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Abstract

The role of climate driving zoonotic diseases’ population dynamics has typically been

addressed via retrospective analyses of national aggregated incidence records. A central

question in epidemiology has been whether seasonal and interannual cycles are driven by

climate variation or generated by socioeconomic factors. Here, we use compartmental mod-

els to quantify the role of rainfall and temperature in the dynamics of snakebite, which is one

of the primary neglected tropical diseases. We took advantage of space-time datasets of

snakebite incidence, rainfall, and temperature for Colombia and combined it with stochastic

compartmental models and iterated filtering methods to show the role of rainfall-driven sea-

sonality modulating the encounter frequency with venomous snakes. Then we identified six

zones with different rainfall patterns to demonstrate that the relationship between rainfall

and snakebite incidence was heterogeneous in space. We show that rainfall only drives

snakebite incidence in regions with marked dry seasons, where rainfall becomes the limiting

resource, while temperature does not modulate snakebite incidence. In addition, the

encounter frequency differs between regions, and it is higher in regions where Bothrops

atrox can be found. Our results show how the heterogeneous spatial distribution of snake-

bite risk seasonality in the country may be related to important traits of venomous snakes’

natural history.

Author summary

Snakebite envenoming is a neglected tropical disease characterized by its high burden on

the rural population and high mortality if antivenom is not administered. The ecology of

this health problem is not well-understood; however, approaches to address the temporal

are growing. So far, we know that rainfall can play an important role in driving snakebite

incidence seasonality at a national scale. Moreover, geographical areas with high rainfall

are more prone to have high snakebite risk, but the spatial heterogeneity of the temporal

association (i.e., if there are different seasonal patterns of rainfall-incidence association in

different geographical areas of a country) is just starting to emerge in the literature. By
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formulating and fitting compartmental models to data, we generated a flexible framework

that relies on temporal resolved datasets and a compartmental mathematical model to

understand the effect of climatic covariates (such as rainfall and temperature) driving

snakebite dynamics in space and time. We applied this framework to Colombia and

found that dry seasons cause a decrease in snakebite incidence: Rainfall only drives snake-

bite dynamics in regions with marked dry seasons. Thus, rainfall is a limiting resource of

the system, and its effect is not spatially homogeneous. On the other hand, the tempera-

ture had no significant effect driving snakebite incidence. Our modeling approach can

also be used to estimate the effect of climate anomalies on snakebite incidence and has the

potential to be used as a tool to monitor snakebite incidence.

Introduction

Snakebite envenoming is the neglected tropical disease (NTD) with the highest mortality rate,

but despite its importance, data collection is challenging, and the actual disease burden is

underestimated [1,2]. The most reliable estimates are at least 1.8 million cases with 435.000

deaths each year. However, this data can underestimate the real burden because patients prefer

seeking traditional medicine instead of allopathic medicine, and mortality data do not quantify

the morbidity associated with physical and mental disabilities caused by some snakebites [3–

9]. Estimating the real burden is crucial to understand the ecological characteristics that modu-

late human-snake encounters, where the climate can play an important role in driving the

ecology of venomous snakes [10–13]. Although several studies have estimated snakebite risk’s

spatial and temporal heterogeneity based on statistical analyses and climatic variables, the

nature of these models is empiric: Their main findings are important correlations between

snakebite risk and covariates [7,14–17]. Thus, their usage as disease monitoring tools is limited

due to their correlational nature, which mostly hides reality’s complexity [1,18,19].

Compartmental modeling has emerged as a tool to understand the processes underlying

disease transmission, and it has been used widely for several NTDs [20–25]. This modeling

approach subdivides population into a set of compartments, where flows represent movement

between the compartments. Usually, these flows are important parameters, e.g., incidence,

mortality, and recovery rate. Thus, covariates can affect specific flows in the model, allowing

us to understand the relationship between covariates and disease spread and making the

model flexible and an excellent tool for generating fundamental knowledge about the basic

mechanisms behind disease spread [26]. Contrarily, empirical and correlational approaches

use general equations and parameters not based on disease dynamics, contributing with a

more general knowledge about the general behavior of disease spread [20,26]. Even so, com-

partmental models rely strongly on disease’ ecology knowledge, and as in empirical models,

the quality of the data. For example, although snakebite envenoming is not an infectious dis-

ease, it is caused by the interaction between humans and venomous snakes, and that interac-

tion can be modeled similarly to an infectious disease. A previous study demonstrated that the

main assumption of several compartmental models (the law of mass action) could explain

snakebite geographical variation in Costa Rica [27]. By combining compartmental models

with spatial and temporal surveillance data, it is possible to have reliable estimations for multi-

ple epidemiological parameters and to perform fine political scale extrapolations of the model

on other countries with different covariates, making these models a valuable tool to under-

stand, manage and control several NTDs [28,29].

PLOS NEGLECTED TROPICAL DISEASES Quantifying the spatiotemporal role of rainfall and temperature on snakebite dynamics

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010270 March 31, 2022 2 / 16

figshare.15029700, (https://figshare.com/s/

305c1d006d433debe14d).

Funding: This study was partially supported by:

Minciencias, Colombia (https://www.minciencias.

gov.co/), Application 727 for doctoral student to

CBV, and Universidad de los Andes, Colombia

(https://uniandes.edu.co/), Funding program for

doctoral students, awarded to CBV. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0010270
https://doi.org/10.6084/m9.figshare.15029700
https://figshare.com/s/305c1d006d433debe14d
https://figshare.com/s/305c1d006d433debe14d
https://www.minciencias.gov.co/
https://www.minciencias.gov.co/
https://uniandes.edu.co/


To apply compartmental modeling to snakebites, it is essential to understand the most

important venomous snake species ’ biology, which is often poor [11,30]. In the Neotropics,

one of the most important venomous snake groups is the genus Bothrops (Wagler, 1824),

which is distributed broadly from southern Mexico to northern Argentina and causes the

majority of envenomings in this area [31–33]. This genus is viviparous with an average clutch

size between 3.5–37 offsprings, mainly during the rainy season [10,12,34–36]. This seasonal

dynamic usually increases the venomous snake population during the rainy season, thus

increasing snakebite risk during this period. Additionally, rainy seasons can cause flooding,

habitat perturbation, and increased prey abundance, making venomous snakes more active,

resulting in an additional increase in snakebite risk [37–39]. Previous studies have found that

snakebite temporal dynamics tend to be related to seasonal rainfall patterns in tropical coun-

tries such as Costa Rica and Sri Lanka, but these studies did not account for climatic heteroge-

neity [15,16]. Later, in Sri Lanka a study used multivariate Poisson process modeling to

evaluate the spatio-temporal association between incidence and climatic and socioeconomic

variables, thus finding the spatio-temporal apparition of hotspots in that country [40]. There-

fore, the spatial heterogeneity of the temporal association between climate and snakebite inci-

dence has been addressed by statistical modeling rather than more robust modeling

approaches such as compartmental modeling, and it has not been studied in neotropical

countries.

Colombia is an ideal setting to study this spatial heterogeneity given its location with

diverse climatic conditions, where different regions have different rainfall and temperature

patterns [41]. In the country, snakebite is a severe public health problem, where recent reports

account for around 4500 envenoming cases with at least 40 deaths each year, and two species

(Bothrops asper and Bothrops atrox) cause most envenoming’s [42,43]. In this study, we devel-

oped and calibrated a compartmental model that can disentangle the role of rainfall and tem-

perature on snakebite temporal patterns. We used compartmental stochastic models

combined with iterated filtering statistical inference methods to explore the role of these cli-

matic drivers on snakebite temporal patterns and to understand this association’s geographic

distribution.

Materials and methods

We followed four steps to develop and fit a compartmental modeling approach that accounts

for the role of temperature and rainfall on snakebite dynamics. i) We developed two compart-

mental models for national data to determine the effect of temperature and rainfall driving

national snakebite incidence. ii) We divided the country into six regions with similar rainfall

patterns: This had the aim to aggregate municipality data within these regions to reduce noise

caused by the low occurrence of snakebites and heterogeneous climate patterns. iii) We pro-

posed a modeling scheme with different compartmental models to test hypotheses for the asso-

ciation between rainfall and snakebite incidence for the country’s six regions. iv) We fitted our

modeling scheme in each region using an iterated filtering approach that maximizes likelihood

[44].

Climate and incidence data

Incidence data. We got publicly available snakebite incidence data between January of

2010 to the end of October of 2016 from the Sistema Nacional de Vigilancia en Salud Pública

(SIVIGILA) of Colombia. This dataset is reported in epidemiological weeks, and it details the

number of cases for each municipality (the smallest political unit in the country). We only

worked with municipalities that reported snakebite for all the study years. First, we looked at
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the epidemiological calendar of Colombia to convert the timescale of the reported cases from

epidemiological weeks to months. We aggregated the weekly reported cases for each month.

Then, for weeks that overlapped between two months, we distributed the cases by weighting

them based on the number of days of the week that belong to each month. Finally, we removed

the temporal trend of the timeseries using a locally estimated scatterplot smoothing (‘stats’

package, R environment v. 4.1.1. [45,46]) to only account for seasonality and inter-annual vari-

ation in the data.

Rainfall and temperature data. We got monthly raster maps for minimum and maxi-

mum temperature and rainfall for Colombia between the year 2010 to the end of October 2016

with a resolution of ~ 21.23 km2 from TerraClimate dataset (http://www.climatologylab.org/

terraclimate.html) [47]. In addition, we removed climate data from areas where the two most

important venomous snakes’ species in the country are absent by using an altitude threshold

of 1900 m.a.s.l. for Bothrops asper and of 1500 m.a.s.l. for Bothrops atrox, which are the species

that cause most envenomings in the country [33].

Clustering of regions with similar rainfall pattern. We used a clustering algorithm over

rainfall maps to define regions with similar rainfall patterns. Given that we had monthly maps

in raster format, each pixel has a rainfall value in a specific month in the area in this pixel;

thus, each pixel contains a time series. Before performing the clustering algorithm, we first

reduced the resolution of rainfall maps by a factor of 12, where the resolution of the new

monthly rainfall maps was 12 times the previous resolution (~ 254 km2). Then, the clustering

algorithm groups pixels based on the similarity of the shape of their rainfall time series, where

each resulting group of pixels will represent a region with a similar rainfall pattern. Finally, we

used a k-shape algorithm to cluster pixels by using a distance matrix constructed with a shape-

based distance [48]. These clustering algorithms use the required number of groups as a

parameter (i.e., the number of final regions N, so the algorithm will classify each pixel in each

one of these N regions), so it is necessary to determine the optimal number of clusters. We

evaluated clustering performance between N = 2 and N = 10 regions by using the silhouette

(SIL) and Davies-Bouldin star (DB star) indices. These indexes evaluate the capacity of the

clustering algorithm to group data by compensating the number of clusters. Thus, we

selected the optimal number of clusters by searching the minimum DB star and maximum SIL

indexes [49]. The result of this algorithm is a map that defines regions with similar rainfall pat-

terns, and this algorithm was made by using the package dwtclust in R environment v. 4.1.1.

[50].

Generating incidence and precipitation data for each region. We calculated the average

rainfall in each region by computing the mean of rainfall maps’ pixels in each region. Then, to

compute average incidence in each region, we first rasterized municipality-scale incidence and

normalized it by the number of pixels contained in each municipality. This normalization gen-

erates raster maps of monthly incidence per pixel. Finally, we summed the incidence per pixel

for all pixels contained in each region. Given that we normalized the rasterized incidence by

the number of pixels per each municipality, incidence per region will not be inflated after sum-

ming incidence per pixel (i.e., National incidence by summing incidences for all municipalities

and by summing incidence over all regions is the same). Nevertheless, this incidence distribu-

tion has the important assumption of spatial homogeneity within each municipality. There-

fore, we did the same process for the total population for each municipality, where we got the

total population from the national statistics department DANE. The outputs of this process

are: i) Monthly precipitation for each region from 2010 to October of 2016, ii) Monthly

reported incidence for each region for the same timespan, iii) Total average population for the

same timespan for each region.
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Compartmental models

We formulated our compartmental models by assuming that incidence is proportional to the

susceptible population (S) and that the parameter representing this proportionality is β: The

encounter frequency with venomous snakes. We also implemented a normal random noise to

this frequency, the parameter eps. Additionally, we assumed that each time step a proportion γ
of the envenomed population (E) recovers from the envenomation (Fig 1A, see S1 Text for a

detailed explanation). The first model (Model 1) is our null hypothesis where climate

Fig 1. General compartmental model and proposed modeling scheme. A. General compartmental model. Our

general model assumes two populations: Susceptible (S) and Envenomed (E). We defined the flow from S to E as the

new envenoming cases per unit of time, which is the incidence. This incidence depends on a gaussian noise (eps), the

encounter frequency parameter (β, view [27] for details), and S. By assuming a constant population, we defined a

discrete model that only depends on E. B. Compartmental modeling scheme. We defined this scheme to test the

effect of climatic covariates on snakebite incidence. First, we tested if the climatic covariate drives snakebite incidence

by comparing between a Model where contact rate is constant (Model 1) with a model where this contact rate is

modulated by a type III functional response (Model 2). In Model 2, we tested three climatic covariates for national

data: Maximum temperature, Minimum temperature and Rainfall. Given that nationally only rainfall modulates

snakebite incidence, we did the regional modeling scheme by only using rainfall variables. Then, in regions where

Model 1 adjusted better data than Model 2 (Areas where incidence is not modulated by climatic covariates), we tested

with Model 3 for rainfall-independent seasonality in incidence timeseries. Finally, in regions where Model 2R (Model 2

with rainfall as covariate) adjusted better data, we tested if the seasonal component of this rainfall (Rainfall-driven

seasonality) is the driver behind this association by using Model 4.

https://doi.org/10.1371/journal.pntd.0010270.g001
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covariates do not modulate this encounter frequency, but the second model does. We first

used both models for national data by including as covariates for Model 2 maximum and mini-

mum temperature and rainfall in independent models. In these second models (Model 2R:

Rainfall, Model 2MXT: Maximum temperature, Model 2MNT: Minimum temperature), we

established the relation between β and climate covariates as a type III functional response

(View Fig 1B).

Afterwards, we fitted the models to our defined regions to test how rainfall modulates

snakebite incidence. We did not use Model 2MXT and Model 2MNT in clustered regions

because we did not find any relationship between both variables and incidence in national

data (View Fig 2). To test if incidence has rainfall-independent seasonality in regions where

rainfall does not drive incidence (Model 1 adjusted better data than Model 2R), we proposed a

third model (Model 3), which uses 4 B-splines: Here β is a linear combination of the four B-

splines. These splines are functions that make seasonal peaks on different months of the year

(View Fig A in S1 Text). Finally, Model 4 tests if the seasonal component of rainfall (Rainfall-

driven seasonality) is the mechanism that modulates snakebite incidence in regions where

Model 2R fitted data better than Model 1. To extract the seasonal component of rainfall, we

used the algorithm based on local regression described in [46]. The four models that compose

our modeling scheme can be seen in Fig 1B. (View S1 Text for details).

Fig 2. Climatic data and results of the modeling scheme applied to national data. We show the results of the best

model (Model 4) and the models with temperature covariates (Model 2MXT and Model 2MNT) for national data.

Climatic data shows the climatic covariates used per each model, and the simulation after parameter adjustment

represents the model with the best combination of parameters that capture incidence dynamics. Note that the best

model (Model 4) had lower AIC than the other models and note the difference between rainfall-driven seasonality

(Dashed light-blue line) and rainfall signal (Dark blue line). In the simulations, Model 4 captures better incidence

seasonality than Model 2MXT and Model 2MNT, where the median of the simulations (Dashed red line) is relatively

constant.

https://doi.org/10.1371/journal.pntd.0010270.g002
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Fitting compartmental models to snakebite incidence data. We assumed the process of

snakebite envenoming described by compartmental models as a partially-observed Markov

process (POMP), where we can declare an observation model to estimate the error of data-

reporting [44]. This observation model was a Poisson process, and the mean of this Poisson

model is the monthly flow of people between S (Susceptible population) and E (Envenomed

population). This flow is the reported incidence, and it is modeled as the expression shown in

the arrow between S and E in Fig 1A.

Before estimating the parameters with the maximum likelihood, we detrended rainfall as

we did with incidence [46], and we normalized detrended rainfall between 0 and 1. Then, we

estimated the parameters that maximize the likelihood between our model and the data by iter-

ated particle filtering, where we defined a parameter space between the biological limits of the

values of the parameters of the models. We defined a random walk for each point in the

parameter space, so the algorithm computes the likelihood for each combination of parame-

ters. Finally, the algorithm converges when the likelihood reaches a “global” maximum (See S2

Text for details) [44]. To fit models, we used the ‘pomp’ package in R v. 4.1.1. (40).

Best model selection. After computing the parameter combinations that maximize likeli-

hood per model per region (View next section), we compared models’ performance using the

Akaike information criterion (AIC) to weight model capacity to represent data by its number

of parameters. Thanks to this criterion, we were able to choose the best model for each region

and evade overfitting caused by redundant model complexity, and we used a between-model

threshold of 2 AIC units to determine significant differences [51,52]. We first selected the best

model between Model 1 and Model 2R for every region, so if Model 2R outperforms Model 1,

then rainfall explains the dynamics of snakebite. Then, for regions where Model 2R outper-

formed Model 1, we used Model 4 to test if rainfall-driven seasonality is the mechanism behind

the association in both. Finally, for regions where Model 1 outperformed Model 2R (no associ-

ation between rainfall and snakebite incidence), we used Model 3 to test any rainfall-indepen-

dent seasonality in data.

Results

In Colombia, between 201 and 422 envenomings are reported every month, with an average of

3659 cases per year (Min: 3135 cases in 2010, Max: 4089 cases in 2015). We found that the

number of reported cases has increased with time (Pearson correlation coefficient: 0.58, p-

value < 0.05), a result that the improving reporting system and population growth might

cause rather than an increase in the actual incidence. After model selection for national data,

Model 2MXT and Model 2MNT had a greater AIC value than the Model 1 (AIC for Model 1:

812.22, Model 2MXT: 819.31, Model 2MNT: 816.38); hence the temperature does not explain

incidence variation in the country. On the other hand, the best model for rainfall was Model 4

(AIC: 793.323), where rainfall-driven seasonality is the driver that modulates snakebite inci-

dence dynamics in the country (View Fig 2).

The clustering algorithm determined an optimum number of 6 regions based on the mini-

mum David-Boulin star index value (0.74) and a silhouette index located in the first quantile

of the index distribution (Silhouette index for 6 clusters: 0.46, maximum Silhouette index: 0.5

for 12 clusters) [49]. The identified clusters are shown in Fig A in S2 Text, defining the regions:

1. South-west, 2. Andean-Pacific, 3. Orinoco-Amazonian piedmont, 4. Central Amazonas, 5.

Eastern Orinoco plains, and 6. Caribbean coast.

We fitted our compartmental modeling scheme for every region after defining these six

regions with similar rainfall patterns. Interestingly, a diverse pattern of associations between

rainfall and incidence throughout the 6 regions of the country was found. For example, we
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found that rainfall does not drive snakebit incidence in three regions (region 1, 2, and 4) (View

Fig 3). Regions 1 and 4 did not exhibit a seasonal component on its incidence (Model 1), while

region 2 has a rainfall-independent seasonal component (Model 3). On the other hand, the

incidence in regions 3, 5 and 6 is associated with rainfall-driven seasonality (Model 4), indicat-

ing that the seasonal component of rainfall signal is the one that modulates snakebite incidence

dynamics (View Fig 4). The AIC values of the adjusted models for each region are shown in

Table 1.

We found that the confidence intervals of the parameters determine the association

between rainfall and snakebite incidence (View Table A in S2 Text). The confidence intervals

for the parameter K in Model 2R (model with rainfall as a covariate) are undetermined in

regions where the best model was Model 1, which cancels the type III functional response

Fig 3. Best models in regions where rainfall does not drive snakebite incidence. Rainfall does not modulate

snakebite incidence in three regions of the country, region 1, region 2, and region 4. A rainfall-independent seasonal

component (Model 3) modulates snakebite incidence in region 2. This component depends on 4 B-splines (Dashed

lines in climatic data plot in region2), not related to rainfall. The best model for regions 1 and 4 was Model 1, where

incidence does not have seasonality and is not associated with rainfall. Note the difference between the median of the

simulations (dashed red line) for region 2 and regions 1 and 4, wherein region 2 this median has seasonal peaks while

in region 1 and 4 is relatively constant. Base map of national boundaries of Colombia was obtained from DIVA-GIS

free spatial data (https://www.diva-gis.org/datadown).

https://doi.org/10.1371/journal.pntd.0010270.g003
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(View Table A in S2 Text). Finally, we found that in regions where rainfall-driven seasonality

modulates snakebite incidence (region 3, 5 and 6), cases decrease during the dry season, and

these regions have the minimum monthly rainfall (region 3: 7.02 mm, region 5: 14.88 mm,

region 6: 2.73 mm) during the dry season (View Fig 4).

Discussion

Our study explores the role of rainfall and temperature modulating snakebite incidence

dynamics in different Colombian regions. We found that envenoming seasonality is signifi-

cantly explained by rainfall-driven seasonality at the national level, but not by temperature.

However, the association between incidence and rainfall is only present in certain regions with

Fig 4. Best models in regions where rainfall drives snakebite incidence. Rainfall modulates snakebite incidence in

three regions of the country, region 3, region 5, and region 6. For all regions, the best model was Model 4 that includes

rainfall-driven seasonality as covariate (Dashed light-blue lines in climatic data). Note how all the medians for the

simulations (dashed red lines) have seasonal peaks throughout the years, showing the association between rainfall-

driven seasonality and snakebite incidence. Also, it is evident how incidence in region 6 is significantly higher than in

the other regions. Base map of national boundaries of Colombia was obtained from DIVA-GIS free spatial data

(https://www.diva-gis.org/datadown).

https://doi.org/10.1371/journal.pntd.0010270.g004
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marked seasonal rainfall patterns. Our results suggest that national snakebite incidence has two

seasonal peaks modulated by rainfall-driven seasonality, the first occurring between April and

June, and the second around October (View Fig 2). This association at the national level can be

explained in region 6 (Caribbean coast and Low-Magdalena region) contributing to 54% of the

national cases: In this region, incidence also exhibited a significant association with rainfall-

driven seasonality (View Fig 4). Therefore, inferring snakebite dynamics based only on national

results should be done carefully: In region 2 (Andean and pacific regions), the peak of enve-

nomings occurs during the beginning of the year, and they are modulated by rainfall-indepen-

dent seasonality, in contrast with the national trend (View Fig 3). Contrary to other studies

about snakebite seasonality that have used national incidence data [15,16], our study compares

snakebite risk between different regions by analyzing hypotheses represented by compartmental

models: National-aggregated analyses can largely neglect the geographical heterogeneity in the

association between snakebite and temporal drivers, as it was shown in [40].

Spatial distribution of snakebite risk in Colombia

By looking at the null model (No rainfall, temperature, nor rainfall-independent seasonality as

covariates, Model 1), the parameter β represents a “constant” snakebite risk or encounter fre-

quency with venomous snakes as described in [27]. Therefore, the likelihood profile over this

parameter (View Table A in S2 Text) and its confidence intervals (View Fig B in S2 Text) can

be used to compare risk between regions: The regions with the highest risk (region 1, 3, 4, and

5) have the presence of B. atrox [33,53], while regions with B. asper (regions 2 and 6) are the

regions with the lowest risk. This effect can be caused by ecological differences between both

species, which makes B. atrox more dangerous or abundant than B.asper, or by economic or

sociological differences that can increase the exposure to snakebite of inhabitants of these

regions. Sadly, biological information about venomous species in the country is scarce, so it is

difficult to determine the cause of these high-risk regions [11,30,33,53,54].

Temporal patterns of snakebite incidence in Colombia

We found that regions with the highest coefficient of variation for rainfall, which determines

how seasonal is the temporal pattern of precipitation (regions 3, 5, and 6, View Table B in S2

Text), have their reported incidence modulated by rainfall-driven seasonality, where incidence

decreases during dry seasons (Model 2R explained snakebite incidence better than Model 1).

Thus, a strong seasonality on rainfall, characterized by marked dry and rainy seasons,

Table 1. AIC for fitted models.

AIC

Model 1 Model 2R Model 3 Model 4

Region 1 467.521,2 467.04 470.18 -

Region 2 578.61 582.58 564.982 -

Region 3 583.12 580.91 - 574.693

Region 4 386.521,2 390.5 392.7 -

Region 5 501.94 488.121 - 480.93

Region 6 769.68 752.861 - 726.843

1 Best model between model 1 and model 2 (Does rainfall drive snakebite incidence?)
2 Best model between model 1 and model 3 for regions where rainfall does not drive snakebite incidence (Is snakebite incidence modulated by rainfall-independent

seasonality?)
3 Best model between model 2 and model 4 for regions where rainfall drives snakebite incidence (Do rainfall-driven seasonality drives snakebite incidence?)

https://doi.org/10.1371/journal.pntd.0010270.t001
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determines the association between snakebite incidence and rainfall in Colombia. Therefore,

we propose that rainfall acts as a limiting resource in snakebite dynamics in Colombia: The

association between snakebite incidence and rainfall in Colombia is mediated via marked dry

seasons, which cause a decrease in venomous snakes’ activity, abundance, and finally, snake-

bite risk [37,55].

Another important time series seasonality measurement is the strength of seasonality,

which compares the variance in the noise component of the time series with the variance in

the seasonal component [33]. Rainfall seasonal strength was considerably lower in regions

where we did not find an association between precipitation and incidence; consequently, the

rainfall signal in these places is noisy and does not have a clear temporal periodic trend (View

Table B in S2 Text and Fig C in S2 Text). It is important to clarify that region 1 has a part

located in the Pacific versant, and another is located in the Amazonian versant, which are two

distinct ecological regions with different diversity of venomous snakes, but a similar rainfall

pattern [33,53,56]. Thus, these differences in venomous snakes’ diversity and ecology can

explain the high noise over incidence time-series in this place. We recommend investigating

more deeply the association between rainfall and incidence in this region, where data from

Ecuador, which is the neighboring country to this area and has the same species composition

in the Pacific and Amazonian versant [53], can help to clarify the dynamics of snakebite inci-

dence in this region.

The mechanisms behind the association between rainfall and snakebite incidence patterns

are still unclear. However, we want to propose three not mutually exclusive hypotheses to

explain this binding: i) Several neotropical snakes, including some species of the genus

Bothrops, have their reproductive cycle related to precipitation pattern: Gravid females give

birth to neonates at the beginning of the rainy season, thus increasing the abundance of ven-

omous snakes and the probability of encounter between humans and venomous snakes

[10,11]. For example, in Costa Rica, the reproductive cycle of Bothrops asper is known, and the

seasonality of snakebite incidence is driven by the population dynamics of this species [11,15].

These dynamics can explain the rainfall-independent seasonality of incidence found in region

2, and the association between incidence and rainfall-driven seasonality found in region 6.

Nevertheless, Bothrops asper populations in Colombia are genetically different from popula-

tions in Costa Rica, so population dynamics between both populations may vary [57]. In addi-

tion, it is known that in Brazilian Amazonas, the reproductive cycle of Bothrops atrox is not

seasonal, where births occur during most of the year [12]. This can explain why snakebite inci-

dence is not associated with precipitation or rainfall-independent seasonality in region 4 (cen-

tral Amazonas), but for regions 3 and 5, where Bothrops atrox is also present, the incidence is

modulated by rainfall-driven seasonality. ii) Precipitation can affect the ecology of venomous

snakes, either by causing floods which decrease the not flooded area that snakes and humans

share, therefore raising the contacts between both populations, or by increasing ecosystem

productivity: More prey will be available, so snakes could be more active thus increasing

snakebite risk [11]. iii) During rainy seasons, agricultural and cattle productivity increases,

causing an increase in the number of farmer workers at risk of encountering a venomous

snake [58]. Given that ecological information about venomous snakes is non-existent in

Colombia, fieldwork must be done to determine how these three rainfall-related events affect

snakebite incidence temporal patterns and determine risky seasons.

Final remarks

Our modeling framework can describe the dynamics of snakebite incidence in Colombia. We

believe this modeling framework can be used easily in other countries to monitor snakebite
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incidence and to improve disease management under changing environments. It is crucial to

account for regions with different precipitation patterns to determine spatially heterogeneous

snakebite dynamics, which was also addressed recently in [40] by statistical modeling. These

results demonstrate how countries affected by snakebite can determine in which regions and

in which time they need more antivenom, and how to distribute this scarce resource more

accurately. This strategic distribution can help decreasing disease burden because most places

affected by snakebite have a deficit in antivenom coverage [4,5,7,19]. In addition, determining

the ecological mechanism behind model-estimated snakebite temporal patterns can help to

develop prevention strategies to decrease the burden of this severe NTD.

We used a compartmental model to understand the temporal patterns of snakebite inci-

dence by using as explanatory variables rainfall, temperature, and a rainfall-independent sea-

sonal component. Given that these models are robust and their structure is based on the

available knowledge behind the causes of the disease, several modifications, hypotheses and

extrapolations can be tested: We encourage researchers to use this modeling scheme to under-

stand snakebite epidemiology in other countries. For example, in contrast with statistical

modeling, in our compartmental models, the estimated value for the parameters represents

characteristics of the ecology of the disease (i.e., encounter frequency β
�

has units of the num-

ber of encounters with venomous snakes that ends in a snakebite per unit of time). Even so,

our approach is a first step in the development of a better understanding and prediction of

snakebite epidemiology by mathematical modeling: Epidemiological models are more refined

models that explicitly use information on snake abundance instead of the mentioned environ-

mental proxies, which can deal with the correlation-causality ambiguity that is still present in

our approach.

Epidemiological models have been used in several neglected tropical diseases caused by

zoonosis, where the basic biology of the hosts involved in disease transmission is known and

modelled [59–62]. Thanks to this synergy between mathematics and biology, more specific

control programs have been proposed to control the disease burden over an infected popula-

tion [29,63–65]. Thus, as it has been proposed before, the role that the biology of venomous

snakes plays behind snakebite epidemiology is important, but it is still neglected: We want to

encourage the study of the natural history of venomous snakes to fill this enormous vacuum of

information that limits the understanding of snakebite, and which can be used to generate

more robust epidemiological models by including venomous snakes population dynamics.

Finally, an interdisciplinary approach must be undertaken to decrease the high burden of this

NTD, and to help contribute to the WHO target to reduce snakebite fatality by 30% by the end

of 2050 [66].

Supporting information

S1 Text. Compartmental models and B-splines. This section contains the development and

explanation of the models. We used four models in our modeling framework to determine the

association between climatic covariates and snakebite incidence, which are explained in Fig A.

(DOCX)

S2 Text. Settings for parameter estimation and model selection, clustered regions with

similar rainfall patterns, confidence intervals after parameter adjustment, and seasonal

parameters for rainfall over study areas. We used a Poisson process to model data gathering,

and then we used a particle filtering algorithm in two steps to adjust our modeling scheme to

the data. This process is explained here. Fig A shows the results of the regions with similar

rainfall patterns after clustering algorithm. Table A shows the confidence intervals for all

parameters in all models after particle filtering algorithm. Fig B compares the adjusted
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encounter frequency for MODEL 1 between all regions, showing that regions where Bothrops
atrox is distributed share the highest values. Table B shows seasonal parameters for rainfall in

our defined regions and Fig C contains the seasonal distribution of rainfall over clusterized

regions.

(DOCX)

Acknowledgments

We thank to Juan Daniel Umaña, Daniela Angarita, Norma Forero, Gabriela Navas and Carlos

Cruz for the teamwork doing preliminary statistical analyses, Alejandro Feged for his support

at the beginning of the project, and Mahmood Sasa and Camila Renjifo for their support dur-

ing the study analysis.

Author Contributions

Conceptualization: Carlos Bravo-Vega, Juan Manuel Cordovez.

Data curation: Carlos Bravo-Vega, Mauricio Santos-Vega.

Formal analysis: Carlos Bravo-Vega, Mauricio Santos-Vega.

Funding acquisition: Juan Manuel Cordovez.

Supervision: Juan Manuel Cordovez.

Validation: Carlos Bravo-Vega, Mauricio Santos-Vega.

Visualization: Carlos Bravo-Vega.

Writing – original draft: Carlos Bravo-Vega.

Writing – review & editing: Carlos Bravo-Vega, Mauricio Santos-Vega, Juan Manuel

Cordovez.

References
1. Gutiérrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, et al. The Need for Full Integra-

tion of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases:

The Way Forward. PLoS Negl Trop Dis. 2013; 7: e2162. Available: https://doi.org/10.1371/journal.pntd.

0002162 PMID: 23785526

2. Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim

Toxins Incl Trop Dis. 2017; 23: 1–2. https://doi.org/10.1186/s40409-017-0127-6 PMID: 28804495

3. WHO. WHO | Prevalence of snakebite envenoming. WHO. 2017 [cited 18 Oct 2018]. Available: http://

www.who.int/snakebites/epidemiology/en/

4. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming.

Nat Rev Dis Prim. 2017; 3: 17063. https://doi.org/10.1038/nrdp.2017.63 PMID: 28905944

5. Gutierrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Tox-

icon. 2012; 60: 676–687. https://doi.org/10.1016/j.toxicon.2012.02.008 PMID: 22781134

6. Gutiérrez J. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories.

Toxins (Basel). 2018; 11: 5. https://doi.org/10.3390/toxins11010005 PMID: 30586868

7. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R,

et al. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Esti-

mates of Envenoming and Deaths. Winkel K, editor. PLoS Med. 2008; 5: e218. https://doi.org/10.1371/

journal.pmed.0050218 PMID: 18986210

8. World Health Organization (WHO). Snakebite envenoming. In: World Health Organization (WHO)

[Internet]. 2021. Available: https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming

9. Ediriweera DS, Kasturiratne A, Pathmeswaran A, Gunawardena NK, Jayamanne SF, Lalloo DG, et al.

Health seeking behavior following snakebites in Sri Lanka: Results of an island wide community based

PLOS NEGLECTED TROPICAL DISEASES Quantifying the spatiotemporal role of rainfall and temperature on snakebite dynamics

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010270 March 31, 2022 13 / 16

https://doi.org/10.1371/journal.pntd.0002162
https://doi.org/10.1371/journal.pntd.0002162
http://www.ncbi.nlm.nih.gov/pubmed/23785526
https://doi.org/10.1186/s40409-017-0127-6
http://www.ncbi.nlm.nih.gov/pubmed/28804495
http://www.who.int/snakebites/epidemiology/en/
http://www.who.int/snakebites/epidemiology/en/
https://doi.org/10.1038/nrdp.2017.63
http://www.ncbi.nlm.nih.gov/pubmed/28905944
https://doi.org/10.1016/j.toxicon.2012.02.008
http://www.ncbi.nlm.nih.gov/pubmed/22781134
https://doi.org/10.3390/toxins11010005
http://www.ncbi.nlm.nih.gov/pubmed/30586868
https://doi.org/10.1371/journal.pmed.0050218
https://doi.org/10.1371/journal.pmed.0050218
http://www.ncbi.nlm.nih.gov/pubmed/18986210
https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
https://doi.org/10.1371/journal.pntd.0010270


survey. PLoS Negl Trop Dis. 2017; 11: e0006073. https://doi.org/10.1371/journal.pntd.0006073 PMID:

29108023
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20. Brauer F, Castillo-Chávez C. Mathematical models in population biology and epidemiology. Springer;

2012.

21. Otero M, Solari HG. Stochastic eco-epidemiological model of dengue disease transmission by Aedes

aegypti mosquito. Math Biosci. 2010; 223: 32–46. https://doi.org/10.1016/j.mbs.2009.10.005 PMID:

19861133

22. Birget PLG, Koella JC. An epidemiological model of the effects of insecticide-treated bed nets on

malaria transmission. PLoS One. 2015; 10. https://doi.org/10.1371/journal.pone.0144173 PMID:

26636568

23. Erazo D, Cordovez J. Modeling the effects of palm-house proximity on the theoretical risk of Chagas

disease transmission in a rural locality of the Orinoco basin, Colombia. Parasites and Vectors. 2016; 9:

1–5. https://doi.org/10.1186/s13071-015-1291-6 PMID: 26728523

24. Erazo D, Cordovez J. The role of light in Chagas disease infection risk in Colombia. Parasites and Vec-

tors. 2016; 9: 9. https://doi.org/10.1186/s13071-015-1240-4 PMID: 26732186

25. Cordovez JM, Rendon LM, Gonzalez C, Guhl F. Using the basic reproduction number to assess the

effects of climate change in the risk of Chagas disease transmission in Colombia. Acta Trop. 2014; 129:

74–82. https://doi.org/10.1016/j.actatropica.2013.10.003 PMID: 24416781

26. Brauer F, Castillo-Chavez C, Feng Z. Mathematical Models in Epidemiology. New York, NY: Springer

New York; 2019. https://doi.org/10.1007/978-1-4939-9828-9
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52. Stocks T, Britton T, Höhle M. Model selection and parameter estimation for dynamic epidemic models

via iterated filtering: application to rotavirus in Germany. Biostatistics. 2020; 21: 400. https://doi.org/10.

1093/biostatistics/kxy057 PMID: 30265310

53. Valencia J, Garzón-Tello K, Barragán-Paladı́nes M. Serpientes venenosas del Ecuador: sistemática,
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