberrant gut microbiota composition in T1D [16–18].
The consequence of gut dysbiosis is the impairment of gut permeability, environmen-
tally increased exposure to non-self-antigens followed by mucosal immune response that
parallel and putatively influence the development of the autoimmune attack against insulin-
producing β-cell [19,20]. The modifications in gut microbiota composition and function
have been identified before the β-cells destruction stage [19]. In T1D patients, gut micro-
biota are characterized by a reduction in: (i) bacteria producing short chain fatty acids
(SCFAs) [21], (ii) fecal butyrate, (iii) intestinal immunoglobulin A (IgA) antibody levels
and (iv) intestinal alkaline phosphates activity and by an increase in fecal calprotectin
concentration [22]. These findings reflect the alteration of gut microbiota in T1D patients,
involving butyrate and lactate producers as well as the mucin degraders [19,20].

In this study, we investigated the gut bacterial composition and its metabolic activity
in an Italian cohort of children at onset of T1D, in relation to the disease clinical biomarkers
at onset of disease, to identify possible disease predictors of microbial and/or metabolic
nature of severity during long-term.

2. Results
2.1. The Whole Subject Cohort Characteristics

The whole cohort included 126 subjects of which 52 were patients at T1D onset
(23 females [44.2%], age 9.65± 3.19 years), 17 T1D patients’ siblings (9 females [52.9%]), age
11.59± 5.24 years) and 57 healthy subjects (CTRL, 31 females [54.4%], age 9.81± 3.14 years).
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The average values of the clinical and anthropometric features for T1D patients are reported
in Table 1.

Table 1. Clinical and anthropometric parameters of T1D patients, siblings and CTRLs.

Parameter T1D
Average ± SD

Siblings
Average ± SD

CTRLs
Average ± SD

Birth weight (kg) 3.24 ± 0.55 3.02 ± 0.55 3.32 ± 0.42
BMI (kg/m2) 16.48 ± 2.84 19.88 ± 2.09 17.61 ± 1.61
Total Cholesterol (mg/dL) 155.65 ± 49.87 152.00 ± 14.76 153.98 ± 16.24
HDL-C (mg/dL) 42.44 ± 13.30 49.59 ± 3.12 50.39 ± 4.16
LDL-C (mg/dL) 95.70 ± 33.03 91.47 ± 3.12 94.81 ± 6.51
Triglycerides (mg/dL) 91.79 ± 45.65 60.47 ± 6.18 59.02 ± 6.32

Pubertal stage (PS)
PS = 1 28 (53.8) 5 (29.4) 31 (54.4)
PS = 2–3 13 (25) 4 (23.5) 18 (31.6)
PS = 4–5 11 (21.2) 8 (47.1) 8 (14.0)

T1D Patients Features

Parameter Average ± SD Variable Cut Off Cases N (%)

Age at onset (years) 9.52 ± 3.21 Age at onset > 14 years 6 (11.5)

Blood pH at onset 7.26 ± 0.12
normal pH ≥ 7.32 24 (46.1)

moderate 7.10 ≤ pH < 7.32 24 (46.1)
severe pH < 7.10 4 (7.6)

Exogenous insulin need (IU/kg BM) 0.84 ± 0.25 Exogenous insulin need
≥1 IU/kg BM 15 (28.8)

IAA (U/mL) 6.38 ± 3.56 IAA ≥ 7 U/mL 18 (53.8)
IA-2 (U/mL) 40.56 ± 208.44 IA-2 > 1 U/mL 42 (80.8)
Anti-GAD (U/mL) 31.80 ± 40.91 Anti-GAD > 1 U/mL 31 (59.6)
c-peptide (ng/mL) 0.31 ± 0.19 c-peptide < 1 ng/mL 52 (100)
HbA1c (%) 102.37 ± 22.71 HbA1c > 48 mmol/mol 52 (100)
CRP (mg/L) 0.45 ± 1.40 CRP > 1 mg/L 4 (7.6)

Presence of other autoimmune diseases (i.e., Thyroiditis and celiac disease) 9 (17.3)
SD, standard deviation; BMI, body mass index; IAA, insulin autoantibodies; IA-2, islet antigen 2 antibody; anti-
GAD, anti-glutamic acid decarboxylase antibody; HbA1c, glycated hemoglobin; HDL, High Density Lipoprotein
Cholesterol; LDL, Low Density Lipoprotein Cholesterol; CRP, C-Reactive Protein.

2.2. T1D Clinical Profiling of the Overall Cohort

T1D cohort characteristics were recognized based on the cut-off values of the most
representative clinical parameters for the disease (Table 1).

PCA was applied to the matrix of variables composed of anti-GAD, IAA, IA2, HbA1c,
cholesterol, exogenous insulin need, blood pH, age and c-peptide, after autoscaling. The
first principal component (PC1) and the second principal component (PC2), respectively,
accounted for 23% and 19% of the overall variance. The loadings plot in Figure 1 showed
that the statistically significant variables insulin need and HbA1c positively correlated with
PC1, while anti-GAD and blood pH negatively correlated with PC1; furthermore, c-peptide
and age were significant along PC2 resulting thus independent from the previous ones.
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Figure 1. Principal component analysis (PCA) loadings plot of T1D clinical data performed on the
T1D overall cohort. PCA was applied to the entire matrix of variables composed of anti-GAD, IAA,
IA2, HbA1c, cholesterol, exogenous insulin need, blood pH, age and c-peptide, after autoscaling.
These variables were selected among all the clinical parameters for T1D in order to avoid information
redundancy. PCA model showed the first principal component (PC1) accounted for 23% of the overall
variance and the second principal component (PC2) accounted for 19%.

Moreover, insulin need positively correlated with HbA1c (r = 0.33; p = 0.03) and
negatively with blood pH (r = −0.33; p = 0.03); anti-GAD antibodies negatively correlated
with HbA1c (r = −0.36; p = 0.02).

In the PCA scores plot, the diabetic cohort appeared to be clustered on the basis of
their blood pH values. This allowed to identify the blood pH as a parameter for a further
stratification of the patients (Figure S1A), linked to their severity status of the disease
at the onset: patients with blood pH < 7.32, (more severe) and pH ≥ 7.32 (less severe).
Moreover, higher levels of anti-GAD antibodies were mainly observed in patients with
normal-to-moderate compared to low blood pH (Figure S1B).

2.3. Gut Microbiota Ecology of the Overall Subject Cohorts

A total of 7,916,373 sequencing reads were obtained from 126 faecal samples, with a
mean value of 75,154 sequences per sample.

Analyzing microbiota ecology amongst T1D patients, siblings and CTRL, the α-
diversity indexes were higher in patients compared to the other two groups (p values≤ 0.05)
(Figure 2A–C).
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Figure 2. Gut microbiota ecology for siblings, T1D and CTRL groups. Panels (A–C): α-diversity
Shannon, Simpson and ChaoI indexes. Panels (D–F): β-diversity PCoA plots of distance matrices
calculated by unweighted UniFrac, weighted UniFrac and Bray Curtis algorithms. Panels (G–I):
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intragroup distance calculated by unweighted UniFrac, weighted UniFrac and Bray Curtis algorithms.
Panels (J–O): Box plots showing the relative abundances of differentially abundant taxa based on a
Kruskal–Wallis test (FDR p value < 0.1) amongst siblings (green box), T1D patients (orange box) and
CTRL (blue box) groups. Box plots report median, minimum and maximum values, and the 25th and
75th percentile values of relative abundances of taxa.

Moreover, β-diversity showed that patient group resulted clearly separated, while
CTRL and siblings resulted intermixed between each other (PERMANOVA p values = 0.0001)
(Figure 2D–F). Moreover, based on the calculation of intragroup distance the higher distance
amongst T1D samples was evident, compared to the other two groups (Figure 2G–I).

The gut microbiota composition in the three groups at phylum, family and genus levels
was reported in Figure S2. The comparison among these groups showed that Dialister and
Akkermansia were lower in T1D and siblings with respect to CTRL. Likewise, Clostridiales
and Dorea were significantly more abundant in siblings and T1D than in CTRL. Higher
Lachnospiraceae and lower Collinsella abundances were found in T1D patients than in
both siblings and CTRL (Figure 2J–O) (Table S1A). However, even though Dorea mean
abundance for T1D and siblings was significantly higher compared to CTRL, the analysis
of each single couple of siblings revealed that most of them showed lower abundances
compared to the CTRL’s mean (Table S1B).

2.4. Comparison among T1D Patients in Relation to Clinical Parameters Used for Diagnosis

The possible relationship between gut microbiota composition and clinical charac-
teristics was investigated in patients grouped on the basis of clinical variable values, as
reported in Table 1. Alpha-diversity analyses did not reveal any significant variation when
the patients were grouped for all T1D parameters (Figure S3). Accordingly, also β-diversity
did not reveal any statistically significant group clustering (Figure S4).

Bacteria abundance analysis highlighted that Alistipes, Roseburia and Faecalibacterium
abundances were significantly higher in patients with anti-GAD levels values ≤ 1 (p val-
ues ≤ 0.05, FDR p values ≤ 0.1) (Figure 3) (Table S2).
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Figure 3. Box plots of the taxa selected basing on Kruskal–Wallis test (p value ≤ 0.05) for patients
stratified by anti-GAD ≤ 1 (red box) and anti-GAD > 1 (light blue box). Box plots report median,
minimum and maximum values, and the 25th and 75th percentile values of relative abundances
of taxa.

Anti-GAD antibodies negatively correlated with Alistipes (Pearson’s correlation test;
p < 0.05) (Figure S5).

2.5. Gut Microbiota and Metabolome Profiling on the Downsized T1D and CTRL Cohorts

Metabolomics analyses were further performed on a downscaled group of patients and
CTRL based on sample availability; metagenomics and metabolomics integration analyses
were performed on a dataset of 43 samples and the PCA based on the clinical features
was repeated (Figure S6). The obtained results were consistent with the PCA applied on
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the entire dataset. The PCA scores plot of T1D subset, labeled based on blood pH values,
showed as well as clustering depending on blood pH values: pH < 7.32 and pH ≥ 7.32
along PC1 (Figure S7).

By 1H-NMR metabolomics 37 metabolites, belonging to the classes of amino acids,
SCFA, organic acids, pyrimidines, purine, nitrogen compounds, carbohydrates, alcohols,
were identified and quantified (Table S3).

Sensitivity and specificity of the PLS-DA model, performed on the metabolomics block
only, did not reach a sufficient degree of classification for the four comparisons T1D vs.
CTRL; T1D pH ≥ 7.32 vs. CTRL; T1D pH < 7.32 vs. CTRL and T1D pH ≥ 7.32 vs. T1D
pH < 7.32 (Table S4).

On the contrary, the PLS-DA model performed on the metagenomics block showed
% values of accuracy, sensitivity (74.0 ± 5.1) and specificity (71.2 ± 5.5) with a sufficient
degree of classification for T1D vs. CTRL (Table S4).

2.6. Omics Data Integration

Chemometric approaches were performed on the fused set, in order to try to disentan-
gle the relationship between (i) T1D and CTRL and (ii) pH ≥ 7.32 and pH < 7.32 groups
(Figure 4), as well as (iii) T1D pH ≥ 7.32 vs. CTRL and (iv) T1D pH < 7.32 vs. CTRL
(Figure S8).
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Figure 4. VIP values of the significant metabolites and bacterial taxa in the omics-data integration
analysis. The levels of the features in blue are higher in T1D patients and in T1D pH ≥ 7.32, while the
features in red are higher in CTRL and in T1D pH < 7.32. Features that resulted significative also at
the univariate analysis were labeled with *. DMA, dimethylamine; Glu, glutamic acid.

The PLS-DA model performed on the fused data resulted highly improved when
compared to the single block analyses, as reported in Table S4. The features with values
of VIP ≥1.15 were considered important and the significance was verified by perform-
ing non-parametric test with Bonferroni-corrected p values (Table S5). In the comparison
between T1D and CTRL, T1D showed higher levels of isobutyrate, malonate, Clostrid-
ium (Lachnospiraceae), Enterobacteriaceae, Bacteroidales, Clostridiales and Firmicutes,
while CTRL showed higher levels of butyrate, galactose, ethanol, succinate, Odoribac-
ter, Alistipes, Akkermansia, Sutterella, Actinomyces, Adlercreutzia, Collinsella, Turicibacter
and Mogibacteriaceae.

Finally, the comparison between T1D pH ≥ 7.32 and T1D pH < 7.32 revealed in T1D
pH ≥ 7.32 the following features as higher: malonate, uracil, formate, 2-methylbutyrate,
fumarate, hypoxanthine, guanine, isovalerate, propionate, 2-aminoisobutyrate and glu-
tamic acid (Glu), Odoribacter, Bacteroides, Parabacteroides, Rikenellaceae, Coriobacteriaceae
and Bacteroidales; while in T1D pH < 7.32 higher levels of dimethylamine (DMA), Eg-
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gerthella, Clostridium (Lachnospiraceae), Oscillospira, Christensenellaceae, Clostridiaceae
and Clostridiales were reported (Figure 4).

Pearson correlations were performed on the matrix composed of both metabolites and
bacterial taxa, for each considered class. Interestingly, within the group of patients with
blood pH≥ 7.32, isobutyrate was inversely correlated with Akkermansia (r =−0.68, p = 0.01).
In the matrix of the CTRL, Collinsella was directly correlated with butyrate (r = 0.56, p = 0.01),
succinate (r = 0.81, p < 0.01) and ethanol (r = 0.80, p < 0.01).

3. Discussion

The present study depicts the first integrated omics-based investigation by 16S rRNA-
based metagenomics and NMR-based metabolomics, applied to a clinically uniform cohort
of children affected by T1D along with their respective non-diabetic siblings and healthy
reference subjects.

In our cohort of T1D patients at the onset, the α-diversity resulted increased compared
to both siblings and CTRLs, as already reported [23]. Moreover, Mrozinska and colleagues
proposed a positive correlation of α-diversity index and the levels of HbA1c ≥ 53 mmol/mol
in T1D patients [24]. This observation is consistent with our results; in fact, in our T1D
cohort, HbA1c values were higher than 53 mmol/mol, except one.

Comparing the gut microbiota profiles of CTRL, T1D patient and sibling groups, we
observed that T1D patients and their related siblings shared higher levels of Clostridiales
and lower levels of Dialister and Akkermansia, as compared to CTRL.

The similarity in microbiota composition between T1D and siblings’ group in 14 dif-
ferent families, could shed a light on a phenotypic familiar predisposition that may favor a
T1D characteristic gut microbiota profile. In particular, the lower presence of the beneficial
Akkermansia muciniphila, of which increase is ever associated to a healthy intestine, could be
correlated to the decrease in the intestinal integrity, and to the consequent increase in gut
permeability and intestinal inflammation, that increases T1D predisposition [25].

However, T1D patients were characterized by higher levels of Lachnospiraceae and
lower levels of Collinsella, as compared to siblings and CTRL, suggesting a specific micro-
biota profile associated to the diabetes at the onset. Collinsella is a beneficial producer of
H2, ethanol, SCFAs, lactate and positively correlates with circulating insulin [26]. On the
contrary, Lachnospiraceae have been linked to different diseases and to impaired glucose
metabolism, inflammation and to the onset of T1D [20]. The unsupervised analysis (PCA)
of T1D clinical data revealed that c-peptide levels were directly related to age at the time of
diagnosis, and were independent from other disease severity parameters, at the onset. This
analysis identified a stratification of the patients based on blood pH: pH < 7.32 (more severe)
and pH ≥ 7.32 (less severe). Moreover, we observed the association between high levels
of anti-GAD antibodies and normal-to-moderate pH levels and low anti-GAD antibodies
levels with low blood pH values. Intriguingly, patients with low level of anti-GAD and
positive to IA2 antibodies, had a more severe clinical situation compared to patients with
higher anti-GAD levels that had, instead, normal blood pH values and lower insulin need
(Figure 5).

The patients with low anti-GAD levels were characterized by high abundances of
Alistipes, Roseburia and Faecalibacterium, suggesting an association of these gut microbiota
features with ketosis, and higher levels of HbA1c. As also reported by Fang and colleagues,
the anti-GAD autoantibody strongly associates with the structure and composition of the
gut microbiome but negatively correlates with SCFA-producing bacteria [27]. Our results
showed that serum anti-GAD levels can be considered as a microbiota-linked predictive
biomarker associated with the development of T1D.
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Figure 5. Functional descriptive model of T1D gut microbiota at onset predicting the host–microbiota
interaction. Blood pH and anti-GAD antibodies resulted to be good clinical biomarkers to charac-
terize the gut microbiota specific and functional features at the onset of T1D. T1D patients were
characterized by high levels of isobutyrate, malonate, Clostridium (Lachnospiraceae), Enterobacteri-
aceae, Bacteroidales and Clostridiales unk. families, while CTRL showed higher levels of butyrate,
galactose, ethanol, succinate, Odoribacter, Alistipes, Akkermansia, Sutterella, Actinomyces, Adlercreutzia,
Collinsella, Turicibacter and Mogibacteriaceae. T1D pH ≥ 7.32 patients showed high values of mal-
onate, uracil, formate, 2-methylbutyrate, fumarate, hypoxanthine, guanine, isovalerate, propionate,
2-aminoisobutyrate and glutamic acid (Glu), Odoribacter, Bacteroides, Parabacteroides, Rikenellaceae,
Coriobacteriaceae and Bacteroidales. In T1D pH < 7.32 patients were higher levels of dimethylamine
(DMA), Eggerthella, Clostridium (Lachnospiraceae), Oscillospira, Christensenellaceae, Clostridiaceae
and Clostridiales. Created with BioRender.com.

The integration of omics data showed an invariant core of features for the T1D chil-
dren non-dependent on the severity of the disease at the onset, composed by high levels of
isobutyrate, malonate, Clostridium (Lachnospiraceae), Enterobacteriaceae, Bacteroidales and
Clostridiales unk. families, as well as low levels of butyrate, galactose, ethanol, Alistipes,
Odoribacter and Sutterella. Moreover, in the Biassoni et al. study, the increase in Enterobacte-
riaceae and the decrease in Sutterella have been associated to T1D population [28].

Enterobacteriaceae overgrowth has been linked to the increase in intestinal permeabil-
ity and inflammation [29]. The intestinal permeability may be considered a predisposing
factor thus participating in the pathogenesis of T1D [19]. The opposite effect, i.e., the
maintenance of the inter-epithelial tight junctions, is guaranteed by SCFAs, in particular
butyrate, which was increased in CTRLs. Moreover, in T1D patients, a decrease in buty-
rogenic bacteria, i.e., Odoribacter and Collinsella, a lower butyrate production and a less
butyryl-CoA transferase genes [30] was detected.

In T1D patients, malonate was increased and, in the group of patients with blood
pH < 7.32, it was positively correlated with Parabacteroides. Interestingly, Parabacteroides
distasonis, has been identified as the most significantly genus associated with T1D [21].

The increase in galactose metabolism pathway in T1D patients, has been already
observed in a previous study [24] in which the T1D patients with HbA1c ≥ 53 mmol/mol



Int. J. Mol. Sci. 2022, 23, 10256 10 of 17

showed increased gut microbial galactose metabolism, also associated with higher α-
diversity, as compared to CTRL. Moreover, an increase in the multiple sugar transport
system (amongst them D-galactose) was also registered in T1D patients [20]. The passive
transporting-in of nutrients is characteristic of auxotrophic bacteria that live in inflamma-
tory environments where dead tissue provides easy access to many nutrients that are less
available in the healthy gut [20].

Alistipes was increased in CTRL and negatively correlated with anti-GAD in T1D
patients. This acetate producer seems to have a protective role for the gut health [31],
despite in previous works was described as involved in inflammation processes, cancer
and mental health [32].

It is noteworthy the inverse relationship between isobutyrate and butyrate in T1D
patients compared to CTRL. Branched-chain fatty acids (BCFAs), such as isovalerate and
isobutyrate, are produced by some gut microbes [33] responsible for the degradation
pathways of leucine and valine, respectively [34]. However, isobutyrate is also produced
by the activity of the B12-dependent Isobutyryl-CoA Mutase [35,36]. We inferred that T1D
population can be characterized by bacteria with isobutyryl-CoA mutase.

Moreover, a reduced content of ethanol in stool of T1D patients, as compared to
CTRL, could be related to a diet with a lower content of carbohydrates, as possibly the first
tentative of nutritional intervention prior to the clinical diagnosis.

Finally, by comparing diabetic patients on the basis of their differences in blood
pH, we obtained lower classification values compared to T1D vs. CTRL results. Despite
the loss of this statistical power, this model could be considered noteworthy since still
allowed us to discriminate patients who shared the same disease. Intriguingly, the features
that discriminate T1D patients are mostly metabolites, suggesting a major role of the
metabolism in T1D progression. In particular, T1D patients characterized by blood pH
≥ 7.32, showed high level of uracil, formate, guanine and hypoxanthine. The increase in
guanine and hypoxanthine led us to assume the possible involvement of purine/pyrimidine
metabolism pathways in the disease progression. The gut microbiota releases purine
compounds available to the intestinal mucosa that can be therefore used for nucleotide
genesis [37]. We inferred that, when patients have still a balanced production of ketone
bodies, the described mechanism occurs maintaining the integrity of the mucosal barrier
and guaranteeing a normal mucin intestinal production. In fact, it is known that an
undamaged gut barrier can shield against the entry of infectious agents and dietary antigens,
avoiding immune reactions with damage to pancreatic β-cells, increased cytokine levels
and insulin resistance [38].

There are several limitations of the study. First, it still requires further clinical studies
with a larger sample size to validate the functional and compositional fecal microbial
profiles associate to the progression and severity of T1D. Second, animal experiments could
help to determine the cause-effect relationship amongst gut microbiota composition and
the destruction of pancreatic β-cells. Finally, for future longitudinal studies, the exploration
of the alterations or restoration of the fecal microbiota after insulin treatment could be take
into consideration.

4. Materials and Methods
4.1. Patient Recruitment

A cohort of 52 consecutive Caucasian children were enrolled within one week of T1D
diagnosis at the Endocrinology and Diabetes Unit of Children’s Hospital Bambino Gesù in
Rome, Italy. Inclusion criteria were age between 5 and 15 years, glycemia > 126 mg/dL,
glycated hemoglobin (HbA1c) > 6.5% (48 mmol/mol), c-peptide < 1 ng/mL. Exclusion
criteria were other chronic and infective disease; use of antibiotic, pre/probiotic and
propton-pump inhibitors in the last two months from recruitment.

Age at onset, gender, weight, birth weight, pubertal stage, blood pH, exogenous insulin
need, body mass index (BMI), IAA, islet antigen 2 antibody (IA-2), anti-GAD, HbA1c, High
Density Lipoprotein Cholesterol (HDL), Low Density Lipoprotein Cholesterol (LDL), C-
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Reactive Protein (CRP) and presence of other autoimmune diseases (i.e., thyroiditis and
celiac disease) were registered for each patient at the time of enrollment.

A cohort of 17 children that had a full sibling diagnosed with T1D was recruited
at the Endocrinology and Diabetes Unit of Children’s Hospital Bambino Gesù in Rome,
Italy. Inclusion criteria were age between 5 and 17 years, general healthy condition, no
gastrointestinal (GI) diseases, use of antibiotic, pre/probiotic in the previous two months
from recruitment.

A cohort of 57 gender- and age-matched controls were enrolled during an epidemi-
ological survey carried out at the Human Microbiome Unit of Bambino Gesù Children’s
Hospital in Rome (BBMRI Human Micro-biome Biobank, OPBG) to generate a reference
digital biobank of healthy subjects (CTRL). This cohort did not have family history for
autoimmune diseases. Moreover, they were normal weight and had no GI diseases, use of
antibiotic, and pre/probiotic in the previous two months before the recruitment.

All patients, siblings and CTRLs followed a Mediterranean diet regimen attested by
Food Frequency questionnaire (FFQ) to assess the adherence to the Mediterranean diet
through targeted questions about the frequency of consumption of extra virgin olive oil,
butter or margarine, fresh fruit and vegetables, legumes, fish, red meat and sausages, white
meat, industrial bakery products, dried fruit sugary drinks and alcohol use.

The study was approved by the OPBG Ethical Committee (protocol 1274_OPBG_2016;
healthy subjects: Protocol No. 1113_OPBG_2016) and was conducted in accordance with
the Principles of Good Clinical Practice and the Declaration of Helsinki. Written informed
consent was obtained from either parents or legal representative of children.

From each subject of these cohorts, a single fecal sample was collected and stored at
−80 ◦C until further analyses. The T1D overall set was analyzed for gut microbiota ecology
by 16S rRNA-based metagenomics. For the metabolomics and, as well, for the multi-block
approach, analyses were performed on a sub-set of samples (“fused set”), consistently with
material availability (Figure 6).
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4.2. Biochemical and Immunological Analyses

Glycated hemoglobin (HbA1c) was analyzed by a spectrophotometric method (Bio-
Rad Richmond, CA, USA). C-peptide were measured by chemiluminescence on an ADVIA
Centaur® XPT Immunoassay System (Siemens Healthcare GmbH, Munich, Germany), a
two-site sandwich immunoassay using direct chemiluminescent technology. Total choles-
terol, LDL and HDL cholesterol, and triglycerides were measured by an enzymatic method
on a Roche automated clinical chemistry analyzer (Roche/Hitachi 904 analyzer, Roche
Diagnostics, Mannheim, Germany). Anti-GAD, IA2, IAA antibodies were measured by
Elisa method on Elite Impatto Twin plus (EUROSPITAL diagnostics, Trieste, Italy).

4.3. 16S rRNA-Based Microbiota Profiling

DNA was extracted from 200 mg of stools using QIAmp Fast DNA Stool mini kit (Qia-
gen, Germany), following the manufacturer’s instructions. The 16S rRNA V3-V4 variable
region (~460 bp) was amplified by using the primer pairs described in the MiSeq rRNA
Amplicon Sequencing protocol (Illumina, San Diego, CA, USA). The PCR reactions were
set up using a 2× KAPA Hifi HotStart ready Mix (KAPA Biosystems Inc., Wilmington,
MA, USA) following the manufacturer’s protocol. AMPure XP beads (Beckman Coulter
Inc., Beverly, MA, USA) were employed to clean DNA amplicons from primers and dimer
primers. A unique combination of Illumina Nextera adaptor-primers for each sample was
incorporated in amplicons by a second amplification step. The final library was cleaned-up
and quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). Samples were pooled together before the sequencing on an Illumina
MiSeqTM platform according to the manufacturer’s specifications to generate paired-end
reads of 300 base-length [39]. The bioinformatic data analysis was performed using the
QIIME 2 pipeline [40]. Forward and reverse raw fastq files were merged using PEAR v. 0.9.6.
Merged reads were filtered for chimeras and length using DADA2 plugin of QIIME2 [41]
with a trunc value of 400 nucleotides (nt). Taxonomy was assigned against the Green-
genes 13_08 database, using a Naïve bayes classifier trained on the reference sequences of
Greengenes 13_08 clustered at 99% of sequence similarity [42]. Data normalization was
performed in R 4.0.3 while data filtering was performed by using custom scripts in python
3.6. The read number count was normalized using Cumulative Sum Scaling (CSS) method
as implemented in the MetagenomeSeq (version 3.12) package of R. Clusters (Amplicon
sequence variants [ASVs]) with a number of reads lower than 1% of the total read number
were removed from the statistical analysis together with those taxa not present in at least
25% of the samples [43]. α-diversity was performed by scikit-bio (http://scikit-bio.org/,
accessed on 31 March 2022) of Python 3 package and the p value for group comparisons was
determined by Kruskal–Wallis test. β-diversity analysis was calculated on weighted and
unweighted Unifrac distance matrices and Bray Curtis matrix, and graphed by principal
coordinate analysis (PCoA) plots. The association between the covariates and β-diversity
measures was assessed by permutational analysis of variance (PERMANOVA) [44]. The
non-parametric Kruskal–Wallis test, corrected for FDR p value ≤ 0.05, was used to com-
pare bacterial taxa relative abundance amongst groups. The correlation between clinical
variables and bacterial taxa was calculated by Pearson’s coefficient with relative p value.
Ternary scatter plot on bacterial taxa relative abundances at phylum, family and genus
levels was performed by Plotly Express of python.

4.4. 1H-NMR Metabolomic Analysis

An average quantity of 300 mg of frozen stools recovered from each sample was
combined with 1 mL of PBS-D2O with 0.3% (final concentration) of sodium azide. The
samples were thawed for 30 min at 25 ◦C and then vortexed to achieve a homogenous
solution. The supernatant was separated from the solid phase through a first centrifugation
at 10,000× g for 25 min at 4 ◦C, hence filtered on a 40 µm pores filter. After adding
200 µL of PBS-D2O with 0.3% of sodium azide, the samples were centrifuged again at
10,000× g for 25 min at 4 ◦C. Six hundred µL of supernatant were withdrawn and 60 µL

http://scikit-bio.org/
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of PBS-D2O containing 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP, 2mM
final concentration) were added. NMR spectra were acquired using a Bruker Avance
III 400 spectrometer (Bruker BioSpin GmbH, Karlsruhe, Germany) equipped with a 9.4T
magnet operating at 1H frequency of 400.13MHz and at 298K. The assignment was achieved
by means of bi-dimensional (2D) experiments (COSY, TOCSY, HSQC, HMBC) on selected
samples and confirmed by comparison with web database [45], the literature [46–49] and
in-house database. One-dimensional (1D) NMR spectra were processed and quantified by
using ACD/Lab 1D NMR Manager ver. 12.0 software (Advanced Chemistry Development,
Inc., Toronto, ON, Canada), whereas 2D-NMR spectra were processed by using Bruker
TopSpin ver.3.1 (Bruker BioSpin GmbH) and MestreC ver.4.7.0.0 (Mestrelab Research SL,
Santiago de Compostela, Spain). Phase and baseline of the NMR spectra were manually
corrected. The quantification was carried out by comparing the integrals of the metabolites’
resonances to the TSP one, then normalizing for the number of protons and for feces weight.

4.5. Statistical Analyses and Modeling

To evaluate the differences in stool metabolic profiles among T1D patients and CTRL,
as well as among severity status subgroups, were performed multivariate and univariate
analyses. As the first step, an unsupervised approach, by means of Principal Component
Analysis (PCA), was applied to the matrix of the clinical variables composed of anti-
GAD, IAA, IA2, HbA1c, cholesterol, exogenous insulin need, blood pH, age and c-peptide
(Figure S2) in order to highlight possible patients’ clusters, to identify outliers and features
of interest. All data were autoscaled before further data processing: operationally, each
variable was first centered by subtracting its average from the data and then scaled through
division by its standard deviation. The scores plot allowed to identify the blood pH as a
parameter for the further stratification of the patients based on the severity status of the
disease at the onset: T1D patients with blood pH ≥ 7.32 and pH < 7.32 (Figure S3B). To
evaluate the contribution of the metabolites and bacterial taxa for each class that were
identified, a classification strategy based on the Partial Least Squares-Discriminant Analysis
(PLS-DA) algorithm was applied on both metabolomics and the metagenomics data sets
(Table S4). In this context, to evaluate the reliability of the prediction models and to identify
a set of features significantly (and consistently) contributing to the model, an approach
based on repeated double cross-validation (rDCV) was adopted.

4.6. Multi-Omics Data Integration

Since data were obtained by NMR-based metabolomics and taxonomical metage-
nomics, a multi-block (low-level fusion) approach was followed [50] to extract, simultane-
ously, the maximum of the information from the two approaches. Indeed, rather than being
separately processed, the matrices were jointly elaborated to highlight the correlations
between metabolites and bacterial taxa. For the classification stage, the predictive analyses
were carried out by means of a multi-block partial least squares discriminant analysis
(MB-PLSDA). MB-PLSDA [50] consists in building a PLS-DA model on the concatenated
matrix resulting from the low-level data fusion of the two different blocks, after scaling each
one through division by its Frobenius’ norm in order to level out their relative contribu-
tion [50]. In particular, defining Xmb and Xmg the matrices resulting from the metabolomic
and metagenomic analysis, respectively, their squared Frobenius’ norm is given by the sum
of their squared elements:

‖Xi‖2
F = ∑

j,k

(
xjk

)2

i
(1)

where Xi is either Xmb or Xmg and
(

xjk

)
i

is the generic element of that matrix. In order to
perform multi-block modelling, Xmb or Xmg are normalized and concatenated row-wise
(low-level fusion) to obtain the matrix Xconc:

Xconc =
[

Xmb
‖Xmb‖F

Xmg
‖Xmg‖F

]
(2)
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Standard PLS-DA is then used to build the classification model based on Xconc.
Since MB-PLSDA is a predictive model, a validation phase is needed to evaluate the

reliability of its prediction. To this purpose, an approach based on repeated double cross-
validation (rDCV) strategy, to estimate the confidence intervals for the model predictions
and the consistence of candidate biomarkers based on their VIP value, was applied. Finally,
to rule out any possibility that good classification results could be obtained by chance,
permutation tests were applied to estimate in a non-parametrical fashion the distributions
of the classification figures of merit under the null hypothesis for significance testing.

The predictive models have been applied to the comparisons: (i) T1D vs. CTRL; (ii) pH
< 7.32 vs. CTRL; (iii) pH ≥ 7.32 vs. CTRL; and (iv) pH ≥ 7.32 vs. pH < 7.32 groups.

Following the multivariate results, to the significant metabolites and bacterial taxa
Mann–Whitney’s u-test was applied to assess differences in the levels within each of the
specific class. Bonferroni-corrected p values ≤ 0.05 were considered significant.

4.7. Data and Resource Availability

All raw sequences have been archived in the NCBI database: PRJNA702261 and
PRJNA280490 (https://www.ncbi.nlm.nih.gov/bioproject).

5. Conclusions

Our results evidenced both specific gut microbiota profiles in T1D patients at the
onset and other linked to familiarity. Thus, a comprehensive characterization of the gut
microbiota could be associated to a genetic test to define the diabetes predisposition in
a T1D familial context. Moreover, the presence of specific microbial taxa in gut linked
to the serum anti-GAD levels can be considered as a microbiota predictive biomarker
associated with the progression of T1D. Furthermore, we find gut microbiota specific
functional traits associated to blood acidosis, indicating a role of gut microbiota in disease
severity. Therefore, the routine characterization of the composition and function of the
gut microbiota could be useful in patients’ clinical monitoring to assess disease status
and progression. This evidence could open new avenues on patient’s treatments at onset,
exploring the opportunity to combine insulin administration with probiotics, prebiotics or
fecal microbiota transplantations (FMT) at onset and during clinical disease progression.
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