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Mercader

jperezmercader@fas.harvard.

edu

HIGHLIGHTS
Computations are

language recognition

events carried out by

‘‘computing automata’’

Chemical reactions are

molecular recognition

events equivalent to

automata

Words in a language can

be represented by

sequences of chemical

reactants

Inorganic reactions like

automata, including

Turing machines,

recognize languages
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SUMMARY

Every problem in computing can be cast as decision problems of whether strings are in a language or

not. Computations and language recognition are carried out by three classes of automata, the most

complex of which is the Turing machine. Living systems compute using biochemistry; in the artificial,

computation today is mostly electronic. Thinking of chemical reactions as molecular recognition

machines, and without using biochemistry, we realize one automaton in each class by means of one-

pot, table top chemical reactors: from the simplest, Finite automata, to the most complex, Turing

machines. Language acceptance/rejection criteria by automata can be formulated using energy con-

siderations. Our Turing machine uses the Belousov-Zhabotinsky chemical reaction and checks the

same symbol in an Avogadro0s number of processors. Our findings have implications for chemical

and general computing, artificial intelligence, bioengineering, the study of the origin and presence

of life on other planets, and for artificial biology.

INTRODUCTION

Computation is everywhere around us (Moore and Mertens, 2011; Rich, 2008) and is central to life on Earth.

Computation takes place not only in the myriad of electronic devices we use daily but also in living systems.

In life, biochemistry implements computation via the chemical properties of ‘‘organic’’ matter (Conrad,

1972; Katz, 2012), i.e., using chemical support: inputs are chemical substances, the mechanical processing

occurs via chemical reaction mechanisms, and the result is chemical before its transduction into specific

functionalities, chemical or otherwise.

More specifically, a computation is (Rich, 2008; Katz, 2012) the process by which information in sequences

belonging to a language and consisting of ‘‘symbols’’ in an alphabet are fed to a computing device

(‘‘automaton’’) that recognizes the symbols and is endowed with some rules that allow the automaton to

process the symbols according to these rules to eventually deliver an output, such as Acceptance or Rejec-

tion of the sequence as belonging or not to the language recognized by the automaton. The pattern of

symbols in the sequence is characteristic of the language to which the sequence belongs. We can interpret

this process as a metaphor for a chemical reaction or combination of chemical reactions, as one can think of

chemical reactions as the result of molecular recognition events that occur precisely, predictably, and

repeatably.

Then, we can ask if the power and complexity of biochemistry are necessary to carry out computations using

only chemistry. To do so it is useful to recall that languages are classified into an inclusive hierarchy, the

Chomsky hierarchy (Rich, 2008; Hopcroft et al., 2007; Chomsky, 1956; Sudkamp, 2006) (cf. Table 1), and

that there is a direct correspondence between language complexity and the capabilities of the automata

that recognize the language. The most powerful automata are the Turing machines (Turing, 1936).

We answer the aforementioned question by providing non-biochemical realizations of the automata using

non-biochemical reactions running in a ‘‘one-pot reactor,’’ that is, in a single well-mixed container where

multiple rounds of reactions can take place. We do not need any intermediation from either external

geometrical aids to channel and direct the chemical fluids or from reactions involving complex biomole-

cules. To carry out computations we rely fully on the power of molecular recognition associated with the

occurrence of chemical reactions and the robustness provided by an Avogadro0s number of ‘‘processors’’

working simultaneously. For this, we will introduce in our experimental examples the means for the chem-

ical rendering (translation) of alphabet symbols, the chemical copy of the sequence (transcription), a means
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Grammars Languages Accepting Automata

Type 0 grammars,

phase-structure grammars,

unrestricted grammars

Recursively enumerable

Turing machine,

Non-deterministic

Turing machine

Type 1 grammars,

context-sensitive grammars
Context-sensitive

Linear-bounded automata

(Bounded tape-length

Turing machine)

Type 2 grammars,

context-free grammars
Context-free

One-Stack Pushdown

Automata

Type 3 grammars,

regular grammars,

left-linear grammars,

right-linear grammars

Regular

Deterministic Finite

Automata,

Non-deterministic Finite

Automata

Table 1. The Chomsky Hierarchy

Languages are generated by grammars. By gradually imposing restrictions on them (Hopcroft et al., 2007), grammars are

categorized into an inclusive four-level hierarchy, the Chomsky hierarchy. Type-0 are unrestricted grammars and Type-3

the most restricted. Type-1 grammars correspond to Type-1 Languages, which are also called Context Sensitive Languages

(CSL). Type-2 and Type-3 correspond to Context Free (CFL) and Regular (RL) languages, respectively. Each class of languages

in theChomsky hierarchy has been characterized as the languages generated by a family of grammars and accepted by a type

of machine. The relationships developed between generation and recognition are summarized in this table, which is adapted

from p. 338 of Sudkamp (2006). Type 0 and Type 1 grammars are accepted by Turing machines, hence the horizontal line in

the Table that separates them from Types 2 and 3.
to feed the sequence (i.e., input the individual symbols), a means to sequentially read the output of the pro-

cessed sequence, and an autonomous physicochemical indicator to identify the patterns corresponding to

sequences in the language recognized by the automaton. After the symbols are fed to the reactor, all the

processing and energy used are exclusively chemical. Our purpose is to explore and show how chemical

reactions, without using bio-chemistry, reaction-diffusion constructs, or any external auxiliary guidance,

do chemical sequence identification in a way equivalent to automata in abstract computations. (We will

call this ‘‘native chemical computation.’’) We will not attempt to establish any theory of the correspondence

between reaction complexity and automata.

Chemical computing has an interesting and very rich history, making it impossible to offer here a proper

review (for more detailed material cf., e.g., Katz, 2012). We will only highlight a few of its many key devel-

opments as they relate to the work we present here. In the early 1970s, Conrad (1972) studied how infor-

mation processing in molecular systems differs from electronic digital computing. The concept of a theo-

retical chemical diode first suggested by Okamoto et al. (1987) was further developed theoretically by

Hjelmfelt et al. (1991) to suggest that neural networks and chemical automata could be constructed con-

necting several chemical diodes. The Turing completeness of chemical kinetics was theoretically studied

by Magnasco (1997). The first experimental realization of chemical AND and OR logic gates using reac-

tion-diffusion was achieved by Tóth and Showalter (1995), followed by XOR gates (Adamatzky and Costello,

2002) and counters (Gorecki et al., 2003). Chemical logic gates are indeed still an active area of research

(Gentili et al., 2012; Wang et al., 2016) owing to the difficulties associated with linking many gates to carry

out more advanced or meaningful computations such as the ones required to Accept/Reject languages in

the Chomsky hierarchy (cf. Table 1). Native strictly chemistry-based computation can be argued (Katz, 2012)

to occur in life and has been demonstrated in practice using DNA (Adleman, 1994; Benenson, 2009) or the

properties of chromatin (Prohaska et al., 2010; Bryant, 2012). The computational power of DNA has also

been studied theoretically (Soloveichik et al., 2010). In summary, most artificial approaches to chemical

computing, inspired by living systems, focus on reaction-diffusion systems mostly representing logic gates

or use complex biomolecules to solve very specific problems. Finally, an example of a purely chemical, one-

pot, non-reaction-diffusion Turing Machine (Turing, 1936) implemented using the Belousov-Zhabotinsky

chemical reaction is contained in Pérez-Mercader et al. (2017).

In what follows we demonstrate native ‘‘one-pot-reactor’’ experimental realizations of computations for the

recognition of well-known languages at different levels in the Chomsky hierarchy and provide a comparison
iScience 19, 514–526, September 27, 2019 515



Figure 1. Schematics of Language Recognition by a Chemical Automaton

The chemical automaton comprises three subsystems: (1) a well-mixed reactor where computation takes place; (2) an input scheduler that feeds sequentially

the translation into chemical aliquots of the input word letters, one symbol at a time with an individual processing time t; and (3) a monitoring system to

record and follow the automaton0s response as a chemical metric. The chemical automaton produces distinct chemical signatures for accepted and rejected

inputs (cf. Figures 2 and 4). Just as its abstract counterpart, the chemical machine can reject strings during computation or at the end of computation.
of the corresponding chemical and abstract automata. We also present a suitable physico-chemical metric

to characterize the result of the automaton0s computation.
RESULTS AND DISCUSSION

Methodology Used to Implement One-Pot Native Chemical Computation

The input to be computed is represented by a sequence of symbols from a chemical alphabet in which each

letter corresponds (is translated) to a certain constant amount, or aliquot, of a carefully chosen reacting

chemical species. The input is added aliquot after aliquot to a one-pot reactor at constant time intervals

(Pérez-Mercader et al., 2017).

The processing of each letter (which is exclusively carried out by chemistry) consists of its chemical species

selectively activating specific pathways (Dueñas-Dı́ez and Pérez-Mercader, 2019) in a chemical reaction

mechanism and, correspondingly, altering the extent of reaction in a systematic way. Every symbol is

allotted a common time interval for processing before adding the next symbol. This interval was experi-

mentally selected on the basis of transient dissipation. Finally, the output of the computation is in the

form of a distinct chemical response; that is, for a given automata/language combination, the chemical

behavior associated with rejected sequences is different from the chemical behavior associated to

accepted sequences or ‘‘words in the language of the automaton’’ (Pérez-Mercader et al., 2017) (cf. Fig-

ure 1). The Result of the computation are reaction-generated signatures that do (Accept) or do not (Reject)

match a predetermined language and automaton-dependent physico-chemical pattern. Naturally, we

expect that such distinct chemical responses correspond to some distinct thermodynamic signatures as

well as pathways (Dueñas-Dı́ez and Pérez-Mercader, 2019).
516 iScience 19, 514–526, September 27, 2019



Our methodology is the following. First, we choose a specific and well-known language from a level in the

Chomsky hierarchy to be recognized by the chemical automaton. We then identify the class of abstract autom-

aton needed to recognize the language. We translate this into specific requirements for the automaton0s chem-

ical reactionmechanism and the natureof the involved chemical species (whether they are reactants, products or

intermediates). In turn, the chemical requirements guide us in the appropriate selection of chemicals to repre-

sent the symbols in the alphabet. Then, the specific quantitative recipes for the initial conditions and

alphabet aliquots are selected taking into account practical experimental realization considerations

(for example, so that the chemical reaction monitoring system allows the unimpeded detection of automaton

responses). Finally, a comprehensive set of sequences, somebelonging to the language acceptedby the autom-

aton and others not belonging to the language are tested experimentally.

Automata Hierarchy

As already mentioned, input of information for a computation involves (Rich, 2008; Hopcroft et al., 2007;

Brookshear, 1989; Cohen, 1991; Linz, 2012) sequences of symbols (strings) expressing said information in

some formal language L using an alphabet S. The strings are fed to an automaton that Rejects or Accepts

(recognizes) them as words in that language. This result can then be used for subsequent actions or func-

tions. Languages are generated by grammars and they can be classified in a multi-level inclusive hierarchy,

the Chomsky hierarchy (cf. Table 1).

Computing automata (Rich, 2008; Hopcroft et al., 2007; Cohen, 1991) consist of at least one ‘‘Finite Autom-

aton’’ (FA), one or more ‘‘tapes’’ and can have one or more ‘‘stacks.’’ The FA is a machine responding to

symbols in S, assumes a finite number of predetermined states, and produces some specific response de-

pending on tape-supplied input. The tape is a construct through which a problem-sequence of symbols is

sequentially fed to the FA. The tape can have specific symbols, such as ‘‘#’’, to indicate beginning and end

of sequence. When required by the nature of L, an FA can be complemented with a ‘‘stack’’ (Oettinger,

1961): another construct endowed with additional rules enabling temporary storage (memory) and retrieval

of information during computation.

In correspondence with the languages they accept and their place in the Chomsky hierarchy, automata

themselves can be classified into a hierarchy (Rich, 2008; Hopcroft et al., 2007; Brookshear, 1989; Cohen,

1991; Linz, 2012), which is shown in Table 1. The simplest, Finite Automata (FA), recognize Regular Lan-

guages. Next up in the hierarchy are one-stack Push Down Automata (1-PDA) recognizing Context Free

Languages. At the top of this hierarchy are Turing Machines (equivalent to a PDA with two or more stacks

[Minsky, 1961; Minsky, 1967]) which recognize Context Sensitive, Recursive, and Recursive Enumerable

Languages.

A Turing machine (TM) is an FA with a finite but potentially unbounded read-write tape and head (Harrison,

1978). Because in general it uses an unbounded tape the TM is a theoretical construction. However, in any

actual physical realization of a TM the tape is necessarily bounded (Minsky, 1967) and can, therefore, be

built from two stacks (Cohen, 1991; Searls, 2012; Floyd and Beigel, 1994). Such Turing Machines are called

Linear Bounded Automata (Harrison, 1978; Searls, 2012) and accept Context Sensitive Languages. (Note

that if the tape in this class of Turing machine is limited to n squares of tape then, by suitably enlarging

its alphabet to k-tuples, the automata can increase its effective tape size to k3n for any fixed k. Hence

the word ‘‘linear’’ in its name [Harrison, 1978].)

Next we provide detailed ‘‘one-pot-reactor’’ experimental realizations for one automaton in each of the

above-mentioned automata classes capable of recognizing well-known standard languages in the

hierarchy.

Chemical Finite Automaton

Chemistry easily carries out an FA computation. Any elementary bimolecular reaction in an aqueous

medium

A + B / C

recognizes a regular language (RL), the simplest languages (Hopcroft et al., 2007; Cohen, 1991). In fact,

this reaction recognizes the regular language L1 of all words with a pattern of at least one a and at least
iScience 19, 514–526, September 27, 2019 517



Figure 2. Experimental Recognition of Words in L1 and L2 by a Chemical Finite Automaton and a Chemical One-Stack Pushdown Automaton,

Respectively

In our realization of an FA (cf. Figure S1), the chemical signature for an accepted word in L1 is the formation of a white AgIO3 precipitate: sequence ‘‘aab’’ is

accepted (A, top), whereas sequence ‘‘aaa’’ (A, bottom) is rejected. The chemical signature for an accepted word in L2 by our realization of a one-stack PDA is

that the pH lies above or at the midpoint during the computation and exactly at the midpoint at the end of computation: sequences ()()(), (())(), and ((())) are all

accepted (see plots Ba to Bc), whereas sequences)()()( and ())()) are rejected upon reading the first and third symbol, respectively, as the pH falls below the

midpoint value (see plots Bd and Be). Sequence ()()(( is rejected at the end of computation since the final pH is above the midpoint (Bf). By using an

appropriate pH indicator, the chemical computation can be followed also by observing the color.
one b (Hopcroft et al., 2007; Cohen, 1991). (Note this does not involve counting or memory.) Before the

computation starts, the automaton, a continuously stirred reactor, contains only deionized water (cf. Fig-

ure 2). The input string can be chemically transcribed by rendering (translating) the a0s and b0s as aliquots
of species A and B. An input string (e.g., ‘‘aab’’, ‘‘baa’’, ‘‘ab’’, ‘‘aaabbbb’’) is sequentially fed to the

reactor from the left, at regular time intervals much longer than the (common) symbol-feed time. The

chemical state of the reactor changes accordingly. Words in L1 will generate chemical C. Thus, the pres-

ence of C in the reactor indicates that the machine has Accepted the string and becomes the result of

this computation.

A chemical realization of this FA is provided, for example, by the precipitation reaction:

KIO3 +AgNO3 / AgIO3 (s) + KNO3.

If during the computation a white precipitate of silver iodate is observed, the input string has been

Accepted, whereas if at the end of the string the solution is free from precipitate the string has been Re-

jected (cf. Figure 2A, Transparent Methods Section 1 and Figure S1).
518 iScience 19, 514–526, September 27, 2019



Alternatively, since we do our experiments at constant pressure and temperature, we could look at

the enthalpy yield (Dueñas-Dı́ez and Pérez-Mercader, 2019) Y
ðFAÞ
Enthalpy Endð%Þ defined as the ratio of reaction

(precipitation) enthalpy at the end of computation to the total enthalpy in the reactants. As expected,

we find that any word Not-Accepted by the FA gives Y
ðFAÞ
Enthalpy Endð%Þ= 0, whereas for Accepted words

Y
ðFAÞ
Enthalpy Endð%Þs0 (Dueñas-Dı́ez and Pérez-Mercader, 2019). (Note also that an ON-OFF switch is an FA

[Hopcroft et al., 2007] that can be appropriately represented by a straightforward combination of simple

reactions.)

Chemical One-Stack Push-down Automaton

Next in the language hierarchy are Context Free Languages (CFL) (Bar-Hillel et al., 1961). These require

counting and are recognized by one-stack PDAs: essentially an FA provided with one ‘‘stack.’’ The stack

can be used to store and read a string of arbitrary length but can only be modified at its top (think of

the stack as a cafeteria tray dispenser [Oettinger, 1961]). Operation ‘‘push’’ adds a new symbol to the

top of the stack, and operation ‘‘pop’’ removes a symbol from the top of the stack (Hopcroft et al., 2007;

Cohen, 1991). By analogy with its computer science counterpart the chemical realization of a stack requires

chemical intermediates acting as the product of one reaction (‘‘push’’) and as reactant for other reactions

(‘‘pop’’). We therefore need a system of multiple reactions that are interconnected through common inter-

mediate chemical species.

A typical CFL is the language L2 of well-balanced bracket-pairs (or Dyck words [Weisstein, 2009]): strings of

open ‘‘(‘‘ and closed ‘‘)’’ parentheses are well-balanced if during computation the number of ‘‘)’’ never ex-

ceeds the number of ‘‘(‘‘, and, at the end of computation the number of ‘‘(‘‘ equals the number of ‘‘)’’. The

sequences ()()(), ((())), and (()()) are examples of Dyck words.

For a chemical realization of a one-stack PDA parenthesis checker we can use a pH-reaction network (cf.

Transparent Methods Section 2). We transcribe the input string so that each ‘‘(’’ is an aliquot of a strong

base, such as Sodium Hydroxide, and the ‘‘)’’ is an aliquot of a weak (diprotic) acid, for example, Malonic

Acid, with volume selected to neutralize one aliquot of base to the first midpoint (Petrucci et al., 2011).

Finally, the beginning and end of expression symbol ‘‘#’’ will be an aliquot of a pH indicator, e.g., Methyl

Red for the acid-base system used below (which changes color around the first midpoint).

At the beginning of a computation, the pH-PDA reaction vessel contains deionized water and an aliquot of

the pH indicator. As before, an input string is then fed sequentially. This leads to changes in pHwhose value

we assign to the stack. The pH-PDA will Accept the input string if during the computation the pH R

Midpoint-pH but is at Midpoint-pH (empty stack) at the end of computation, i.e., after adding ‘‘#’’.

Conversely, the pH-PDA Rejects an input string if the pH falls below the Midpoint-pH at any stage during

computation (excess of ‘‘)’’, and attempting to ‘‘pop’’ from an already empty stack) or if the pH is larger than

the Midpoint-pH at the end of computation (excess of ‘‘(‘‘, or the stack is ‘‘not empty’’) (cf. Figure 2B).

The Result can again be inferred in two different ways, (1) by tracking the evolution of pH as the problem

sequence is processed and then comparing this with themidpoint pH value at maximum reaction extent for

this automaton/recipe combination or, equivalently, (2) by looking at the enthalpy yield (Dueñas-Dı́ez and

Pérez-Mercader, 2019) of the problem sequence. In the latter case we discover that Y
ð1�PDAÞ
Enthalpy Endð%Þ is

maximum (Dueñas-Dı́ez and Pérez-Mercader, 2019) and independent of word length for every word

accepted by the one-stack PDA.

Chemical Turing Machine (I). Formulation

At the top levels of the language hierarchy are the most complex languages requiring increasingly flexible

memory and grammars (Cohen, 1991): Context-Sensitive, Recursive, and Recursive Enumerable Languages

(REL). These are recognized by Turing machines, a class of automata containing automata equivalent to a

two or more stacks PDA (Hopcroft et al., 2007; Cohen, 1991; Minsky, 1961, 1967), including the Linear

Bounded Automata (Linz, 2012; Harrison, 1978) (LBA), which, as already mentioned, are a class of Turing

machines with predictable memory requirement: the computation uses exclusively the tape cells occupied

by the input, and not an unbounded length tape, a clear restriction suitable for physical machines as in the

case of our experimental realizations (Minsky, 1967). The two stacks must be in the same automaton and

interact. To generalize from a one- to a two-stacks chemical PDA we can chose a chemical system with

at least two interdependent chemical observables. The necessity to handle non-linearity in the
iScience 19, 514–526, September 27, 2019 519



computation (Lloyd, 1992) together with the interrelation among reaction observables point us in the direc-

tion of non-linear chemistry and, for example, redox oscillators (Tyson, 1985; Field et al., 1972). During the

computation, the instantaneous oscillation frequency, f, and the difference D between the mean of redox

potential in each oscillation and its maximum redox potential, will each be in one of two stacks. The non-

linear chemical kinetics manifests as a non-linear relationship (f(D)) between f and D (cf. Figure 4A).

A classical textbook example of a Context Sensitive language recognized by Turing machines (Hopcroft

et al., 2007; Cohen, 1991) in the Linear Bounded Automaton class, but not by any automaton at the

lower levels of the hierarchy, is the language L3 = {anbncn, where n R 1} over the three-symbol alphabet

S = {a,b,c}. This is the language of all strings consisting of n a‘s followed by n b0s and n c0s; for example,

‘‘abc’’, ‘‘aabbcc’’, ‘‘aaabbbccc’’, ‘‘aaaabbbbcccc’’. We chose L3 as the language for our experimental imple-

mentation of a chemical Turing machine.

To implement a chemical Turingmachine (Pérez-Mercader et al., 2017) we can use the non-linear oscillatory

chemistry in the Belousov-Zhabotinsky (BZ) reaction network, whose major overall process when using ma-

lonic acid and sodium bromate (Field et al., 1972) is

3BrO3
- + 5CH2(COOH)2 + 3H+ –> 3BrCH(COOH)2 + 4CO2 + 2HCOOH + 5H2O.

Discovered by Belousov in the early 1950s (Belousov, 1959; Winfree, 1984) when he was trying to find a non-

biochemical analog for glycolysis (Ball, 1999), the BZ reaction is arguably the best studied chemical oscil-

lator. Although any other BZ recipe can be used, we will use a standard recipe with ruthenium as catalyst

and sodium bromate and malonic acid (MA) as oxidizing and reducing reactants, respectively (cf. Trans-

parent Methods Section 3), all in the presence of an acidic environment provided, in our recipes, by sulfuric

acid.

A key aspect in the design and implementation of chemical automata is the selection and assignment of

chemicals representing the input alphabet and machine symbols (cf. Transparent Methods Sections 1, 2

and 3). A chemical is adequately assigned if it predominantly enhances a pathway within the reactionmech-

anism that maps to a distinct, repeatable, and systematic (observable) chemical response. Based on exten-

sive computer simulations (cf. Transparent Methods Section 4) and experimental testing of the BZ system,

we identified aliquots of the BZ reactants A (sodium bromate) and B (MA) with symbols a and b in the lan-

guage, respectively (cf. Supplemental Information section 4). For c, we need a substance acting on the two

interrelated stacks differently from A and B. In fact, the reaction0s pH-value provides room for symbol c,

which we can render chemically (translate) by using an aliquot of sodium hydroxide C. We can also identify

an aliquot of the catalyst (Ru-tris(bpy)) as the begin-end of sequence tape-symbol #. This assignment of al-

phabet symbols provides a mapping to distinct dominant pathways in the well-known Field-Körös-Noyes

(FKN) kinetic mechanism (Field et al., 1972) of BZ (cf. Transparent Methods Section 5, and Figure 3) and

leads to distinct dynamical behaviors for the observed redox potential. Finally, each symbol will be pro-

cessed in the reactor during a common time interval, t, chosen in our experiments to be 7.5 min, which

we found provides ample time for fast reaction transients to dissipate.

When the computation starts, the BZ-TM reactor contains only deionized water and a strong acid (sulfuric

acid in our recipes). Beginning with ‘‘#’’, and as the chemical input string is sequentially fed to the reactor,

the amplitude and frequency of oscillations vary systematically in amanner (the frequency for each group of

oscillations behaves [Tyson, 1985] as f � ½BrO�
3 �a 3 ½MA�b 3 ½NaOH��g) whereby a>b � g>0 (cf. Supple-

mental Information section 6) that depends on the nature and order of the symbols we feed (that is, on

the order of the aliquot sequence of a, b, c, or #). During computation, the instantaneous oscillation fre-

quency of the redox oscillator, f, and the difference D between the mean of redox potential in each oscil-

lation and its maximum redox potential (cf. Transparent Methods Section 3), will each ‘‘be’’ in one of two

stacks. The non-linear chemical kinetics manifests as a non-linear relationship, f(D), between f and D.

We denote the value of f(D) after the processing of the end-of-word symbol # (Hopcroft et al., 2007), by

f# = f(D#). The more a0s the higher the initial frequency upon onset of oscillations; then, as b0s are added,

the frequency increases (that is, an element is ‘‘pushed’’ on the stack) and finally, as c0s are added, the

frequency decreases (an element is ‘‘popped’’ from the stack) (cf. Figure 4 and Video S1). We also see

(cf. Figure 4 and Transparent Methods Section 7) that D functions as a counter for the total number of sym-

bols that have been processed so far.
520 iScience 19, 514–526, September 27, 2019



Figure 3. Effect of Symbol Aliquots on Dominantly Affected Pathways in the Extended FKN Model of Belousov-

Zhabotinsky

In the FKN mechanism shown in the four panels, reactions consuming H+ are shown in blue, reactions producing H+ are

shown in green, and reactions that are pH independent are in gray. The colored background areas indicate the

predominantly enhanced or diminished pathways by the aliquot symbols, and the tables show the effect on the two key

descriptors of the oscillations, f and D. (A) corresponds to bromate aliquots where the light blue pathway is predominantly

enhanced; (B) corresponds to malonic acid (MA) aliquots where the purple pathway is predominantly enhanced; (C)

corresponds to NaOH aliquots where the red pathways is predominantly diminished; and (D) corresponds to the catalyst

aliquots where the orange pathway is enhanced (c.f. Transparent Methods sections 4 and 5).
Chemical Turing Machine (II): Sequence-Word Acceptance or Rejection

With each symbol fed into the reactor, the BZ reaction network is driven through symbol-specific (as already

emphasized sequence-dependent) pathways (refs. Dueñas-Dı́ez and Pérez-Mercader [2019] and Trans-

parent Methods Section 5). Thus, as the letter sequence is processed, the reactor produces a specific

recipe-dependent and sequence-dependent profile of concentrations of products and intermediates.

This affects the extent of reaction and manifests as specific BZ-oscillation frequency/amplitude combina-

tions (cf. Figures 4, S3, and S4 and Video S1). That is, the extent of reaction depends on the order of aliquots

in the sequence being fed to the TM reactor, i.e., on the particular word being processed.

The various ‘‘out-of-order’’ signatures for words not in L3 can be explained as follows. Each symbol has an

associated distinct pathway in the reaction network. Hence, if the aliquot added is for the same symbol as

the previous one, the pathway is not changed but reinforced. In contrast, when the aliquot is different, the

reaction is shifted from one dominant pathway to another pathway, thus reconfiguring the key intermediate

concentrations and, in turn, leading to distinctive changes in the oscillatory patterns. The change from one

pathway, say 1, to say pathway 2 impacts the oscillations differently than going from pathway 2 to pathway

1. This is what allows the machine to give unique distinctive behaviors for out-of-order substrings (as dis-

cussed and shown in Transparent Methods Section 7).

For sequences with symbol order not in L3 (e.g., ‘‘bca’’, ‘‘abc’’, ‘‘abccb’’,.) our L3-specific chemical TM re-

jects them as soon as the letter in the wrong order is detected by the reaction because they generate

distinct dynamic oscillatory profiles, see cf. Figure S3 and Transparent Methods Section 7, which are consis-

tent with the abstract L3-specific LBA-TM counterpart (Cohen, 1991). The sequences tested in our experi-

ments not only covered all distinct scenarios leading to a reject, but we also tested ‘‘worst-case’’ se-

quences, i.e., sequences not recognized but nearest, both abstractly and chemically, to accepted words.

To select the recipe for symbol aliquots we may require, for example, that considered as a function of word

length the production in our semi-batch TM-reactor of the final product of the overall BZ reaction, CO2, be

minimal (a useful requirement for our experimental realization since produced gas interferes with accurate

redox potential monitoring for long n0s). The parabolic curve in Figure 4 displays how for a recipe so

selected the two stacks are non-linearly interrelated after the end-of- sequence symbol is processed for
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Figure 4. L3 Language Recognition by the BZ Turing Machine Operating Using a Limited CO2 Production Recipe (Recipe 1)

Thirteen sequences were each processed three times (cf. Figures S3 and S4) by the L3-recognizing chemical machine described in the text. In these

experiments, eight strings were not in L3 and five were. (A) shows the completed sequence final frequency f# vs. final distance D# for these input strings. (B)

and (C) show the evolution of the redox potential during sequence processing for rejected strings a3b2c2 and a2b3c2 [note how in the latter f# and D# are not

on the locus of f(D#)]. (D) and (E) show the same for accepted words a2b2c2 and a3b3c3, which are seen to satisfy f# = f(D#).
words in the machine0s language. However, to provide a physico-chemical understanding of these results

we introduce an equivalent presentation of the experimental data that makes more direct the interpreta-

tion of the Acceptance/Rejection of words in a language by its chemical TM.

As noted earlier, the reaction extent is sequence dependent. We also know that the frequency and ampli-

tude of the redox oscillations in BZ result from chemical competition between the oxidation and reduction

subnetworks (pathways) of the reaction (Zhabotinsky, 1964, 2007). We use this feature to design a more

direct and visual method to determine sequence Acceptance or Rejection for the TM we are discussing,

which also brings out the physical interpretation of a computation by a chemical TM. With this in mind,

we introduce a chemical variable related to the flux of chemicals in the reaction as alphabet symbols are

processed during a computation by the specific BZ-reaction/TM combination. Then as the letters in a

word go through the BZ-TM, we measure, register, and plot the redox potential as a function of time.

Finally, for a fully processed word, we obtain the difference in area swept by the highest redox voltage

reached during the processing of the letters in the word and the area subtended by the redox potential

profile during only the processing of the ‘‘end-of-word’’ symbol #, but, in order to allow for the decay of

‘‘fast’’ reaction transients, we excluded the first 30 s of this processing. This area, Area(Word), cf. Figure 5,

equals the product of the #-processing time interval after fast-transient decay, t0= ðt� 30Þ sec, multiplied
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Figure 5. Experimental Results and Interpretation of Our Chemical TM Responses before and after Recipe Optimization to a Zero-Slope Line for

Words in the TM-L3 Combination, and the Relation between Free Energy and Subtended Area A(Word)

(A)–(C) display the experimental results for the sequences that are accepted or rejected upon processing the ‘‘end-of-word’’ symbol #. (A) is the bivariate [f#,

D#] oscillatory description, (B) is the fully equivalent univariate A(Word) oscillatory description, and (C) shows how after tuning the recipe (by increasing the

concentration of aliquot ‘‘a’’) (cf. Transparent Methods and Figures S2 and S5) A(Word) is rendered constant for words in L3. The bottom panel illustrates the

graphical definition of A(Word) as the difference between the area swept by the fully oxidized potential (Vmax) and the area encompassed by the oscillations

after the end-of-word symbol aliquot is added and processed during time t0, together with the physico-chemical description and thermodynamicmeaning of

A(Word). Note how for the optimized recipe the area is constant and independent of string length only for accepted words. Additionally, rejected strings

cluster either above or below this constant value, showing how the Area vs. String Length plot clearly discriminates between the machine0s word
Acceptance/Rejection regions.
by the free-energy difference between the oxidized and reduced states of the catalyst after the processing

of #, i.e., AreaðWordÞ = t03 DG
ðWordÞ
RedOx . We note in passing, that the dimensions of this area are those of the

action in physics.

To further optimize the acceptance criteria, using computer simulations of BZ we identified for various

aliquot recipes which of them had the most impact on the slope of the Area(Word) vs. string length plot

(cf. Transparent Methods Section 6 and Figure S2). Then, we determined experimentally the chemical

recipe for the symbols in the alphabet, optimized under the condition that all the words in the language

accepted by our TM subtend an area that is independent of the language index n. In other words, cf. Fig-

ures 5 and S5, the free-energy difference DG
ðWordÞ
RedOx is the same for all words in the language accepted by the

chemical TM. Chemically this is because the changes in the extents of oxidation and reduction cancel each

other for words in the language accepted by the BZ-recipe/TM/language combination. For words not in L3,

the chemical pathways and the degrees to which they are visited during word processing are such that the

oxidation and reduction extents do not compensate and, as a consequence, there is an n-dependence in

the flux magnitude previously introduced and represented by the value of Area(Word) (cf. Figure 5).

This means that the entropy produced during the processing of the end-of-word symbol for any word in the

language accepted by our isothermal chemical Turing machine is such that it compensates in the same

amount the internal chemical energy dissipated for every such word and the free energy is, therefore, in-

dependent of n. This is not true for words not in the machine0s language. (Note that the methodology
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to tune the acceptance criteria in terms of constant or linear energy dependence on string length can be

extended to other Context-Sensitive languages, specifically the family of languages L = {an+abn+b cn+g} for

a R 0, b R 0, g R 0, and n R 1).

Finally, any chemical automaton, as is the case for its abstract counterpart inclusive hierarchy, should recog-

nize languages at its hierarchy level and lower (Motwani et al., 2010). Indeed, the B-Z TM can recognize L1
(presence of redOx oscillations = Acceptance and no redox oscillations = Rejection) and the Dyck language

L2 (Pérez-Mercader et al., 2017).
Conclusions

Without using any biochemistry or external auxiliary geometrical constructs, only ‘‘one pot’’ inorganic

chemistry, we have implemented experimentally strictly native chemical realizations of automata in the

classical automata hierarchy: a Finite Automaton, a one-stack Push-Down Automaton, and a Turing ma-

chine (in the Limited Bounded Automaton subclass). Each automaton recognizes a well-defined represen-

tative language, L1, L2, and L3, respectively.

As in Automata Theory, the computations consist on processing for Acceptance or Rejection by the chem-

ical automaton of chemically transcribed symbols ordered in a sequence belonging to a language at the

appropriate level in the Chomsky hierarchy.

The computations are carried out by the molecules of substances recognizing each other while partici-

pating in suitable reactions. They use chemical energy and output the results of the computation through

unambiguous physico-chemical signatures of the state of the reaction during and at the end of the compu-

tation. The information in a sequence (originally digital information) is transcribed into a sequence of chem-

ical aliquots of specific composition and concentration (analog information), which is examined in parallel,

molecule by molecule, by the chemical reaction underlying the automaton. The output of this recognition

of analog information is digital and consists of either Acceptance or Rejection of the information fed be-

tween the Start- and End-of-word symbol depending on whether said information belongs or does not

belong to the language associated with the automaton.

Experimental realization of chemical automata poses challenges since, for example, the monitoring system

or specific chemical recipes and mode of operation affect the maximum reliably testable string lengths.

These limitations can be overcome by aliquot optimization and by running the BZ reaction in a Continu-

ously Stirred Tank Reactor mode, with the input to be computed still fed sequentially at regular intervals,

but with a continuous inflow and outflow of the liquid medium to avoid excessive intermediate accumula-

tion and time-dependent dilution effects.

Since only the oscillatory nature of the reaction is involved (in word Acceptance/Rejection) Chemical TMs

recognizing L3 (or other suitable decidable languages) may be designed using three-reactant non-linear

chemical oscillators other than BZ, including DNA or other organic oscillators. The ability to implement

different instances of automata translates into practical suggestions, including the use of the automata0s
chemical output as signals to communicate to the external world the result of a computation using BZ-

coupled hydrogels, or feeding the output of one automaton as input to other automata down the line to

implement complex information architectures, or to function, for example, as transponders or chemoacti-

vators. These automata use Avogadro0s number of processors and therefore we can expect robustness in

their operation. The design methodology for the automaton0s sequence acceptance criteria based on a

free-energy measure opens a path to control the energetics of computation (Bennett, 1982). The free en-

ergy spent for every word accepted by this isothermal chemical automaton was rendered constant by an

appropriate formulation of the chemical recipe associated with the pair machine-language and, for

accepted words, the entropy rate offsets the energy dissipation in the same amount.

The implementation of native chemical computation beyond the level of logic gates (which are themselves

Finite Automata [Hopcroft et al., 2007]) is usually assumed to require the complexity of biochemistry. How-

ever, our results demonstrate that this widely held belief is not true: chemical computation does not neces-

sitate the presence of life-related chemistry. Chemical computation is a property of matter and not exclu-

sive to life. We also note that chemical computation opens the door for the involvement of baryonic matter

in computation, a feature shared with quantum computation.
524 iScience 19, 514–526, September 27, 2019



The fact that chemical automatadonot require biochemistry has deep implications formany fields, including the

origin of life and advanced biomimetic applications, as it shows that information processing by chemistry is not

exclusive to biochemistry, and therefore, albeit in a primitive form, chemical information processing could have

existed independently of whenDNA/RNA-based life or chemistry appeared on Earth. By increasing the number

of stacks and the alphabet length a path emerges where the evolution of chemical complexity in habitable (or

proto-habitable) environments brings about a transition in chemistry-based computation, from simple FAs to

networks of Turing machines and, eventually, to their combination into more powerful molecular computers.

That is, a path for the sequential/hierarchical origin of information handling in nature and the transition from

non-biochemical to biochemical and extant life-related computation.

Recently, polymerization-induced self-assembly (PISA) of polymersomes using the radicals produced in BZ has

been demonstrated experimentally (Bastakoti and Pérez-Mercader, 2017a, 2017b) showing how, in a suitable

environment,BZ cangenerate its ownpolymeric enclosure anda corresponding free-energygradient. This leads

to softmicrorobotswith an entrappedBZ (or another oscillatory chemistry) running as awet automaton that con-

trols its own encapsulation with a cargo capable of further specific computations, and,more importantly, mean-

ingful functions. These programmable soft robots are now closer to being built ex-novo in a laboratory.

Limitations of the Study

The maximum input word length that we tested experimentally in our Turing machine setup was limited to

about 20 letters because of a variety of factors. These factors include the chosen chemical recipes, dilution

effects, reactor operation mode, operating conditions, and monitoring method (gas produced during the

reaction in the BZ reaction interferes with the precision of the redox monitoring). Further optimization of

the chemical recipes, reactor operation mode, and operating conditions, as well as advances in monitoring

methods, can provide means to extend this maximum word length.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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SUPPLEMENTAL FIGURES 

 

Figure S1: Title: Experimental setup configurations for the three implemented chemical automata, Related 
to Figures 2, 4 and 5, and to Supplemental Video. Caption: Panel a) shows the simple setup for the chemical 
FA. Panels b) and c) show the setups for the 1 stack PDA and the TM, respectively. In these two, the beaker 
was immersed in a thermal bath to keep the temperature constant at 22 Celsius, and a submersible 
magnetic stirrer was used to keep the solution in the beaker well mixed. Monitoring of key observables was 
carried out, pH monitoring and temperature in the case of the 1-stack PDA and redox potential and 
temperature in the case of the chemical TM. 

 



 
 

 

Figure S2: Title: Model-based mathematical optimization of the L3-TM to render the area constant for words 
in the language, Related to Figure 5. Caption: Simulations of Area vs. string length before and after 
mathematical optimization for sequences tested experimentally. For both recipes, the rejected strings are 
clustered relative to the canonical language L3 in an equivalent relative position (above or below L3). The 
mathematical optimization shows that by just increasing the concentration of aliquot “a” it is possible to 
make the area independent of string length for words in L3. 

 



 
 

 
Figure S3: Title: Experimental sequences using aliquot recipe 1 in the BZ-TM recognizing L3 (accepted 
sequences and rejected sequences due to incorrect letter order), Related to Figure 4 and to Supplemental 
Video. Caption: The plots on the a) column show accepted words in language L3 for n=1, 2, 3, 4 and 5, from 
top to bottom, respectively. The top two plots in the b) column show rejected strings even before oscillation 
takes place, bca is rejected since it does not start with a, while acb is rejected because it contains substring 
ac. The bottom two plots in the b) column show rejected strings once in the oscillatory regime due to 
forbidden substrings, hence aba is rejected because it contains substring ba and aabccb because it 
contains substring cb. 



 
 

 
Figure S4: Title: Experimental sequences using aliquot recipe 1 in the BZ-TM recognizing L3 (rejected 
sequences due to incorrect letter count at the end of computation), Related to Figure 4. Caption: The plots 
in the a) column show 4 rejected words due to excess a’s, showing a higher final frequency f and lower final 
distance D than the nearest word in L3, e.g. compare aabc with abc (in Figure S3). The plots in the b) 
column show 2 rejected words due to excess b’s, that are displaced towards higher f and D with respect to 
accepted words. The bottom two plots in b) column show 2 rejected words due to excess c’s, which are 
displaced towards lower final f and higher D.  



 
 

 

Figure S5: Title: Experimental sequences using aliquot recipe 2 in the BZ-TM recognizing L3 (accepted and 
rejected sequences), Related to Figure 5. Caption: The plots on the a) column show the accepted words in 
language L3 for n=1, 2, 3, 4 and 5, from top to bottom, respectively. The plots on the b) column show 
rejected inputs at the end of computation: 2 due to excess a’s, 1 due to excess b’s and 2 due to excess c’s. 
Compared to the results with recipe 1 (Figures S3 and S4), the dynamic response features are qualitative 

 

a) Words in the Language L3                                                                                                 b) Rejected at end of computation 

             

        

       

        

          

 

 

 

 

 

 

 

 

 

 



 
 

equivalent, and quantitatively most are displaced to higher frequencies f and lower distance D compared 
to the same input with recipe 1. 

TRANSPARENT METHODS 

Section 1: Materials and methods for the experimental implementation of a Chemical FA 
based on the precipitation of silver iodate 
 

Reaction: A chemical realization of this FA is provided by the precipitation reaction: 
KIO3 +AgNO3 à AgIO3 (s) + KNO3 . 

If during the computation a white precipitate of silver iodate is observed, the input string has been Accepted, 
whereas if at the end of the string the solution is free from precipitate the string has been Rejected. 

Engineering Considerations for recipe and operation design: The main criterion used to choose the 
recipes for the aliquots was to ensure that the solubility product constant of silver iodate was exceeded 
once at least one aliquot of KIO$ and one aliquot of AgNO$ had been added to the reactor. In addition, they 
were chosen such that the amount of precipitate would be large enough to be visible to the naked eye. 
Since this precipitation reaction has fast kinetics, any time interval exceeding 5 seconds would suffice for 
the computation. In our implementation a time interval of 30 seconds was used for execution convenience. 

Materials: Commercially available Potassium Iodate  KIO$ (Sigma Aldrich) and Silver Nitrate AgNO$ (Sigma 
Aldrich) were used without further purification. Reverse-osmosis deionized water (12 Megaohm) was used 
to prepare the following stock solutions: 0.35 M	KIO$ and 0.5 M	AgNO$.  

Initial Conditions: The reactor/beaker at the beginning of the computation contained 20 ml of reverse-
osmosis deionized water. 

Alphabet Recipes: Each “a” in the input sequence was implemented by pipetting into the reactor a 
1.5±0.03 mL aliquot of a 0.35 M	KIO$ stock solution (Eppendorf Research Plus pipette 1-5 mL). Each “b” in 
the input sequence was implemented by pipetting into the reactor a 1.0±0.02 mL aliquot of 0.5 
M	AgNO$stock solution (Eppendorf Research Plus pipette 1-5 mL). The input string was pipetted to the 
reactor sequentially, symbol by symbol, at fixed time intervals of 30±2 s. 

Reactor: The experiments were carried out in a semibatch reactor at ambient temperature conditions.  A 
50 mL volume and 40 mm diameter Pyrex® glass beaker with the 20 mL initial solution was stirred at 400 
rpm with a Teflon-coated magnetic stirbar (VWR® Spinbar® Polygon 6.4 x 25 mm) and a digital magnetic 
stirrer (IKA® Color Squid). During the experiment, the color of the solution was monitored visually for the 
appearance of a precipitate. A schematic representation of this simple experimental setup is shown in panel 
a) of Figure S1. 

Experiment execution: The initial solution was stirred for ten minutes to achieve thermal equilibrium with 
the surroundings. At the instant the chronometer was started, the first symbol of the input string was pipetted 
into the reactor. Then, each of the subsequent symbols in the input string was pipetted to the reactor 
sequentially, symbol by symbol, at regular time intervals of 30 s. Once the input string had been completed, 
and the last time interval of 30 s had finished, the state of the reactor contents showed the machine’s output. 
If the solution in the beaker was still transparent the chemical machine had rejected the input string, while 
if the solution had a white color (presence of silver iodate precipitate), then the chemical FA had reached 
the Accept state, and the input string was accepted as a word in the language. Alternatively, the heat of 
reaction could have been monitored by calorimetry, and if while the chemical computation any measurable 
heat of reaction had been detected, then this would indicate reaching the accept state. Otherwise, if no 
measurable heat of reaction was detected, the machine had rejected the input string. 



 
 

Section 2: Materials and methods for the experimental implementation of a chemical 1-stack 
PDA based on pH chemistry 
 

 

Reaction: For our chemical realization of the parenthesis checker we use the following pH reaction 
network:  

C3H4O4 →	C3H3O4- + H+ (R1) 
C3H3O4- → C3H2O42- + H+ (R2) 
H+  +  OH- → H20 (R3) 
HInd  +  OH- → Ind- +H2 0 (R4) 
H+  +  Ind- → HInd (R5) 

 
Where Methyl Red (2-(N,N-dimethyl-4-aminophenyl) azobenzenecarboxylic acid) is used as pH Indicator, 
whose chemical formula is  C15H15N3O2 

Engineering Considerations for recipe and operation design: We chose a polyprotic acid, malonic acid, 
because it makes computation more robust.  If we had used a strong acid and a strong base, the recipes 
to achieve compensation of parentheses should have been adjusted to the equivalence point instead, and 
it is well known from pH titration that even small errors on the aliquots would lead the solution to either a 
high or low pH, instead of the equivalence point. Meanwhile, for a polyprotic acid the compensation of 
parentheses pairs can be designed to match with a midpoint instead of an equivalent point, which is not 
sensitive to small errors in the aliquots. In our implementation, the aliquots of acid and base are chosen 
such that when one aliquot of ( and one aliquot of )  are added to the solution the pH corresponds to the 
midpoint after the first equivalence point, hence the point at which HOOCCH,COO- is in chemical equilibrium 
with OOCCH,COO,-. Methyl Red was chosen as the end-of-expression symbol since it is a pH indicator that 
changes color in between the first and the second equivalence points, therefore producing different solution 
colors for input strings that are accepted than for those that are rejected, and with even distinct colors for 
each of the two types of reject, yellow for excess open and magenta for excess closed parentheses. Acid-
base neutralization reactions have fast dynamics, so a time interval in the order of tenths of seconds would 
suffice, but we chose 3 min for convenience and precision in the experimental execution.  

Materials: Commercially available Sodium Hydroxide NaOH (Amresco) and Malonic Acid CH,(COOH), (Alfa 
Aesar) were used without further purification to prepare stock solutions.  Commercially available Methyl-
Red (2-(N,N-dimethyl-4-aminophenyl) azobenzenecarboxylic acid (Sigma Aldrich, Solution pH ) was used 
as the pH indicator.  Reverse-osmosis deionized water (12 Megaohm) was used to prepare the following 
stock solutions: 4.9 M	NaOH, 3.5 M	CH,(COOH),.  
 
Initial Conditions: The reactor/beaker at the beginning of the computation contained 40 ml of reverse-
osmosis deionized water, and an aliquot of Methyl Red pH indicator.  

Alphabet Recipes: For each open parenthesis “(“ in the input string, a 0.535±0.004  mL aliquot of 4.9 M 
NaOH stock solution was pipetted (Eppendorf Research Plus pipette 0.1-1 mL) into the reactor. For each 
closed parenthesis “)“  a 0.500±0.004 mL aliquot of 3.5 M CH,(COOH),	stock solution was pipetted 
(Eppendorf Research Plus pipette 0.1-1 mL) into the reactor. A symbol “#’ is needed in the PDA and TM to 
indicate the beginning and end of the input string, here it was implemented with a 0.300±0.002 mL aliquot 
of the commercial Methyl Red (Eppendorf Research Plus pipette 0.1-1 mL). The input string was pipetted 
to the reactor sequentially, symbol by symbol, at regular time intervals of 180±2 s. 

Reactor: The experiments were carried out in a semibatch reactor under controlled temperature conditions.  
A 100 mL volume and 50 mm diameter Pyrex® glass beaker with the 40 mL initial solution was submerged 
in a 7L refrigerated circulating bath (VWR MX7LR) at a constant setpoint of 22.0 °C. The reaction mixture 
was stirred at 400 rpm with a Teflon-coated magnetic stirbar (VWR® Spinbar® Polygon 6.4 x 35 mm) and 
a submersible magnetic stirrer (2Mag Mixdrive 1 eco and 2Mag Mixcontrol eco).  The change in pH of the 



 
 

reaction mixture was monitored with a commercial pH meter (SperScientific pH probe 850059P) connected 
to a benchtop meter (SperScientific). The temperature in the solution was followed by a temperature sensor 
included in the pH meter and was maintained during computation by the circulating thermal bath at 22.0±0.3 
°C. Voltage and pH data were recorded with Labview Signal Express at a frequency of 5 data points per 
second. A schematic representation of the experimental setup is shown in panel b) of Figure S1. 

Experiment execution: The experiment started when the reactor with the initial solution of water was 
immersed in the thermal bath. The first ten minutes were used to achieve thermal equilibrium between the 
beaker and the bath temperature. Then, an aliquot of methyl red was pipetted into the reactor, and 180s 
were allowed for stabilization. The sequence checking procedure starts by pipetting the first symbol in the 
input sequence, and this is when the computation time starts. All subsequent symbols were pipetted 
sequentially, symbol by symbol, at exactly 180s intervals. If at any moment during computation the pH 
reached acidic conditions below the midpoint pH, the solution would turn magenta indicating that the 
chemical machine rejected the input string. Otherwise, the whole string would be processed, the end-of-
expression pipetted and after the last time interval of 180 s elapses, the final status of pH and/or color of 
the solution provided the machine’s answer. If the pH was basic (pH over midpoint pH), i.e. the solution 
color was yellow, the machine had rejected the input string. Alternatively, if the pH was at the midpoint 
value, i.e. the solution color was orange, the chemical machine accepted the input string as a word in the 
language. For each input string, the experiment was run three times, and the pH trends recorded and 
stored.  

Section 3: Materials and methods for the experimental implementation of a Chemical 
Turing Machine based on Belousov-Zhabotinsky Reaction 
 

Materials. Commercially available Sodium Bromate NaBrO$ (Alfa Aesar), Malonic Acid CH,(COOH), (Alfa 
Aesar), Tris(2,2’-bipyridyl) Dichloro Ruthenium(II) Hexahydrate Ru(bpy)$Cl,(6H,O) (Sigma Aldrich),  
Sodium Hydroxide NaOH (Amresco) and Sulfuric Acid solution	H,SO; (10N/5M, Fisher Chemical) were used 
without further purification. Reverse osmosis deionized water (12 Megaohm) was used to prepare the 
following stock solutions: 2 M	NaBrO$, 3.5 M	CH,(COOH),, 5 M	NaOH and 0.0125 M Ru(bpy)$Cl,(6H,O). 

Initial conditions. The initial solution was prepared by mixing 33.20 mL of deionized water and 6 mL of 5 
M Sulfuric Acid solution, and an aliquot of Ruthenium catalyst (#). 

Recipe 1 (Maximal word length without disturbance of the redox potential measurement).  The 
canonical L3 TM language is based on an alphabet of three letters {a, b, c }={NaBrO$,	CH,(COOH),, NaOH}. 
For each “a” in the input sequence a 2.0 ±0.03 mL aliquot of 2.0 M NaBrO$	stock solution was pipetted into 
the reactor (Eppendorf Research Plus pipette 0.5-5 mL), thus incrementing the bromate concentration in 
the reactor by 0.10M. For each “b” in the input sequence, a 0.500±0.004 mL aliquot of 3.5 M stock malonic 
acid solution was pipetted into the reactor (Eppendorf Research Plus pipette 0.1-1 mL), hence incrementing 
the malonic acid concentration in the reactor by 0.04375 M. For each “c” in the sequence, 0.500±0.004 mL 
aliquot of 5 M stock sodium hydroxide was pipetted into the reactor (Eppendorf Research Plus pipette 0.1-
1 mL). The beginning and end-of-expression symbol “#” was implemented as a 0.800±0.006 mL aliquot of 
0.0125 M stock ruthenium complex solution (Eppendorf Research Plus pipette 0.1-1 mL) which increases 
the catalyst concentration in the reactor by 0.00025 M. The input string was pipetted to the reactor 
sequentially, symbol by symbol, at regular time intervals of 450±2 s. 

Reactor: The experiments for the BZ-TM to recognize language L3 were carried out in a semibatch reactor 
under controlled temperature conditions. A 100 mL volume and 50 mm diameter Pyrex® glass beaker with 
the initial solution was submerged in a 7L refrigerated circulating bath (VWR MX7LR) at a constant setpoint 
of 22.0 °C. The reaction mixture was stirred at 400 rpm with a Teflon-coated magnetic stirbar (VWR® 
Spinbar® Polygon 6.4 x 35 mm) and a submersible magnetic stirrer (2Mag Mixdrive 1 eco and 2Mag 
Mixcontrol eco).  The change in the oxidation-reduction (redox) potential of the reaction mixture was 
monitored with an electrode system composed of a Pt-working electrode and a mercury sulfate reference 
electrode (Koslow 5100 A) connected to a Vernier Electrode Amplifier (EA-BTA) and to a Vernier 



 
 

SensorDAQ Data Acquisition Box. The temperature in the solution was monitored with an RTD sensor 
probe (Omega PR-13-2-100-1 and signal conditioner RTD SPRTX-S1) and was maintained by the 
circulating bath at 22.0±0.3 °C during the experiment. Redox and temperature data were recorded with 
Labview® at a frequency of 5 data points per second.  The refrigerated circulating bath opening was 
covered with aluminum foil to avoid light interferences since the used catalyst is photosensitive. A schematic 
representation of the experimental setup is shown in panel c) of Figure S1. 

Experimental Realization: The experiment started when the beaker with the initial solution was immersed 
in the thermal bath. The first ten minutes were used to achieve thermal equilibrium between the beaker and 
the bath temperatures. Then, an aliquot of catalyst (0.800±0.006 mL of 0.0125 M stock ruthenium complex 
solution) was pipetted, indicating the beginning of the input sequence. The sequence checking procedure 
starts 450s later by pipetting the first symbol in the input sequence, and this is the instant computation time 
starts. All subsequent symbols were pipetted sequentially, symbol by symbol, at 450s intervals. The 
precision of the additions of the aliquots was within ±2 s.  If at any moment during computation the behavior 
of the redox potential matches the trend of any of the reject states, then the chemical machine would be 
rejecting the input string. Otherwise, the whole string would be processed, the end-of-expression pipetted 
and during the last time interval of 450 s, the final features of the redox oscillation would be evaluated, and 
the input would be accepted or rejected according to the acceptance criteria. 

Monitoring and Data Analysis: In the BZ-based L3={anbncn , n>0} language, the relaxation oscillations in 
the redox potential were monitored. For each string to be computed, the experiment was repeated three 
times. The recorded data were analyzed, visualized and plotted in Matlab® (R2015b v. 8.6.0.267246). 
Matlab® Signal Processing Toolbox was used to analyze the oscillation features of the data for each of the 
three individual repetitions of the string: the peaks and the troughs of the individual oscillations were 
detected for the recorded time series. The period of the oscillations was defined as the elapsed time 
difference between two consecutive oscillation peaks, the frequency as the inverse of the period, and the 
trough-to-peak amplitude as the difference between the redox potential of a peak and the redox potential 
of its subsequent trough. 

For L3, the distance D between the maximum redox value (i.e. when all catalyst is in the oxidized form) and 
the redox value of the center of a given oscillation is a more adequate feature than amplitude, i.e. we define 
the distance D as: 

𝐷 = 𝑉@AB − D𝑉E +
𝑉G − 𝑉E

2 I 

where 	𝑉@AB corresponds to the redox potential of all the catalyst in oxidized form, 𝑉E is the redox value of 
the trough of the oscillation, and 𝑉G − 𝑉E	is the trough-to-peak amplitude of the redox oscillation, hence 𝑉E +
JK-JL

,
 is the redox value of the center of the oscillations.  

Error bars were then estimated as symmetric error bars in the form of: mean ± standard deviation, where 
the standard deviation was normalized by the number of observations (i.e. 3). Hence, the mean final 
frequency 𝑓#		and the standard deviation of the final frequency 𝑠𝑡𝑑(𝑓#), the mean final distance 𝐷#, the 
standard deviation of the final distance 𝑠𝑡𝑑(𝐷#, ) were estimated respectively as: 

𝑓# =
∑ 𝑓S$
STU

3

𝐷# =
∑ 𝑉@AB,S$
STU

3 −
∑ 𝑉WXYZX[,S$
STU

3

𝑠𝑡𝑑(𝑓#) = \∑ (𝑓S − 𝑓#),$
STU

3

𝑠𝑡𝑑(𝐷#) = \∑ (𝐷S − 𝐷#),$
STU

3

 



 
 

And the error bars for the amplitude	𝑒  , frequency 𝑒_	and for the distance 𝑒`, are given respectively by: 

𝑒_ = 𝑓# ± 	𝑠𝑡𝑑(𝑓#)
𝑒` = 	𝐷# ± 	𝑠𝑡𝑑(𝐷#)

 

The area  𝐴(cd[e) was integrated approximately via the trapezoidal method with spacing 0.2 s (same as 
sampling interval in the data) by means of the trapz command in Matlab®. Note that for this integration we 
have used the last 7 min of the 7.5 min interval after the end-of-expression symbol was added. Again, the 
error bars for the area are given as the mean value plus/minus one standard deviation: 𝑒 = 𝐴(cd[e) ±
	𝑠𝑡𝑑f𝐴(cd[e)g. 

 

Section 4: Extended FKN Mechanism of Belousov-Zhabotinsky  
 

In order to design and optimize the recipes of our implementation of the chemical TM, a representative 
mathematical model of the kinetic network is needed. The mechanism of the BZ reaction is complex, and 
there is a variety of kinetic models ranging from small models with 5 elementary steps to very detailed 
mechanisms. In our initial work on chemical automata, the first validations were based on simulation studies 
using one of the simplest and yet one of the most widely used mechanistic models of the BZ reaction, called 
Oregonator. This model proved the concept and ideas. However, in order to capture more realistically the 
time constants, decay trends and the comparison to automata theory, a more comprehensive model was 
needed.  We tested the Field-Körös-Noyes38 (FKN) and the Gao-Försterling (GF) models since these are 
recognized to be better approximations of the observed behavior. Both gave satisfactory results. The FKN 
model was finally chosen since it is simpler and yet representative enough. The FKN reaction network is 
comprised of the equations below  

HOBr +		Br- +	Hh 	↔ Br, 	+	H,O 𝑟UA, 𝑟Uk
HBrO, 	+		Br- +	Hh 	→ 	2HOBr 𝑟,

BrO$- 	+ 	Br- +	2Hh 	→ 	HOBr + HBrO, 𝑟$
2HBrO, → HOBr + BrO$- + 2Hh 𝑟;

HBrO, + BrO$- +	Hh ↔ 2BrO,. +	H,O 𝑟mA, 𝑟mk
[Ru(bpy)$,h] + BrO,. + Hh → [Ru(bpy)$$h] + HBrO, 𝑟p
CH,(COOH), + 	HOBr →	CHBr(COOH), +	H,O 𝑟q
CH,(COOH),	+	Br, → CHBr(COOH), +	Br- +	Hh 𝑟r

CH,(COOH), + 6[Ru(bpy)$$h] + 2H,O → HCOOH + 6[Ru(bpy)$,h] + 2CO, +	6Hh 𝑟s
	CHBr(COOH), + 4[Ru(bpy)$$h] + 2H,O → HCOOH + 4[Ru(bpy)$,h]+2CO, +	Br- + 5Hh 𝑟Uv

 

 
This model simulates quite properly the experiments, except for expressions with an excess of sodium 
bromates due to its simplified treatment of the malonic bromination kinetics. For most of the experimental 
and simulated conditions, the overall malonic bromination kinetics are limited by 𝑟r, more precisely by the 
bromine concentration, and the FKN gives realistic results. However, when the bromine concentration 
becomes large enough (as when there is excess of bromates and # is added) then the limiting kinetic step 
is no longer reaction 𝑟r and the overall bromination kinetics become zeroth order with respect to bromine. 



 
 

We modified the FKN based on knowledge gathered from the GF model simulations, extending the model 
with the following reaction: 

	CHBr(COOH),	+	Br, → 	CBr,(COOH), +	Br- +	Hh 𝑟UU 
After this extension, the model was able to simulate more realistically all the experiments. 
Using the following notation 

xU = [HBrO,] x, = [Br-] x$ = 	 [Ru(bpy)$$h]
x; = [BrO$-] xm = 	 [CH,(COOH),] xp = [HOBr]
xq = [Br,] xr = [BrO,. ] xs = [CHBr(COOH),]

xUv = [Ru(bpy)$,h] 	xUU = xCO, y xU, = [CBr,(COOH),]
H = [Hh]

 

Most kinetic rates follow the Mass Action law and the kinetic constants, measured at 20 °C, are taken from 
(Vanag & Epstein (2008). The kinetic constant for reaction 𝑟UU has been estimated from the GF-model. 

𝑣UA = 𝑘UAx,xpH 𝑘UA = 5𝑒s	M-,𝑠-U

𝑣Uk = 𝑘Ukxq 𝑘Uk = 10	𝑠-U

𝑣, = 𝑘,xUx,H 𝑘, = 2𝑒p	M-,𝑠-U

𝑣$ = 𝑘$x,x;H, 𝑘$ = 2M-$𝑠-U

𝑣; = 𝑘;AxU, 𝑘; = 3𝑒$	M-U𝑠-U

𝑣mA = 𝑘mA	xUx;H 𝑘mA = 42	M-,𝑠-U

𝑣mk = 𝑘mk	xr, 𝑘mk = 2𝑒r	M-U𝑠-U

𝑣p = 𝑘pxrxUvH 𝑘p = 3𝑒p	M-,𝑠-U

𝑣q = 𝑘qxmxpH 𝑘q = 9.3	M-,𝑠-U
𝑣r = 𝑘rxmxq 𝑘r = 29	M-U𝑠-U

𝑣s = 𝑘s	x$xm 𝑘s = 5𝑒-,	M-U𝑠-U

𝑣Uv = 𝑘Uv	x$xs 𝑘Uv = 7	M-U𝑠-U

𝑣UU = 𝑘rxsxq 𝑘UU = 29	M-U𝑠-U

 

 
For the simulation of the languages L3, where c is an aliquot of NaOH, the model needs to be extended by 
including the acid-base neutralization reaction:  

	OH- +	Hh →	H,O	 𝑟U, 
Since the proton concentration is in large excess with respect to the amount of NaOH added with the aliquot, 
we assume in the model that all OH- is instantaneously and completely consumed, decreasing the proton 
concentration Hh and thus affecting all the rate constants that depend on the proton concentration Hh. Note 
that the bromine chemistry and the oxidation reactions are the ones most dependent on Hh. 
In order to simulate the redox potential V (in Volts) from the catalyst concentrations x$ = 	 [Ru(bpy)$$h] and 
xUv = [Ru(bpy)$,h], the classic Nernst equation is used: 
 

V = 	𝑉v +
RT
nF ln D

x$
xUv

I	 

where 
𝑅 = 8.3144621	𝐽𝐾-U𝑚𝑜𝑙-U

𝑇 = 285.15	𝐾
𝑛 = 1

𝐹 = 96485.3365	𝐶	𝑚𝑜𝑙-U
	𝐸v = 0.7	𝑉

 

 

Section 5: Alphabet chemical representation and dominant pathways in FKN 

  
Extensive simulations with this well-established model, combined with experimentation, were carried out 
during the design phase to choose appropriate chemical recipes for the input alphabet ensuring distinct and 
systematic observable dynamic behaviors in the redox potential.  



 
 

There are 4 subnetworks in FKN38 that are relevant for understanding the observed redox potential 
behaviors. Process A is the reduction of bromate NaBrO3 by bromide followed by the bromination of malonic 
acid, given by  3𝑟U + 𝑟, + 𝑟$ + 3𝑟r: 

BrO$- + 2	Br- + 3Hh + 3CH,(COOH), → 3CHBr(COOH), + 3H,O 𝑃𝑟𝑜𝑐𝑒𝑠𝑠	𝐴	
Process G corresponds the autocatalytic production of HBrO2, given by  𝑟m + 2𝑟p: 

2[Ru(bpy)$,h] + BrO$- + HBrO, + 3Hh → 2[Ru(bpy)$,h] + 2HBrO, + H,O 𝑃𝑟𝑜𝑐𝑒𝑠𝑠	𝐺 
Process B corresponds to the autocatalytic loop (Process G) and the decomposition reaction of HBrO2: 

2[Ru(bpy)$,h] + BrO$- + HBrO, + 3Hh → 2[Ru(bpy)$,h] + 2HBrO, + H,O 𝑃𝑟𝑜𝑐𝑒𝑠𝑠	𝐺
2HBrO, → HOBr + BrO$- + 2Hh 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 Process C corresponds to the reduction reactions of the catalyst by malonic and bromomalonic acids, i.e 
𝑟s and 𝑟Uv. 

Oscillations occur when the reaction switches between process A and B depending on whether bromide 
ion concentration is above (process A) or below (process B) a critical value 𝐵𝑟W[SZSW- .  

Our choice for the chemical representation of the input alphabet is: 

- NaBrO3, our chosen “a”, enhances dominantly Process B and increases the critical bromide 𝐵𝑟W[SZSW-  
to switch between processes A and B. The more a’s the input has, the higher the frequency of the 
redox oscillations at the onset of oscillations, the smaller the amplitude and the more displaced 
towards higher redox values (i.e. smaller D). 

- CH3(COOH)2, our chosen “b”, enhances dominantly Processes A and C and reaction 𝑟UU thus 
systematically accelerating the frequency of the redox oscillations but maintaining the amplitude 
and displacing the oscillations towards lower redox values (i.e. larger D). 

- NaOH, our chosen “c” decreases the proton H+ concentration (reaction 𝑟U,) and consequently slows 
down Processes A and G, thus systematically decelerating the frequency of redox oscillations, and 
displacing the oscillations towards lower redox values ( i.e. larger D).  

- Ru(bpy)3Cl2, our chosen “#”, affects dominantly the two redox reactions, Processes G and C, 
resulting in a systematic deceleration of the frequency of redox oscillations and increased amplitude 
of oscillations. 

Note that each of the symbols does not affect exclusively a single individual reaction in the kinetic 
mechanism. Instead, each symbol affects simultaneously multiple reactions changing the dominant 
processes, or pathway, in the reaction.  We have a mapping alphabet symbol – dominant pathway (not 
alphabet symbol – individual reaction), leading to distinct and systematic changes in the redox potential 
behavior. Such a mapping allows us to inductively argue that the computation works at larger n’s that one 
can test experimentally (due to the interference of produced gas with the monitoring system). 
 

Section 6: Recipe Optimization for the BZ-TM recognizing L3 
 

The first optimization of the recipe for the language L3={anbncn, n³1} was carried out experimentally with 
the criteria of maximizing the word length that could be tested experimentally without too much perturbance 
in the redox potential monitoring system, i.e. by minimizing CO2 production while ensuring maintaining the 
oscillatory regime. Such an approach was successful and gave clearly distinct responses in a frequency-
distance plot for words in the language from those not belonging to it. However, we still tried to find a more 
intuitive and straightforward way to interpret the oscillatory response of the chemical TM. We found that by 
plotting the area 𝐴(�d[e) between the fully oxidized redox potential and the oscillations after the end-of-
sequence symbol # was added, the machine’s answer was “linearized” (see main text Figure 4). This led 
us to optimizing the recipe so that for words in the language this area would have a constant value 
independently of word length. Hence, the “Area” measure would work for the chemical TM as the “pH” 
measure did work for the 1-stack PDA.  

Since we have a reasonably realistic model of the chemical kinetics of Belousov-Zhabotinsky we can 
mathematically optimize the recipe.  First, we verified that the mathematical model is representative of the 
chemistry, and we found out that the model reproduces qualitatively quite well the actual results for n³ 2, 



 
 

but the model deviates too much for n=1. Therefore, in the optimization we excluded the word abc. Then, 
we studied whether there would be collinearities if we attempted to optimize simultaneously the three 
elements in the recipe (a,b,c). From this analysis, we concluded that it was best to just optimize one of the 
recipe aliquots, namely the volume of the bromate aliquot a. Next, the optimization problem was defined as 
follows: 

• The optimization variable was chosen to be the step change in concentration of NaBrO3 (M) every 
time an aliquot of a is added. If the stock solution is maintained at 2M, then this result is easily 
transformed into the volume of the aliquot (mL) 

• The objective function to be minimized was defined as:    

𝐹 =�f𝐴S
(�d[e) − 𝐴YT,

(�d[e)g
,

S

 

where 𝐴S
(�d[e) is the area for word with n=i and 𝐴YT,

(�d[e) is the area corresponding to aabbcc (e.g. 
a2b2c2). 

• The Nelder-Mead nonlinear gradient-free algorithm was chosen as optimization algorithm, since 
the dynamics of Belousov-Zhabotinsky are highly nonlinear, and discontinuities in the model 
simulations may take place. Gradient-free methods are slow but safe for this type of problem. The 
algorithm was implemented using the fminsearch solver in Matlab® (R2015b v. 8.6.0.267246).  The 
solver ode23tb was chosen for solving the system of ODEs (since it is considerably faster than 
ode23s, and the optimizer requires solving the ODE’s many times). The maximum number of 
iterations was set to 20 and gives a good performance. Simulations were run on a laptop with an 
Intel® Core™ i7-2620M CPU @2.70 GH processor and Windows 64 Bits Operating System. 

Following this procedure, the mathematical optimization results suggested that if the volume of the aliquot 
of 2M NaBrO3 was increased from 2ml to 2.25 ml, then the area 𝐴(�d[e)	would become independent of n 
for the words in the language, as illustrated in Figure S2 with the simulation results with the original and the 
optimized recipe. Finally, the resulting optimized recipe was tested in practice. Since the model is not 
perfect, the area still showed a very small positive linear dependence with the string length. Dilution effects 
that are not accounted for in the model explain that the change in area was less in practice than in 
simulations. However, the action of increasing the volume of sodium bromate was still considered correct, 
and hence we run the experiments increasing a to a value of 2.50 ml, this time the area dependence on 
string length first increased and then decreased, thus deviating from linearity. A final adjustment of the 
aliquot volume a to 2.40 ml gave the desired results, the area was practically independent of n for words in 
the language. We have thus proven that our method for optimization of the recipe works and gives the 
correct action change on the optimization variable. Supplementary material SI-4 summarizes the 
experimental results for both recipe 1 and the mathematically optimized recipe. 

One key question is: what is the chemical significance of an area 𝐴(cd[e)	that is independent of the string 
length?  For for words in the language, a balance between the reduction and oxidation subnetworks is 
achieved and maintained. The system is kept at a constant distance from full oxidation because an 
increment in the oxidation rates is balanced by an increment in the reduction subnetwork. Mathematically, 
we define area  𝐴(cd[e) as follows: 

𝐴(cd[e) = 𝑉@AB ∙ t′ − � 𝑉d�W(𝑡)𝑑𝑡
Z#h�

Z#h$v
 

where 𝑡# is the time in reaction coordinates at which the end-of-expression symbol is added,	t′ is the time 
interval between symbols minus 30 seconds (the first 30 seconds are discarded in the integration to allow 
for fast transients to dissipate), 𝑉@AB	is the maximum redox potential (all catalyst in oxidized form) and 𝑉d�W 
is the measured redox potential, which can be approximated by the Nernst equation 

𝑉d�W = 𝑉v +
�E
Y�
ln Dx ¡(¢£¤)¥

¥¦y
x ¡(¢£¤)¥§¦y

I, 



 
 

[Ru(bpy)$,h]	and	[Ru(bpy)$$h] are respectively the reduced and oxidized form of the catalyst, and can be 
written in terms of the extent of reaction for the elementary redox reactions in section S4: 

[Ru(bpy)$$h] = [Ru(bpy)$$h]SY©ªZ + xp − 6xs − 4xUv 

[Ru(bpy)$,h] = [Ru(bpy)$,h]SY©ªZ − xp + 6xs + 4xUv 

𝑉d�W = 𝑉v +
𝑅𝑇
𝐹 ln «

[Ru(bpy)$$h]SY©ªZ + xp − 6xs − 4xUv
[Ru(bpy)$,h]SY©ªZ − xp + 6xs + 4xUv

¬ 

The extents of reaction xS both for the oxidation subnetwork and for the reduction subnetwork increase as 
the word length is longer, but for this language they increment in a “balanced” way, such that the area is 
constant.  

Finally, the redox potential is related to the Gibbs energy DG as follows: 

D𝐺d�W = −𝑛X𝐹𝑉d�W 

We can thus rewrite the area we have defined above in terms of the Gibbs energy22 corresponding to full 
oxidation ∆𝐺′and the redox Gibbs energy ∆𝐺d�W: 

𝐴(cd[e) = −
1
𝑛X𝐹

«∆𝐺¯ ∙ t′ − � ∆𝐺d�W(𝑡) 	 ∙ 𝑑𝑡
Z#h�

Z#h$v
¬ 

And if the area 𝐴(cd[e) is constant and independent of string length for the words in L3, so is the integral of 
∆𝐺d�W, which has important implications for the energetic cost of computation.  

Section 7: Supplemental analysis of experimental results for the BZ-TM 
recognizing L3 
 
Results for Recipe 1 
A comprehensive experimental campaign, comprised of 19 input strings, 5 words in the language L3 and 
14 strings not in the language L3, was successfully carried out for Recipe 1. The chosen strings not only 
covered all distinct scenarios leading to a reject (R1 , R2, R3, R4, R5) but we also tested “worst-case” strings, 
i.e. strings not recognized but nearest, both abstractly and chemically, to accepted words 
Panel a) of Figure S3 displays the five words recognized as belonging to language L3 , i.e. accepted strings, 
that have been tested experimentally, for n=1, 2, 3, 4 and 5, respectively. All these words have in common 
the following sequence of dynamic trends: the first a leads to full oxidation of the catalyst (to a maximum 
redox value), then if there are subsequent a’s the redox value steps down in small steps; otherwise, the 
first b leads to onset of oscillations; then, if there are subsequent b’s the frequency is accelerated showing 
a small step upwards right after the addition of the symbol and an increased positive slope. Otherwise, the 
first c`s show a deceleration of the frequency, the slope of the frequency might still be positive but with a 
lower slope. If there are more c´s the frequency is further decelerated, and its slope can become negative. 
For this recipe, using nonlinear least squares regression we get the following approximate dependence of 
the frequency on the reactant concentrations): 

𝑓~[𝐵𝑟𝑂$-]² × [𝑀𝐴]µ × [𝑁𝑎𝑂𝐻]-¹ 
𝑓~[𝐵𝑟𝑂$-]v.q;$; × [𝑀𝐴]v.Urp, × [𝑁𝑎𝑂𝐻]-v.,vrU 

Hence for this recipe and TM operation combination  𝛼 > 	𝛽	~	|𝛾| 	> 0. 
Finally, the end of expression symbol is recognized because it leads to simultaneous decreases in the 
frequency and the distance of the oscillations. For each recipe, there is a nonlinear function relating the 
final frequency 𝑓# and final distance 𝐷# at the end of computation 𝑓#  = f(𝐷#) which for the recipe 1 used in 
this campaign adjusts well to the following nonlinear quadratic function: 

𝑓# = −0.0000172	𝐷#, + 0.007𝐷# − 0.67 



 
 

Where 𝑓# is in Hz, and 𝑓# in mV, and the goodness of fit is R2=0.9900. 

Panel b) of Figure S3 shows examples of strings that are rejected during computation because of wrong 
order of symbols, before reaching the end-of-expression symbol # and even before oscillations take place:  

• Strings that do not begin with a lack the full oxidation of the catalyst, i.e. if the word start with b or c the 
Ruthenium-based catalyst remains in the reduced state Ru(II) instead of being oxidized to Ru(III), hence 
the redox value remains at its minimum. See string bca, top plot in panel b), and observe that the redox 
potential upon processing “b” (highlighted in a red square) remains in the reduced value, thus the string 
is rejected upon processing the first symbol “b”. 

• Strings that contain the substring ac lack the stepwise decrease of the redox value that characterizes 
subsequent a’s. See string acb, second plot from the top in panel b), and observe that the redox 
potential upon processing “c” (highlighted in a red square) remains in the oxidized (maximum) value, 
thus the string is rejected upon processing the second symbol “c”. 

Panel b) of Figure S3 shows also examples of strings that are rejected during computation, before reaching 
the end-of-expression symbol #, but already in the oscillatory regime: 

• Strings that contain the substring ba show a dynamic behavior of the oscillations that is never occurring 
in words in the language L3, and that is characterized by a decrease in distance D concomitantly with 
a sharp increase in frequency f. It is also characterized by a decrease in amplitude, which is obvious 
from the redox measurement. See the string aba, third plot from the top in panel b), and observe how 
upon reading the second “a”, highlighted in a red square, D decreases simultaneously as f increases, 
thus the string is rejected upon reading the symbol in third position “a”. 

• Strings that contain the substring ca or cb show another dynamic behavior of the oscillations that is 
never occurring in words in the language L3, and that is characterized by a reacceleration of frequency 
f after the frequency had already began decelerating. Remember that when c’s are read, frequency 
decelerates, so that a reacceleration means that the current symbol cannot be a subsequent c but an 
a or b. See string aabccb, bottom plot in panel b), and observe how upon reading the “b” in substring 
“cb”, highlighted in a red square, f changes trend from decreasing to increasing again, thus the string 
is rejected upon processing the symbol in sixth position “b”. 

The input strings for Recipe 1 that were rejected upon processing the end-of-expression symbol #, are 
shown in Figure S4. Panel a) shows four examples of strings that are rejected because the number of a’s 
exceeds that of b’s and c’s. If we compare aabc, aaabbcc, aaaabbbccc with their nearest word in the 
language, i.e. n=1, 2 and 3 respectively, we observe in the three cases that the values at the end of 
computation are displaced towards lower values of distance and larger values of frequency. Hence, in the 
final frequency final distance plot, the words that have excess a´s are displaced northwest with respect to 
the function fulfilled by words in the language. Panel a) also shows one string that is rejected once the end 
of expression symbol is reached because the number of a’s and b’s exceed that of c’s, aabb.  

Panel b) of Figure S4 shows two examples of strings that are rejected once the end of expression symbol 
is reached because the number of b’s exceeds that of a’s and c’s: abbc and aabbbcc. If we compare these 
with the nearest word in the language, e.g. for abbc the nearest word in the language is abc, we observe 
in the two cases that the values at the end of computation are displaced toward larger values of distance 
and larger values of frequency than its nearest word in the language. Hence, in the final frequency final 
distance plot, the words that have excess b´s are displaced northeast with respect to the function fulfilled 
by words in the language. Panel b) of Figure S4 also shows two examples of strings that are rejected once 
the end of expression symbol is reached because the number of c’s exceeds that of a’s and b’s: aaabbbcccc 
and aaaabbbbccccc. If we compare them with the nearest word in the language we observe in the two 
cases that the values at the end of computation are displaced toward larger values of distance and smaller 
values of frequency than its nearest word in the language. Hence, in the final frequency final distance plot, 
the words that have excess c´s are displaced southeast with respect to the function fulfilled by words in the 
language. 

The experiments have shown that our realization of the BZ TM gives clearly distinct responses for strings 
that belong to the language L3= {anbncn} than for strings that are not in the language. Moreover, each type 



 
 

of reject in the abstract machine has a differentiated type of chemical response in the redox potential in the 
BZ machine. Indeed, all rejects that occur in the abstract machine during computation have their distinct 
chemical counterpart in the BZ machine, as it was expected. 

Results for Recipe 2 
Another extensive experimental campaign was successfully carried out using the mathematically optimized 
Recipe 2 (more concentrated NaBrO3 aliquot). The campaign was comprised of 12 input strings, 5 of them 
were words in the language L3 and 7 were rejected upon reaching the end-of-expression symbol #. Panel 
a) of Figure S5 shows the five accepted words, for n=1, 2, 3, 4 and 5, arranged from top to bottom, 
respectively. All these words fulfill the same sequence of dynamic trends as described for Recipe 1. Panel 
b) of Figure S5 shows the dynamic trends for 5 of the 7 tested rejected input strings, and again the results 
are qualitatively consistent with their counterparts for recipe 1. The rejected input strings are clustered in 
the same relative positions (e.g. NW for excess a’s, NE for excess b’s, SE for excess c’s) with respect to 
the canonical language L3. For most of the input strings, accepted or rejected, the result for recipe 2 is 
displaced toward a higher frequency and a lower distance that the result for its counterpart using recipe 1.   

For Recipe 2 the nonlinear function relating the final frequency 𝑓#	and final distance 𝐷# at the end of 
computation 𝑓# = f(𝐷#) adjusts well to the following nonlinear quadratic function: 

𝑓# = −0.0000395	𝐷#, + 0.015𝐷# − 1.43 

where	𝑓# is in Hz, and	𝐷#  in mV, and the goodness of fit is R2=0.9930. 
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