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Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic 
potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple 
cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation 
allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and 
their role in treatment is critical to determine their potential for various therapeutic applications and for the development 
of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying 
the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles 
of paracrine activities, direct cell–cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated 
effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on 
the rapid development of MSC-based therapies.
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Abbreviations
AHR	� Airway hyper-responsiveness
Alix	� ALG-2-interacting protein X
Ang-1	� Angiopoietin-1
ASCs	� Adipose-derived stem cells
BAX	� BCL-2-associated X protein
BCL-2	� B-cell lymphoma 2
CASP3	� Caspase 3
CX43	� Connexin 43
CXCR4	� Chemokine receptor type 4
DC	� Dendritic cell

ER	� Endoplasmic reticulum
ERBB4	� Erb-B2 receptor tyrosine kinase 4
EVs	� Extracellular vesicles
FAK	� Focal adhesion kinase
FGF	� Fibroblast growth factor
GM-CSF	� Granulocyte–macrophage colony-stimulating 

factor
GDNF	� Glial-derived neurotrophic factor
GvHD	� Graft-versus-host disease
hESCs	� Human embryonic stem cells
HGF	� Hepatocyte growth factor
HLA	� Human leukocyte antigen
HLA-G5	� Human leukocyte antigen class I molecule 

G5
HO-1	� Heme oxygenase-1
Hsp	� Heat-shock protein
ICAM	� Intercellular adhesion molecules
IDO	� Inducible indoleamine 2,3-dioxygenase
IFN	� Interferon
IGF-I	� Insulin-like growth factor-I
IGF-1R	� Insulin-like growth factor 1 receptor
IL	� Interleukin
ILCs	� Innate lymphoid cells
iNOS	� Inducible nitric oxide synthase
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iPSCs	� Induced pluripotent stem cells
ISCT	� International Society of Cell Therapy
LIF	� Leukemia inhibitory factor
lncRNAs	� Long non-coding RNAs
LPS	� Lipopolysaccharide
MAPK	� Mitogen-activated protein kinase
MCP-1	� Monocyte chemotactic protein 1
Mecp2	� Methyl CpG binding protein 2
Miro1	� Mitochondrial Rho-GTPase 1
miRNA	� MicroRNA
MSCs	� Mesenchymal stem cells
MYD88	� Myeloid differentiation primary response 

gene 88
NK	� Natural killer
NO	� Nitric oxide
Nrf2	� Nuclear factor-erythroid 2 p45-related factor 

2
PBMCs	� Peripheral blood mononuclear cells
PD-1	� Programmed death-1
PD-L1	� Programmed death-ligand 1
PGE2	� Prostaglandin E2
PGF	� Placental growth factor
PI3K/AKT	� Phosphoinositide-3-kinase and Akt
RA	� Rheumatoid arthritis
ROS	� Reactive oxygen species
SDF-1	� Stromal cell-derived factor 1
Sema3A	� Semaphorin-3A
SLE	� Systemic lupus erythematosus
STC1	� Stanniocalcin-1
TGF-β	� Transforming growth factor-β
Th	� T-helper
TLR	� Toll-like receptor
TNF	� Tumour necrosis factor
TNTs	� Tunnelling nanotubes
Tr1	� Type 1 Treg
Tregs	� Regulatory T cells
TSG	� TNFα-stimulated gene protein
UCP	� Uncoupling protein
VCAM	� Vascular cell adhesion protein
VEGF	� Vascular endothelial growth factor
XCL1	� Chemokine (C motif) ligand

Introduction

Mesenchymal stem cells (MSCs), alternatively referred to as 
mesenchymal stromal cells, have been extensively investi-
gated since their discovery in the bone marrow by Alexander 
Friedenstein and colleagues in the late 1960s [1, 2]. MSCs 
can migrate to injured sites, engraft, and differentiate into 
end-stage functional cells, thus repairing the injured tissue 
[3, 4]. More importantly, MSCs have also shown promising 
therapeutic effects due to their ability to modulate multiple 

immune cell types of both the innate and adaptive immune 
systems. MSCs can promote neovascularization, increase 
angiogenesis, enhance cell viability and/or proliferation, 
inhibit cell death, and modulate immune responses via 
paracrine and cell–cell contact effects as well as through 
extracellular vesicles [5, 6]. Recently, over 900 clinical trials 
worldwide have used MSCs to treat various diseases (www.
clini​caltr​ials.gov), including bone/cartilage repair, diabetes, 
cardiovascular diseases, immune-related, and neurological 
disorders. MSCs are attractive candidates for treating various 
diseases because they can travel to injured sites, differentiate 
into multiple cell types, and regulate immunomodulation [7]. 
In particular, the role of homing in MSC-based therapies 
remains doubtful. Interestingly, despite some encouraging 
results from animal studies, some clinical trials have also 
shown no therapeutic efficacy of MSCs. Therefore, under-
standing the biology of MSCs and their role in treatment will 
be critical to determine their potential for various therapeu-
tic applications. This review summarizes the mechanisms 
underlying the protective effects of MSCs and provides an 
overview of the recent developments in MSC-based therapy.

MSC identity

MSCs are classically defined as plastic-adherent, expand-
ing, non-hematopoietic cells that can differentiate into osteo-
blasts (bone cells), adipocytes (fat cells), chondroblasts (car-
tilage cells) and myocytes (skeletal muscle cells) in vitro 
[8–10]. They express the cluster of differentiation (CD) sur-
face markers including CD90, CD105, and CD73, but do 
not express CD11b, CD14, CD19, CD34, CD45 and human 
leukocyte antigen (HLA)-DR according to the International 
Society of Cell Therapy (ISCT) criteria [8, 9, 11]. How-
ever, this set of cell surface markers is not always applicable 
when identifying MSCs as pericytes and defining the cell 
markers. MSCs isolated from different tissues have different 
surface antigen molecules because these surface markers are 
influenced by many factors. The surface markers of MSCs 
isolated from the lung are distinct from those of the MSCs 
derived from the bone marrow [12]. Additional/alternative 
markers are being identified and confirmed for some specific 
sources of MSCs. For instance, CD146 is essential for MSC 
vigour and self-renewal as the dividing ability of MSCs is 
weakened or eliminated when CD146 is downregulated or 
silenced [13]. CD49d is detected in adipose-derived MSCs 
but not in BM-MSCs [14]. To date, markers for identifica-
tion of MSCs are under investigation. There needs to be a 
more critical take on a field that has deviated from careful 
science.

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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Sources of MSCs

Although bone marrow is the conventional source of MSCs, 
MSCs or MSC-like cells can be isolated from almost any 
tissue of the human body. MSC-like cells have been isolated 
from a variety of foetal, neonatal, and adult tissues includ-
ing adipose tissue, amniotic fluid, brain, compact bone, 
dermis, dental pulp, gingiva, foetal liver and lung, human 
islets, placenta, skeletal muscle, synovium, umbilical cord, 
peripheral blood and so on (Fig. 1) [14–24]. It is considered 
that MSCs refer to cells derived from the bone marrow, but 
not necessarily those from other sites such as adipose tis-
sue, which are often termed as adipose-derived stem cells 
(ASCs). However, MSCs derived from different origins have 
different characteristics and differentiation potential [25, 26]. 
Moreover, MSCs from different sources display significant 
differences in the levels of several paracrine factors [27]. 
Currently, the most frequently reported sources of MSCs 
utilized in clinical trials are the bone marrow, adipose tis-
sue, and umbilical cord. This is partially due to the acces-
sibility, ease of isolation, and MSC-based repair efficacy. 
The characteristics and differentiation potential of the most 

commonly investigated MSCs derived from different tissues 
have been summarized in Table 1.

Although MSCs can hypothetically be obtained from 
almost any tissue within the human body, the MSC surface 
markers, quality and isolated numbers are restricted by vari-
ous donor characteristics. There are also practical limitations 
concerning the difficulty and invasiveness of the procure-
ment process [25]. To select an adequate cell source, the 
practitioner must consider both advantages and disadvan-
tages of procuring MSCs with regard to the difficulty and 
potential adverse effects of harvesting donor the cells. For 
instance, BM-MSCs have shown confirmed safety and effec-
tiveness in multiple clinical trials, but their yields and dif-
ferentiation potential are dependent on the donor character-
istics (e.g., age). Moreover, isolation of cells from the bone 
marrow is often painful and carries the risk of infection. As 
adipose tissue is accessible and abundant, this source results 
in the isolation of stem cells that is 500 times more than 
the ones obtained from the bone marrow. Adipose tissue-
derived MSCs have stronger immunosuppressive effects but 
have inferior osteogenic and chondrogenic potential as com-
pared to the potential seen in BM-MSCs. The frequency of 

Fig. 1   MSCs can be isolated 
from a variety of foetal, neona-
tal, and adult tissues, and can 
differentiate into different cell 
types. CD cluster of differen-
tiation, ESCs embryonic stem 
cells, iPSCs induced pluripotent 
stem cells, MSCs mesenchymal 
stem cells
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colony-forming cells from dental pulp is high compared to 
those from bone marrow, and the source materials are easily 
accessible as dental surgeries are fairly common. However, 
ectomesenchymal and periodontal tissues can affect the 
properties of dental pulp-derived MSCs [28]. MSCs derived 
from birth-related tissues (amnion, placenta and umbilical 
cord) demonstrate higher expansion and engraftment capac-
ity, but these cells are not as useful as those from bone mar-
row or blood in terms of osteogenesis [25]. Obtaining MSCs 
from different tissues will demonstrate various characteris-
tics that may differ due to the tissue source, health condition, 
and age of the donor. Thus, researchers have begun to dif-
ferentiate MSCs from pluripotent stem cells, to circumvent 
the drawbacks of tissue-derived MSCs.

MSCs can be derived from pluripotent stem cells includ-
ing human embryonic stem cells (hESCs) and induced 
pluripotent stem cells (iPSCs) [54, 55]. Despite no direct 
sequencing comparisons between pluripotent stem cell-
derived MSCs and BM-MSCs, iPSC-MSCs indeed express 
typical MSC surface markers and undergo adipogenesis, 
osteogenesis, and chondrogenesis similar to that observed 
in adult BM-MSCs [55–57]. The functional characteristics 
of iPSC-MSCs have made the cells usable for tissue engi-
neering and cellular therapeutics. More importantly, MSCs 
derived from pluripotent stem cells display a higher prolif-
erative capacity and telomerase activity. These cells have 
a higher proliferative capacity (more than 50 passages), 
and lower cell senescence than that observed in BM-MSCs 
[55, 57, 58]. We also observed no teratogenic effects of 
iPSC-MSCs in animal studies, implying the safety of using 

iPSC-MSCs [55]. Furthermore, iPSC-MSCs from aged 
individuals were reported acquire a rejuvenation signature, 
which circumvents the ageing-associated drawbacks [59]. A 
very large number of functional MSCs can be clonally gen-
erated from a single-cell level, which maintains the homo-
geneity and functional quality of MSCs.

Moreover, compared with BM-MSCs, iPSC-MSCs are 
more insensitive to pro-inflammatory interferon (IFN)-γ-
induced HLA-II expression, exhibiting stronger immune 
privilege, superior survival rates, and improved engraft-
ment after transplantation. This means that pluripotent stem 
cell-derived MSCs have a stronger advantage in allogeneic 
transplantation [58]. Recently, the use of adult tissues, espe-
cially bone marrow, as a source of MSCs has decreased [60]. 
However, pluripotent stem cell-derived MSC-based therapy 
is in the early investigational stage and is not ready for clini-
cal application as many challenges remain to be overcome. 
For instance, there are ethical issues in hESC application. 
Will the original tissue/cell of iPSCs ultimately affect the 
function and effect of MSCs in different diseases? Will iPSC 
reprogramming cause genome instability? Genome sequenc-
ing should thus be carried out to verify the correctness of 
each base in iPSCs. Direct comparisons using advanced 
techniques such as RNAseq indicating that pluripotent stem 
cell-derived MSCs are similar to MSCs derived from adult 
tissues will be favourable. The reprogramming method may 
also affect the function of MSCs, but existing reprogram-
ming methods such as those using small molecular com-
pounds can avoid the hidden dangers posed by virus-medi-
ated reprogramming.

Table 1   Characteristics and differentiation potential of the common different tissue-derived MSCs

Source tissue Characteristics Differentiation potential References

Adipose tissue CD73, CD90, CD29, CD44, CD71, CD105, CD13, 
CD166, STRO-1

Adipocyte, chondrocyte, osteoblast [29–31]

Amniotic fluid CD44, CD90, CD105, CD13, CD29, CD71, CD120a Adipocyte, cardiomyocyte-like cell, chondrocyte, 
osteoblast

[32, 33]

Bone marrow CD73, CD90, CD105, STRO-1 Adipocyte, chondrocyte, osteoblast, tenocyte, vascular 
smooth muscle cell

[34–37]

Dental pulp CD29, CD44, CD90, CD105 Adipocyte, chondrocyte, osteoblast, neuron-like cell, 
odontoblast, myogenic lineages

[38–41]

Endometrium CD29, CD90, CD73, CD105 Adipocyte, chondrocyte, osteoblast [42, 43]
Peripheral blood CD44, CD90, CD105, HLA-ABC Adipocyte, osteoblast, fibroblast [44]
Placenta CD29, CD73, CD90, CD105 Adipocyte, chondrocyte, osteoblast, myotubular cell, 

pancreatic progenitor cell, neuron-like cell, retinal 
cell

[45, 46]

Synovium CD44, CD90, CD105, CD147, STRO-1 Adipocyte, chondrocyte, osteoblast, skeletal muscle 
cell

[29, 47, 48]

Skin CD44, CD73, CD90, CD105, CD166, SSEA-4, 
Vimentin

Adipocyte, chondrocyte, osteoblast, neuron-like cell, 
pancreatic cell, endothelial cell

[49–51]

Umbilical cord CD29, CD44, CD73, CD90, CD105 Adipocyte, chondrocyte, osteoblast, skeletal mus-
cle cell, endothelial cell, cardiomyocyte-like cell, 
neuron-like cell

[52, 53]
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MSC functions

In addition to cells of the mesodermal lineage (i.e., adipo-
cytes, chondrocytes, osteoblasts and skeletal myocytes), 
MSCs also can differentiate into cells of ectodermal origin 
and endodermal origin, such as hepatocytes and neuron-
like cells [61, 62]. Significant progress has been achieved in 
tissue regeneration using MSCs in de-cellularized or syn-
thetic scaffolds [63]. However, the encouraging regenerative 
potential of MSCs is mainly validated by in vitro functional 
assays. Upon allogeneic transplantation, MSCs have shown 
protective effects in a variety of injured models including 
damaged bone, cartilage [64], hepatic [65], myocardial [66], 
and neural tissues [67]. However, the therapeutic effects of 
MSCs are not attributed to poor cell retention [68].

It is becoming increasingly evident that the therapeutic 
effects of MSCs are largely attributed to the immunomodu-
latory function. MSCs exert immunomodulatory and anti-
inflammatory effects by regulating lymphocytes associated 
with both innate and adaptive immune systems [68]. It is 
well documented that MSCs regulate the immune response 
in many diseases [69]. Accumulating evidences have demon-
strated that MSCs can regulate T cell proliferation, function, 
balance T-helper (Th)1 and Th2 activity [69, 70], upregulate 
the functions of regulatory T cells (Tregs) [71], suppress B 
cell functions [72, 73], inhibit natural killer (NK) cell pro-
liferation and function [74], and prevent dendritic cell (DC) 
maturation and activation [6, 57, 62]. MSCs can also stimu-
late proliferation and cytokine secretion in innate lymphoid 
cells (ILCs), a new family of lymphocyte-like cells, which 
play an important role in innate defences against pathogens 
[75, 76]. MSCs can regulate their immunomodulatory func-
tions according to the micro-environmental inflammatory 
conditions. The plasticity of MSCs in immunomodulation 
is affected by the type and intensity of inflammatory stimuli 
conferred on MSCs. For instance, MSCs can suppress the 
polarization of Th1 and Th17, and promote Th2 polariza-
tion in graft-versus-host disease (GvHD) [77]. Meanwhile, 
MSCs can also inhibit Th2-dominant allergy by inhibiting 
IL-4 and IL-13 production [7]. Furthermore, MSCs promote 
the responses of lymphocytes in quiescent-state peripheral 
blood mononuclear cells (PBMCs) from patients with aller-
gic rhinitis [70]. MSCs exert immunosuppressive effects 
or contribute to the fibrotic process under acute or chronic 
inflammatory conditions, respectively [62, 78]. Their immu-
nomodulatory characteristics thus make MSCs a flexible and 
feasible strategy for treating various diseases.

The function of MSCs is known to decline with age, a pro-
cess that may be implicated in the loss of tissue homeosta-
sis leading to organ failure and aging-related diseases [79]. 
The proliferative and functional activity of MSCs is destined 
to decline during the process of senescence. The osteogenic 
activity of senescent MSCs deteriorates as a function of 

increasing lifespan, whereas the adipogenic differentiation 
potential of MSCs remains unchanged or is even enhanced 
[80]. For osteogenic induction, early passages MSCs or strate-
gies to prevent senescence must be considered to yield longer 
osteogenesis and better quality. Furthermore, the immunomod-
ulatory functions of MSCs are also reported to be compro-
mised due to increased reactive oxygen species and oxidative 
stress in aged cells [81]. Therefore, MSC senescence may have 
a major impact on their therapeutic function. This calls for 
research on senescence and the development of efficient means 
to rejuvenate MSCs. Recently, several strategies have been 
explored to rejuvenate senescent MSCs, and subsequently 
enhance their functions. Overexpression of neuron-derived 
neurotrophic factor was found to rejuvenate aged BM-MSCs 
and improve their function in repairing the aged heart after 
ischemia [82]. microRNA (miR)-10a rejuvenated aged BM-
MSCs and enhanced the cardiacprotection following infarc-
tion in mice via increased paracrine effects [83]. Furthermore, 
overexpressing FGF 21 in MSCs may delay their senescence 
during passaging in vitro [84]. Indeed, rejuvenating MSCs iso-
lated from aged individuals or patients to enhance their func-
tions is of great importance.

Therapeutic properties of MSCs

Their regenerative and immunomodulatory properties enable 
MSCs as a novel strategy for treating a wide variety of diseases 
including autoimmune diseases [85, 86], bone and cartilage 
diseases [3, 87], cardiovascular diseases [88, 89], inflamma-
tory airway disorders [6, 90], liver diseases [91, 92], muscle 
diseases [93], neurodegenerative diseases [94, 95], spinal 
cord injuries [96] and so on. The osteogenic differentiation 
potential of MSCs makes them successful in treating and 
managing bone fractures [97]. The ability of MSCs to modu-
late immune responses is considered as a safe and feasible 
strategy to treat Crohn’s disease [98], systemic lupus erythe-
matosus (SLE) [99, 100], rheumatoid arthritis (RA) [101], 
GvHD [102], Type I diabetes [103] and so on. MSCs also 
prevent allergic airway inflammation and reduce the symp-
toms of severe asthma [104–108]. Administration of MSCs 
functionally attenuates airway hyper-responsiveness (AHR), 
inflammatory cell infiltration, and mucus production in ani-
mal models [104, 109–113]. Upon transplantation, MSCs have 
shown various favourable effects in treating neurodegenerative 
diseases via enhanced neurogenesis, inflammation modulation, 
and abnormal protein aggregate clearance [94]. Thus, MSCs 
have shown promising results in the clinical application of 
stem cell therapy.
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Clinical application of MSCs

The safety, feasibility and efficacy of MSC therapy for 
different diseases has been extensively investigated over 
the past decades. The recent development of MSC-based 
products for treating diseases provides a bridgehead from 
which MSCs can be implemented in clinical utility. Con-
sidering both the ongoing and completed clinical trials, 
MSC-based treatment appears to maintain the promise 
of safety and demonstrates that MSC administration is 
feasible. However, despite MSC application in the early 
stage of clinical trials, much work is needed before MSCs 
can pass from the bench to the bed-side [114]. Table 2 

lists some of the clinical trials with outcomes involving 
the administration of MSCs. Some studies have shown 
beneficial effects, whereas some studies have shown no 
effects of MSCs. These mixed and contradictory results 
in clinical trials hamper the application of MSCs. Among 
178 registered clinical trials using umbilical cord-derived 
MSCs between years 2007–2017, only 16% had status-
completed by 27th October, 2018. During the same time, 
a total of 98 clinical studies were published. Although 
74% of the publications reported some promising results, 
only 18% of the publications showed that this treatment 
was safe [115]. Although the safety of MSC transplan-
tation was confirmed, less than 40% of the studies and 
clinical trials with available and published results showed 

Table 2   Summary of some clinical trials with outcomes involving MSC administration

Disease MSC S
ource

Dosage and delivery route Efficacy NCT number/reference

Amyotrophic lateral scle-
rosis

Autologous bone marrow-
derived MSCs

1 × 106 cells/kg, via 2 
repeated intrathecal injec-
tions

Delayed disease progression NCT01363401

Autologous adipose-derived 
MSCs

1 × 107 – 1 × 108 cells, via 
intrathecal injection

No effect NCT01609283

Autologous bone marrow-
derived MSCs

15 × 106 cells, via intrathe-
cal injection

Variable effects NCT02881489

Type 2 diabetes mellitus Autologous bone marrow-
derived MSCs

Injected into the gastroduo-
denal artery/ pancreati-
coduodenal artery

Improvement in daily 
insulin requirements. 
Nausea and vomiting were 
recognized

[119, 120]

Placental-derived MSCs 1.35 × 106 cells/ kg, 3 
intravenous infusions at 
1-month intervals

Improvements in C-pep-
tides, HbA1c levels, and 
insulin dosages. Nausea 
and vomiting were rec-
ognized

[121]

Spinal cord injury Autologous bone marrow-
derived MSCs

8 × 106 cells, via intrathecal 
administration

Improvement in ASIA 
score, EMG, and SEP; 
improvement in MRI 
imaging

[122]

Autologous bone marrow-
derived MSCs

89.7 × 106 cells, via intra-
arterial or intravenous 
administration

No significant improvement [123]

Autologous bone marrow-
derived MSCs

1 × 106 cells, via intrathecal 
administration

Variable patterns of recov-
ery

[124]

Autologous bone marrow-
derived MSCs

7 × 105 to 1.2 × 106 cells, via 
intrathecal administration

Positive trend, but not statis-
tically significant

[125]

Stroke Autologous bone marrow-
derived MSCs

50–60 × 106 cells, via intra-
venous administration

No improvement in all clini-
cal scores

[126]

Autologous bone marrow-
derived MSCs

4.57 × 107 MSCs per 
intravenous infusion were 
administered amounting 
to 8.54 × 105 per kilogram 
body weight at two occa-
sions (4 weeks apart)

Improvements in motor 
disability and cognitive 
impairment

[127]

Umbilical cord-derived 
MSCs

5 × 106–1 × 107 cells, via 
intraventricular adminis-
tration

Safe and feasible [128]



2777Mechanisms underlying the protective effects of mesenchymal stem cell‑based therapy﻿	

1 3

positive improvements in the use of MSCs for patients 
with amyotrophic lateral sclerosis [116]. Administration 
of MSCs in clinical trials exhibited beneficial effects on 
diabetes. However, no significant therapeutic effect was 
observed and the clinical measures were rapidly restored 
to the baseline [117]. Compared to adult MSCs, clinical 
trials using iPSC-MSCs have just begun. The first clinical 
trial using iPSC-MSCs is now underway to test the clini-
cal efficacy in human patients with steroid-resistant acute 
GvHD (ClinicalTrials.gov Identifier: NCT02923375). 
The utilized iPSC-MSCs have been found to be safe and 
well tolerated in the first cohort (of eight GvHD patients) 
enrolled in a phase I trial (https​://www.cynat​a.com/graft​
versu​shost​disea​se) [118].

The contradictory results in MSC clinical application 
may be caused by the heterogeneity of MSCs, which is 
the main problem that restricts the therapeutic benefit of 
MSCs. The heterogeneity of MSCs is influenced by the key 
parameters of MSCs including donor origin, tissue origin, 
passage number, expansion protocol, delivery dosage, route 
and so on. Additionally, multiple factors including the cul-
ture condition, the exact diseases intended to be targeted, 
and the local conditions of administration may also affect 
the immunomodulatory function of MSCs. These factors 
directly affect the outcome of MSC-based application. More 
importantly, many clinical trials have similar limitations in 
examining the effects of MSCs, including small size, lack 
of control arms in some cases, and inconsistent methods of 
isolating and using MSCs. Homogeneity and quality con-
trol are the most critical issues for the clinical application 
of MSCs. Larger studies with more randomized, blinded, 
strictly-regulated trials and longer follow-up times that show 
the beneficial effects of MSCs are also needed. This implies 
that the efforts of researchers and clinicians will focus on 
revealing the mechanisms that affect the effects of MSCs.

Mechanisms underlying MSC‑based therapy

The therapeutic potentials of MSCs are mainly attributed to 
two aspects: first, replacement of the damaged tissue by dif-
ferentiating into various cell lineages, and the second, regula-
tion of immune responses by immunomodulatory function. 
Rather than long-term engraftment and differentiation of the 
integrated MSCs, a growing body of studies has shown that the 
protective effects of MSCs for damaged and diseased tissues 
are attributed to alternative immunomodulatory modes. The 
major mechanism underlying MSC-based therapy is the par-
acrine function, which secretes a variety of soluble factors to 
exert immunomodulatory, angiogenic, antiapoptotic and anti-
oxidative effects [129, 130]. Cell–cell contact enables MSCs 
to modulate their immunosuppressive effects and promote cell 
viability. MSCs can transfer mitochondria to injured cells via 

tunnelling nanotubes (TNT) [131, 132]. Furthermore, MSCs 
reduce inflammation and increase cell proliferation during 
tissue repair via releasing exosomes that contain reparative 
peptides/proteins, mRNA, and microRNA (miRNA) (Fig. 2) 
[133, 134].

Integration of differentiated MSCs

MSCs have remarkable differentiation potential. After trans-
plantation, differentiated MSCs can successfully integrate into 
the diseased host tissue. Integration of stem cells is necessary 
for the improvement of endogenous tissue repair, in order to 
replace the dead or damaged cells. MSCs and their progenitors 
can differentiate into chondrocytes and undergo chondrogen-
esis [135–137]. MSCs can differentiate into cardiomyocyte-
like cells, integrate into host tissue, and enhance resident cell 
activity [138]. With the help of nano-biomaterials, MSCs have 
achieved better differentiation and functional integration for 
repairing myocardial infarction repair [139–141]. Transplanted 
MSCs can integrate into partially hepatectomized or toxic-
injured liver for hepatic regeneration [142, 143]. Integration 
of MSCs has also demonstrated promising results in the treat-
ment of neurodegenerative diseases. MSCs can integrate into 
the parenchyma of both the brain and the spinal cord. Intra-
parenchymal delivered MSCs were proven to be safe, and sig-
nificantly delayed the loss of motor neurons [144]. Tzameret 
et al. found that intravitreally injected MSCs ameliorate retinal 
degeneration by integrating into the neural layers of the dam-
aged retina [145]. Moreover, analysis of tissues after MSC 
transplantation revealed cell fusion between transplanted 
MSCs and cells of the recipient, albeit at a low frequency. 
MSC fusion was observed in many organs such as the brain, 
retina, the liver, muscles, and the gut where they participated in 
the reestablishment of tissue function [146]. The exact biologi-
cal implication of MSC fusion is unclear. However, it is worth 
mentioning that cell fusion between MSCs and cancer cells 
enhances metastatic capacity and the characteristics of cancer 
stem cells by undergoing epithelial-mesenchymal transition, 
which is considered a key cell event in the process of tumour 
metastasis and invasion [147, 148]. Overall, the engraftment 
and differentiation efficacy of MSCs post-transplantation is 
very low which heavily limits their therapeutic effects. The 
differentiation potential of MSCs largely depends on donor 
age, tissue origin, cell passage numbers, cell densities, dura-
tion of cell culture and so on. Therefore, further investigation 
is needed to reveal the mechanisms of regulatory pathways and 
improve differentiation efficacy.

https://www.cynata.com/graftversushostdisease
https://www.cynata.com/graftversushostdisease
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Soluble factors

Immunomodulatory factors

The low immunogenicity makes MSCs eligible for alloge-
neic transplantation. MSCs can inhibit CD4+ cell, CD8+ 
T cell, and NK cell proliferation and DC maturation, sup-
press plasma cell immunoglobulin production, and stimu-
late Treg proliferation by secreting transforming growth 
factor-β (TGF-β), hepatocyte growth factor (HGF), induc-
ible indoleamine 2,3-dioxygenase (IDO), human leuko-
cyte antigen class I molecule (HLA)-G5, prostaglandin E2 
(PGE2), interleukin (IL)-6, IL-10, TNFα-stimulated gene 
protein (TSG)-6 and so on. Bartholomew A. et al. showed 
that MSCs suppress lymphocyte proliferation, alter lympho-
cyte reactivity to allogeneic target cells, and prolong skin 
graft survival following intravenous administration in MHC-
mismatched baboons [149]. Furthermore, Di Nicola et al. 
demonstrated that soluble factors secreted by MSCs partly 
contribute to immunomodulatory capacity in a co-culture 
of MSCs with T-lymphocytes in a Transwell system, which 
excludes cell–cell contact. TGF-β or HGF are involved in 
the inhibition of T cell proliferation by the addition of a 
monoclonal antibody in the system [150]. The secreted 
TGF-β promotes the differentiation of naive T cells into 

Treg cells, thus improving systemic immune tolerance [151]. 
Furthermore, Zhong et al. demonstrated that the TGF-β1/
Smad signalling pathway is involved in the immunomodu-
latory effects of MSCs in chronic allergic airway inflam-
mation [152]. MSCs primed with IFN-γ will secrete IDO, 
which subdues the T-cell response to autoantigens and foe-
tal alloantigens [153]. Furthermore, IDO catalyses the con-
version of tryptophan to kynurenine, which inhibits T-cell 
proliferation [154]. Additionally, the primed MSCs secrete 
programmed death-ligand 1 (PD-L1), which co-inhibits the 
adaptive immune response in tissue allografts, autoimmune 
disease and other diseases [155]. MSC-secreted HLA-G5 
suppresses T lymphocytes and NK function, and induces the 
expansion of CD4+CD25highFOXP3+ Treg cells [71]. MSCs 
regulate adaptive immune responses by secreting PGE2, 
which induces DCs to upregulate the anti-inflammatory 
cytokine IL-10, while reducing the secretion of pro-inflam-
matory tumour necrosis factor (TNF)-α and IL-12 [156, 
157]. This will convert the pro-inflammatory Th1 cells to the 
anti-inflammatory Th2 cell phenotype. Meanwhile, naïve T 
cells differentiate into Treg cells, which further decrease the 
total number of T helper cells [156]. Moreover, MSCs exert 
immunomodulatory effects by secreting IL-6, which inhib-
its lymphocytes apoptosis [158]. In addition, MSC-derived 
nitric oxide (NO) [159], leukaemia inhibitory factor (LIF) 

Fig. 2   Mechanisms underlying MSC-based therapy. MSCs rescue 
and/or repair injured cells via differentiation into replacement cell 
types and by modulating immune responses. The immunomodulatory 
modes of MSCs include paracrine activity, cell–cell contact and inter-

action, mitochondrial transfer, and release of extracellular vesicles. 
The mechanisms involved in repair are not equivalent and MSCs can 
adapt their therapeutic effects according to diverse local microenvi-
ronments. MSCs mesenchymal stem cells
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[160], galectin-1, and semaphorin-3A [161] inhibit T lym-
phocyte proliferation. LIF suppresses T cell proliferation as 
well as promotes and maintains Tregs [162].

MSC-derived soluble factors also modulate macrophage 
behaviour. The pro-inflammatory phenotype M1 (classical-
activated macrophage) transits to the anti-inflammation 
phenotype M2 (alternative-activated macrophage) in the 
presence of MSCs [163]. Tsyb et  al. demonstrated that 
MSC-derived TSG-6, via the CD44 receptor, ameliorates 
macrophages to secrete inflammatory factors by inhibiting 
NF-κB activity. TSG-6 also inhibits the maturation and func-
tion of DCs [164, 165]. Zhang et al. found that galectin-1 
from MSCs stimulates the formation of a tolerance immu-
nophenotype on DCs via regulating the MAPK signalling 
pathway in DCs, thereby inhibiting their function [166]. 
The immunomodulatory effects of MSC-derived factors 
have been observed during both the antigen recognition/
presentation stage and T cell activation stage of the immune 
response. Recent studies have shown that the immunosup-
pressive potency of MSCs is predominantly mediated by key 
molecules including Rap1 and IDO1 [167, 168]. Further-
more, novel strategies including hypoxia preconditioning 
and chemical pre-treatment can significantly enhance the 
immunosuppressive potency of MSCs [169, 170].

MSCs mediate immune responses via diverse modes 
of action. MSCs can be either immunosuppressive or 
immune-enhancing depending on the soluble factor levels 
in the microenvironment. Li et al. found that the degree of 
NO production acts as a switch in MSC-mediated immu-
nomodulation. MSCs tend to promote T cell proliferation 
rather than immunosuppression when inducible nitric oxide 
synthase (iNOS), one of three key enzymes generating NO, 
is blocked. The level of iNOS/IDO plays a critical role in 
determining the pathophysiological roles of MSCs [171]. 
Cuerquis et al. further confirmed that MSCs induce a tran-
sient increase in IFN-γ and IL-2 synthesis by activating T 
cells before suppressing T-cell proliferation [172]. There-
fore, in addition to MSC isolation protocols, their origins 
and dosages, the inflammatory state and level of soluble 
factors in immune diseases must also be considered before 
MSC intervention.

Angiogenic factors

It has been proven that the angiogenic (the sprouting of 
existing vessels) and arteriogenic (the growth of collateral 
vessels) properties of MSCs contribute to the amelioration of 
hind limb ischemia, coronary artery disease, and skin wound 
repair [55, 58, 173–176]. Angiogenesis is a complex multi-
step process that forms new blood networks, which requires 
endothelial cell growth and differentiation-associated sol-
uble growth factors such as vascular endothelial growth 
factor (VEGF) and fibroblast growth factor (FGF) [177]. 

MSCs secrete VEGF, FGF, HGF, placental growth factor 
(PGF), monocyte chemotactic protein 1 (MCP-1), stromal 
cell-derived factor 1 (SDF-1), and angiopoietin-1 (Ang-1) 
that are critical for vascularization [178–183]. Several stud-
ies have reported the potential of increasing capillaries and 
newly formed vessels following MSC administration both 
in vitro and in vivo [184–186]. Hung et al. demonstrated 
that angiogenic factors including IL-6, MCP-1, and VEGF 
in MSC-conditioned medium inhibit apoptosis, increase 
survival, and stimulate angiogenesis of endothelial cells 
under hypoxic challenge [179]. IL-6 promotes angiogenesis 
and survival of endothelial cells [187]. MCP-1 has been 
proven as a critical chemoattractant for angiogenesis [188]. 
VEGF can promote MSC differentiation as well as regulate 
endothelial cell migration, differentiation and endothelialisa-
tion via activation of the mitogen-activated protein kinase 
(MAPK), phosphoinositide-3-kinase and Akt (PI3K/AKT), 
Src, and Rac pathways [189]. Overexpression of Erb-B2 
receptor tyrosine kinase 4 (ERBB4) can rejuvenate aged 
MSCs and stimulate angiogenesis by regulating the PI3K/
AKT and the MAPK/ERK pathways, leading to increased 
therapeutic effects for myocardial infarction [190]. MSCs 
promote angiogenesis via the SDF-1/C-X-C chemokine 
receptor type 4 (CXCR4) axis [191]. Moreover, Dong et al. 
found that myocardial CXCR4 is required for MSC-derived 
SDF-1, meditating repair in acute myocardial infarction 
[192]. MSC-derived angiogenic factors such as SDF-1 and 
HGF promote local angiogenesis [193, 194]. SDF-1 stimu-
lates endothelial cell proliferation and capillary tube for-
mation, whereas HGF promotes tyrosine phosphorylation 
in endothelial cells and smooth muscle cells via the c-Met 
receptor [195, 196]. Further, MSC-derived angiogenic solu-
ble factors improve angiogenesis and restore blood supply in 
ischemic areas. However, it is unclear whether MSC-derived 
soluble factors account for the dominant mechanisms of 
action. The importance of hibernating cells and suscepti-
ble cells in the local region should also be considered [129, 
197].

Anti‑apoptotic factors

The multiple roles of apoptosis in regulating various physi-
ological and pathological functions implicate its significance 
in disease treatment [198]. Moreover, MSCs can synthesise 
and secrete B-cell lymphoma 2 (BCL-2), survivin, VEGF, 
HGF, insulin-like growth factor-I (IGF-I), stanniocalcin-1 
(STC1), TGF-β, FGF, and granulocyte–macrophage colony-
stimulating factor (GM-CSF), which inhibit cellular apop-
tosis and restore tissue homeostasis [198–203]. BCL-2 is a 
classic inhibitor of apoptosis. An increased ratio of BCL-2 
to BCL-2-associated X protein (BAX) results in cells that 
are less sensitive to the pathological stimuli and prevents 
cells from responding to apoptotic signals [204, 205]. 
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Transplantation of autologous MSCs significantly down-
regulates Bax expression levels in the ischemic myocardium 
[206]. Zhang et al. demonstrated that the Bcl-2 signalling 
pathway, together with PI3K/Akt, closely participates in the 
anti-apoptotic action of MSCs against stroke [207]. Pan et al. 
demonstrated that MSCs ameliorate hepatic ischemia/rep-
erfusion injuries via inactivation of the MEK/ERK signal-
ling pathway in rats. Meanwhile, MSC-conditioned medium 
could down-regulate Bax, TNF receptor superfamily, mem-
ber 6 (FAS), and caspase 3 (CASP3) levels in a human 
normal liver cell line under ischemic conditions, indicating 
the anti-apoptotic effects of MSC paracrine function [208]. 
MSC-derived chemokine (C motif) ligand (XCL1) has been 
reported to inhibit apoptosis in C2C12 cells [198]. However, 
direct XCL1 treatment showed no anti-apoptotic capacity.

In addition to the direct inhibition of apoptosis, MSC-
secreted factors enhance cell survival by suppressing apop-
totic pathways. The levels of VEGF, HGF, IGF-I, FGF, and 
GM-CSF in MSC culture medium have been found to be 
significantly elevated under hypoxic conditions [201]. Nota-
bly, upregulation of VEGF under hypoxia is greater than that 
of the other factors [199]. VEGF has been reported to inhibit 
serum starvation-induced vascular endothelial cell apoptosis 
via upregulating Bcl-2 expression [209]. VEGF also contrib-
utes to suppressing p53-mediated apoptosis via the activat-
ing phosphorylation of focal adhesion kinase (FAK), which 
is essential for regulating cell survival [210, 211].

Antioxidative factors

Reactive oxygen species (ROS), including oxygen ions, 
oxygen-free radicals, and peroxides, are byproducts of 
normal aerobic metabolism. ROS are involved in the regu-
lation of multiple signalling pathways including cell pro-
liferation, survival, and inflammation [212–214]. An imbal-
ance between levels of ROS and antioxidant function leads 
to ROS-related diseases such as ageing, carcinogenesis, 
immune disorders, inflammation, multiple sclerosis, and 
neurodegeneration [129, 215]. Further, MSCs modulate 
the redox context via secretion of STC1, heme oxygenase-1 
(HO-1), and glial-derived neurotrophic factor (GDNF) 
[216–218]. MSC-derived STC1 reduces ROS-induced apop-
tosis. Liu et al. demonstrated that STC1 suppresses angio-
tensin II-induced superoxide generation in cardiomyocytes 
via the uncoupling protein 3 (UCP3)-mediated anti-oxidant 
pathway [219]. Moreover, MSC-derived STC1 enhances 
the uncoupling respiration of mitochondria, reduces oxida-
tive stress, and promotes the survival of alveolar epithelial 
cells under harmful microenvironments via upregulation 
of uncoupling protein 2 (UCP2) [220]. Furthermore, Ono 
et al. found that STC1 contributes to the ability of MSCs 
to ameliorate lung fibrosis via inhibition of the ROS/endo-
plasmic reticulum stress (ER-stress)/TGF-β1 pathway [221]. 

Oh et al. found that STC1 can also respond to activated 
macrophages by inhibiting activation of the NLRP3 inflam-
masome, which decreases mitochondrial ROS production 
[222]. MSC-derived antioxidative enzyme HO-1 protects 
against oxidative injury. Allogeneic MSC transplanta-
tion ameliorates the redox environment via upregulating 
HO-1 in a rat model of lipopolysaccharide (LPS)-induced 
acute lung injury [217]. Chen et al. further demonstrated 
that HO-1 exerts a protective effect by elevating the activ-
ity of nuclear factor-erythroid 2 (NF-E2) p45-related fac-
tor-2 (Nrf2), which is a transcription factor mediating the 
Nrf2-antioxidant response element signalling pathway [223, 
224]. HO-1 also attenuates LPS-induced inflammatory and 
oxidative damage via the enhanced paracrine function of 
stem cells. Zarjou et al. found that the production of HGF, 
SDF-1 and VEGF is significantly reduced in HO-1−/− MSCs 
[225]. MSCs exert localized neuroprotection from oxidative 
stress by the secretion of GDNF [218, 226]. Lv et al. found 
that GDNF possibly prevents and repairs neuronal injury 
by regulating the MEK/ERK and the PI3K/AKT signalling 
pathways [227]. MSCs secrete different antioxidative factors 
in different experimental settings and diseases, probably due 
to the variation of ROS in localized microenvironments.

Cell–cell contact

MSCs exert their modulatory functions to host cells at dam-
aged sites via paracrine action and direct cell–cell contact. 
MSCs modulate both autologous and allogeneic T lym-
phocytes via the expression of integrins (alpha 1 – alpha 
6, alpha V, and beta 1 – beta 4), intercellular adhesion mol-
ecules (ICAM-1, ICAM-2), vascular cell adhesion protein 
(VCAM)-1, CD72, and CD58 (LFA-3) on their surfaces 
[6]. Accumulating evidence has shown that MSCs modu-
late T cells by the negative costimulatory molecule B7-H4, 
Fas-L/Fas interaction, or PD-L1/programmed death-1 (PD-
1) pathways [228–230]. Kovach et al. demonstrated that the 
expression of ICAM-1 and VCAM-1 on MSCs is critical for 
maintaining their immunomodulatory functions on various 
subtypes of T cells [231]. The expression of PD-1 ligand on 
the surface of MSCs is critical for the contact-dependent 
inhibition of allogeneic Th17 differentiation [232]. Galec-
tin-1 and galectin-3 are necessary for MSCs to inhibit the 
proliferation of CD4+ and CD8+ T cells [233].

Direct cell–cell contact is required for MSCs to induce 
Treg cells and in allergic diseases [106, 234]. It has been 
reported that increased gene expression of the Notch ligand, 
Delta-like 1, is essential for augmented Treg cell induc-
tion by toll-like receptor (TLR)-activated MSCs, which is 
dependent on cell–cell contact [7]. In addition, MSCs require 
cell–cell contact to reduce NK-cell cytotoxicity [235]. When 
co-cultured with MSCs, NK cells acquire CD73 expression, 
which makes the cells capable of converting adenosine 
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5′-monophosphate into adenosine for immunomodulatory 
purposes [236]. Li et al. found that cell–cell contact with 
pro-inflammatory macrophages enhances TSG-6 production 
by MSCs, thereby elevating the immunomodulatory effect 
of MSCs on T cells and macrophages. Pro-inflammatory 
macrophages in contact with MSCs also upregulate CD200 
on stem cells, and skew the reprogramming of macrophages 
towards an anti-inflammatory phenotype through the inter-
action of CD200 with CD200R on pro-inflammatory mac-
rophages [237]. Zhang et al. found that MSCs drive mature 
DCs to differentiate into regulatory DCs via contact-
dependent activation of Jagged-2 [238]. Furthermore, direct 
cell–cell contact between MSCs and endothelial progenitor 
cells induces MSC differentiation towards a pericyte-like 
phenotype, which may benefit angiogenesis for cell-based 
tissue-engineered bone grafts [239]. However, intravenously 
administered MSCs inhibit endothelial cell proliferation and 
angiogenesis via cell–cell contact through modulation of the 
VE-Cadherin/β-catenin signalling pathways [240]. There-
fore, the contact-dependent factors affecting the biology of 
adjacent responder cells and tissues should be carefully con-
sidered for optimization of the strategies involving MSCs.

Mitochondrial transfer

Mitochondria play important roles in the regulation of oxida-
tive phosphorylation, generation of ATP, and cellular apop-
tosis. Dysfunctional mitochondria lead to excessive ROS 
production and cause oxidative damage in cells [241]. Accu-
mulating evidence has suggested that mitochondrial trans-
fer from MSCs is a novel strategy for the regeneration of 
various damaged cells via rescue of their respiratory activi-
ties. Accumulating evidence has shown that mitochondrial 
transfer occurs via TNTs, gap junctions, microvesicles, cell 
fusion and transfer of isolated mitochondria [132, 242–245]. 
So far, mitochondrial transfer from MSCs has demonstrated 
protective effects in lung injury, bronchial epithelial injury, 
allergic diseases, damaged cardiomyocytes, alkali-burnt cor-
neal epithelial cells, kidney injury, ischemic damage, neuro-
toxicity, and spinal cord injury [132, 246–253]. Numerous 
studies have identified several signals including release of 
damaged mitochondria, mtDNA and mitochondrial products 
along with elevated ROS levels that trigger mitochondrial 
transfer from MSCs to the recipient cells [241].

Mitochondrial transfer through TNT has been intensively 
investigated between MSCs and damaged cells. Miro1 (mito-
chondrial Rho-GTPase 1, synonym: RhoT1), a calcium-sen-
sitive adaptor protein, has been identified as one of the key 
regulators in mediating the transport of mitochondria. Miro1 
binds the mitochondria to KIF5 motor protein together with 
other accessory proteins like Miro2, TRAK1, TRAK2, 
Myo10, and Myo19, thus forming a motor-adaptor complex 
that coordinates the mitochondrial movement at intercellular 

and intracellular levels [241, 242]. Knock-down of Miro1 in 
MSCs inhibits mitochondrial donation, thus reducing their 
therapeutic effects in bronchial epithelial injury [254]; in 
contrast, Miro1overexpression in MSCs leads to enhanced 
beneficial effects [242, 255, 256]. Apart from Miro1, Zhang 
et al. found that TNF-α induces TNT formation in MSCs 
via the TNF-α/NF-κB/TNFαIP2 signalling pathway, which 
facilitates mitochondrial transfer to cardiomyocytes. It has 
been reported that ROS signals can stimulate TNT forma-
tion [251]. Moreover, connexin 43 (CX43) is involved in 
regulating mitochondrial transfer from MSCs via TNT for-
mation. CX43 overexpression in iPSC-MSCs enhances TNT 
formations and improves the mitochondrial transfer efficacy 
between MSCs and damaged epithelial cells. Knock-down 
of CX43 reduces TNT formation and thus decreases mito-
chondrial transfer from MSCs to damaged epithelial cells, 
impairing their immunomodulatory effects during allergic 
airway inflammation [105].

Additionally, gap junction channels play a critical role in 
mediating the mitochondrial transfer of MSCs. Islam et al. 
revealed that MSCs formed CX43-containing gap junction 
channels with alveolar epithelia in mice with acute lung 
injury, and released mitochondria-containing microvesicles 
that were subsequently engulfed by the epithelia. MSCs with 
genetically modified CX43 failed to adhere to alveolar epi-
thelium and transfer mitochondria [132]. Pacak et al. demon-
strated that cardiomyocytes could uptake the mitochondria 
isolated from MSCs through actin-dependent endocytosis 
[257]. Sinclair et al. summarized different modes of intercel-
lular communication and mitochondrial transfer by MSCs. 
Retinoic acid, a gap junction potentiator, greatly enhances 
the mitochondrial transfer efficiency from BM-MSCs to 
neurons, and this effect is partially abrogated by 18β gly-
cyrrhetinic acid, which is a gap junction potentiator [253]. 
Inhibiting microtubule/TNTs, gap junction formation, or 
microvesicle endocytosis abrogates the transfer of cytoplas-
mic material from MSCs to epithelial cells [258]. Notably, 
MSCs can donate mitochondria to macrophages via extra-
cellular vesicles, thus promoting an anti-inflammatory mac-
rophage phenotype in acute respiratory distress syndrome 
[259]. Different pathophysiological conditions may initial-
ize different modes of mitochondrial transfer, though their 
potential mechanisms remain unclear. Therefore, clarifying 
the relative mechanisms involved in mitochondrial transfer 
will advance the understanding of molecules involved in this 
process and serve to improve MSC treatment.

Extracellular vesicles (exosomes)

Extracellular vesicles (EVs), the membrane-bound vesicles 
released by somatic cell, are involved in tissue repair, immu-
nomodulation, and proliferation [260–262]. EVs are classi-
fied into exosomes (30–150 nm endosome-derived plasma 
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membrane-coated vesicles), microvesicles (100–1000 nm 
non-endocytic origin vesicles) and apoptotic bodies (1–5 μm 
vesicles released by apoptotic cells) according to their size 
and biogenesis. The most common EV markers are ALG-
2-interacting protein X (Alix), tetraspanin proteins CD9, 
CD63, CD81 and heat-shock protein (Hsp)60, Hsp70, and 
Hsp90. In addition, MSC-released EVs express unique sur-
face antigens including CD44, CD73, CD90 and CD105 
[263].

EVs, especially exosomes purified from MSCs have 
attracted great attention due to their regenerative, immu-
nomodulatory, and even anti-tumour properties. Over the 
past decade, MSC-EVs have been found to exhibit various 
biological effects and have emerged as a novel approach for 
treating a variety of diseases. They overcome some limita-
tions of MSC-based therapies including allogeneic immune 
rejection, malignant transformation, and premature cell 
differentiation. EVs have the unique capability to cross the 
blood–brain barrier, which is very important in the treatment 
of neurological disorders [263]. This means that EVs have 
better advantages in the clinic in the treatment of nervous 
system diseases as compared to the therapeutic potential of 
MSCs. Moreover, MSC-EVs can avoid the risk of genetic 
changes associated with stem cell transplantation for the 
treatment of nerve disorders [264, 265]. Remarkably, MSC-
EVs can be modified to carry specific proteins or genes that 
promote cellular function and tissue repair. These charac-
teristics make the EVs an ideal candidate of treatment for 
regenerative medicine.

MSC-EVs enhance angiogenesis owing to their specific 
protein and transcript contents related to angiogenic and pro-
liferative function [266, 267]. Anderson et al. further demon-
strated that the protein content in MSC exosomes mediates 
angiogenesis via regulation of the NF-κB signalling pathway 
[267]. Nakamura et al. reported that MSC-derived exosomes 
promote muscle regeneration by enhancing angiogenesis and 
myogenesis, which is partially mediated by miR-494 [268]. 
Feng et al. demonstrated that miR-22 in MSC exosomes pre-
vents apoptosis and reduces the infarct size in the heart by 
targeting methyl CpG binding protein 2 (Mecp2) [269]. In 
addition, miR-223 in MSC-EVs is involved in mediating 
cardioprotection via targeting semaphorin-3A (Sema3A) 
and transcription 3 (Stat3) [270]. miR-19a contributes to the 
anti-apoptotic effects of MSC exosomes in cardioprotection 
[271]. MSC exosomal miRNAs (miR-21, miR-23a, miR-
125b and miR-145) contribute to the suppression of myofi-
broblast formation by inhibiting TGF-β2/Smad2 signalling 
and reducing scar formation during wound healing [272]. 
Tomasoni et al. reported that MSC exosomes improve renal 
cell survival and proliferation by transferring the mRNA 
for insulin-like growth factor 1 receptor (IGF-1R), which 
increases the sensitization of proximal tubular cells to IGF-1 
[273]. Currently, several strategies are under exploration that 

aim to enhance the exosomes released from MSCs. Hypoxia 
can facilitate MSCs to release exosomes, thus improving 
repair of cardiac tissues in a mouse model of myocardial 
infarction [274]. Compared with MSCs, exosomes derived 
from SDF1-overexpressing MSCs show enhanced thera-
peutic effects in myocardial infarction by increasing cardiac 
endothelial microvascular regeneration and inhibiting car-
diomyocyte apoptosis in mice [275].

MSC-EVs modulate the immune system by induction of 
anti-inflammatory cytokines and Treg cells, by inhibition 
of B lymphocytes, regulation of macrophage polarization, 
and mobilization of neutrophils [260, 276]. Zhang et al. 
found that MSC-derived exosomes induce monocytes to 
differentiate into macrophages via the myeloid differentia-
tion primary response gene 88 (MYD88)-dependent TLR 
signalling pathway. Exosome-induced macrophages lead to 
Treg cell expansion by secretion of more IL-10 as compared 
to the macrophages induced by lipopolysaccharide [134]. 
miR-146a enhances macrophage polarization to anti-inflam-
matory M2 macrophages [271]. Di Trapani et al. further 
demonstrated that the immunosuppressive effect of EVs on 
T cells, B cells, and NK cells is also mediated by PD-L1 
expression on their surface [277]. Additionally, Galectin-1, 
an endogenous leptin on the EV surface, was also found to 
be involved in the immunosuppressive effects on T lympho-
cytes [278]. Kerkela et al. also emphasized the importance of 
5′-ectonucleotidase (CD73), which actively produces immu-
nosuppressive adenosine [279].

MSC-EVs have shown positive outcomes in treating 
cancer. Anti-angiogenic miRNAs such as miR-16 and miR-
100 have been identified in MSC exosomes, which suppress 
angiogenesis by targeting VEGF in breast cancer cells [133, 
280]. However, the crosstalk between MSCs and tumour 
cells through EVs can function either as a tumour suppres-
sor or as a promoter [281, 282]. MSC exosomes may transfer 
CD73 on tumour cells, which can reduce activation of NK 
cell and T cell by metabolism of AMP to adenosine [283]. 
So far, MSC-derived exosomes have been reported to be 
involved in tumour growth, angiogenesis, metastasis, and 
invasion [284]. The discrepancy between these controversial 
behaviours may arise from issues related to different MSC 
sources, tumour types, stages of tumour growth, and geno-
types. Therefore, the potential side effects of EV therapy 
must be carefully evaluated.

The target cell profile

One of the major mechanisms underlying MSC-based ther-
apy is interaction with target cells. MSCs modulate their 
immunomodulatory effects by suppressing the proliferation 
and activity of T cells, promoting Treg cells, regulatory DCs 
and M2 macrophages in a myriad of inflammatory diseases 
[285]. In case of T cell suppression, Lin et al. examined 
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the mRNA expression profiles in mouse T lymphocytes 
after MSC administration and found that 5 mRNAs includ-
ing Ccl11, Ccl24, Il13, Il33, and Ear11 were significantly 
altered [109]. Wang et al. further identified more than 800 
differentially expressed long non-coding RNAs (lncRNAs) 
in mouse T lymphocytes, and lncRNAs MM9LINCR-
NAEXON12105+ and AK089315 were finally identified as 
potential targets of MSC treatment in T cells [107]. MSCs 
and Treg cells have been found to work and interact in a syn-
ergistic manner. Engela et al. demonstrated that Treg cells 
can induce IDO secretion in MSCs, which results in TNF-α 
reduction and induction of IL-10 in Treg cells and effector 
cells [286]. Different subtypes of Treg cells generated by 
MSCs have been identified including CD4+CD25+Foxp3+ 
Treg cells and IL-10 producing type 1 Treg (Tr1) cells 
[287]. There is a complex cross-talk between MSCs and 
macrophages, which cannot be simply explained by MSC-
derived anti-inflammatory factors. Braza et al. found that 
macrophages can phagocytose MSCs and alter their pro-
inflammatory signature to M2 suppressive phenotype fol-
lowing contact with dead MSCs [288]. This behaviour may 
explain the profound long-term effects of MSC therapy. 
Therefore, the presence of MSCs alters the targeted cell 
profile, which in turn leads to further activation or ‘licens-
ing’ of MSC therapy.

Challenges in MSC‑based therapy

MSC-based therapies have made great progress over the last 
decades. However, the publications/clinical trials with mixed 
and contradictory results are preventing the advancement 
of MSCs into daily clinical application. These disparities 
are probably due to the large variability in key factors such 
as cell source (tissue, donor), dosage, administration route, 
and administration timing. Inconsistencies among these 
parameters significantly limit the therapeutic value of MSCs. 
Therefore, standardization of procedures of MSC isolation 
and expansion is crucial for upcoming clinical therapeutics. 
The in vivo administration route, timing, and dosage also 
require optimization. In this circumstance, an understanding 
of the characteristics and functional mechanisms of differ-
ently sourced MSCs is required. The therapeutic benefits of 
MSCs are contributed by their differentiation potential and 
immunomodulatory capacity. These potentials are strongly 
influenced by the tissue source of MSCs, the age and health 
condition of the donor or the ex vivo culture conditions 
before administration. Furthermore, the indications of the 
local disease microenvironment where MSCs are intended to 
be applied also determine the benefits of MSCs. As a result, 
preconditioning strategies are developed that boost the dif-
ferentiation or immunomodulatory potential of MSCs in 
such scenarios. Hypoxic preconditioning is employed since 

physiological environments are often hypoxic, and MSCs 
cultured under such condition show enhanced viability and 
secretion of cytoprotective molecules. However, slight vari-
ations in the oxygen level may significantly influence the 
function of MSCs as they are highly sensitive to oxygen 
tension [289]. Preconditioning with cytokines such as IFN-γ 
or TNF-α enhances immunomodulatory factor secretion by 
MSCs, but such effects have been reported as temporary 
[69, 290]. Alternative tissue engineering approaches includ-
ing three-dimensional culture and hydrogel encapsulation 
were employed to enhance MSC functions [291, 292]. The 
therapeutic potentials of MSCs are attributed to complex 
cellular and molecular mechanisms of action, and such 
mechanisms still require in-depth exploration for clinical 
application. Current researches have made great progress 
and are gaining advancements in enhancing the therapeutic 
properties of MSCs and creating specific criteria to estab-
lish the basics for clinical application of MSCs. Moreover, 
senescence of MSCs has also attracted significant attention 
during the past years. MSCs can only undergo very limited 
cell passages and prolonged expansion, inevitably leading to 
replicative senescence. MSCs isolated from aged individu-
als or from patients also exhibit a senescent phenotype and 
display decreased function.

Conclusion

The advantages of MSCs in immunomodulation and tissue 
repair have rendered the cells an important source for stem 
cell therapies. The potential and eligibility of allogeneic cells 
makes MSCs desirable for cellular transplantation. Based 
on the promising results in preclinical and clinical studies, 
the emerging commercially available MSC-based products 
have been approved globally. However, larger studies with 
more randomized, blinded, and controlled trials are desired 
to demonstrate the beneficial effects of MSCs. This implies 
that the mechanisms underlying MSC-based therapy should 
be addressed. So far, MSCs have been intensively inves-
tigated for their differentiation capacity, paracrine effects, 
flexible EV release, and direct-contact modulatory functions. 
Each mechanism contributes to the comprehensive process 
of MSC therapy. Nevertheless, mechanisms underlying the 
protective effects of MSCs still require further elucida-
tion. MSCs can adapt therapeutic effects during the rescue 
and repair of damaged tissues according to diverse local 
microenvironments. Therefore, the in-depth mechanisms 
underlying the protective effects of MSCs require further 
investigation. Clarification of the predominant mechanisms 
in different situations will improve the safety, efficacy and 
outcomes of MSC-based therapy.
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