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We present a method for efficiently and effectively assessing whether and where two proteins can inter-
act with each other to form a complex. This is still largely an open problem, even for those relatively few
cases where the 3D structure of both proteins is known. In fact, even if much of the information about the
interaction is encoded in the chemical and geometric features of the structures, the set of possible contact
patches and of their relative orientations are too large to be computationally affordable in a reasonable
time, thus preventing the compilation of reliable interactome. Our method is able to rapidly and quanti-
tatively measure the geometrical shape complementarity between interacting proteins, comparing their
molecular iso-electron density surfaces expanding the surface patches in term of 2D Zernike polynomials.
We first test the method against the real binding region of a large dataset of known protein complexes,
reaching a success rate of 0.72. We then apply the method for the blind recognition of binding sites, iden-
tifying the real region of interaction in about 60% of the analyzed cases. Finally, we investigate how the
efficiency in finding the right binding region depends on the surface roughness as a function of the expan-
sion order.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Interactions among proteins, in all their different forms, consti-
tute the molecular basis of most processes in living organisms
[1,2]. Therefore, in recent years several research lines have been
focused on capturing the determinants of those interactions and
on assessing the stability of protein complexes. [3,4]. The knowl-
edge of the actual functional interactions occurring in a living cell
between proteins is of paramount importance since it offers a com-
plete view of the biochemical pathways responsible for the func-
tion at cell and organism levels. Ultimately, the complete
unveiling of the human interactome would provide us with a very
powerful tool for understanding the physiological – or pathological
– implication of molecular bindings.

In the past few years, one of the most important step forward in
this context is due to the rise of experimental techniques allowing
for rapid and large-scale detection of protein-protein interactions.
However, these techniques are typically expensive and time-
consuming [5], and despite the amount of effort that has been
spent in this field, up to now only a small fraction of the actual
interactome has been experimentally detected [6,7]. Indeed, even
considering widely studied model organisms, most of the informa-
tion is still missing. For instance, in Caenorhabditis elegans only
about 6000 protein-protein interactions have been identified
against the 220000 estimated ones [8,9], showing that the experi-
mentally recognized interactions constitute only a small fraction of
the whole network.

Under this perspective, computational methods represent a
powerful tool to predict protein-protein association and to fulfill
the gap left by experimental data [10].

Both from experimental and theoretical points of view, a key
aspect is the identification of binding interface, i.e. the set of resi-
dues involved in binding (often referred as hot-spots) [11–15].

In this respect, computational methods can be roughly divided
into two non-exclusive categories. On one hand, model-based
approaches that exploit the residue-conservation found between
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similar proteins [16–18] and, on the other hand, approaches based
on local specific features of protein sequences and/or structures
[16]: the latter are more general and can work on any type of pro-
tein. Even if the availability of protein structures is less abundant
than sequences, undoubtedly structural features represent a fun-
damental element to face the very elusive task of understanding
binding between proteins. Moreover, despite multiple efforts in
this direction, even using structural information the identification
of interface remains one of the most elusive challenges in struc-
tural biology [19,10,20–22] and machine learning methods seem
to offer very promising strategies [23–30]. However, it must be
noted that, unfortunately, these methods require the definition
and the training of several parameters, computed over a suffi-
ciently large database, often lacking a clear physical–chemical
interpretation.

Here, we present a new unsupervised computational method
that efficiently characterizes the shape of any portion of molecular
surfaces, and allows us to evaluate the shape complementarity of
protein-protein interfaces employing the 2D Zernike formalism.
Indeed, the shape of local surface regions has a key role in predict-
ing protein ability to bind its molecular partners [31].

The role of shape complementarity in protein-protein speci-
ficity has been widely studied in the last years. In ‘‘lock and key”
model [32], molecular partners undergo very little changes upon
binding and in these cases shape complementarity represents a
key element (less than 1–2 Å in terms of RMSD between bound
and unbound conformations [33]). However, it is known that pro-
teins are dynamic objects and their structure undergoes conforma-
tional changes, both under the natural effect of thermal noise and
as a result of binding with a molecular partner [34]. Indeed, some-
times proteins undergo a large conformational change from their
unbound to bound configuration. These cases led to the formula-
tion of the concept of ‘‘induced fit” model, where upon binding
the molecular partners acquire a very different conformation
[35]. Another possibility is the ‘‘conformational selection” model,
where the binding event freezes the HOLO molecule in one of the
conformation explored in the APO dynamics [36]. In a recent paper
the importance of all these models have been widely analyzed for
several protein-protein interactions [36].

To this end, recently some of the authors and other groups used
the three-dimensional (3D) Zernike polynomials, a method to
effectively capture the local molecular shape and analyzing its
functional relevance [37–42]. The Zernike expansion associates
each portion of molecular surfaces with an ordered set of numeri-
cal descriptors, invariant under rotation, allowing easy metric
comparison between the shape of different protein regions for sim-
ilarity or complementarity evaluation, without the considerable
computational cost that would be required if we had to consider
all possible relative angles between the surfaces.

Through an appropriate projection of the surface points on a
plane, that preserves both distance and angular information with
respect to a reference system, we adopt the 2D Zernike expansion
in place of the 3D one, for characterizing well-exposed molecular
surface regions.

The 2D formalism has been vastly used in shape description
from optics [43] to image recognition [44] and medicine [45]. Its
application to the study of molecular structures has been limited
to few specific cases (see [46]). Our novel protocol allows to pre-
serves all the salient traits of the 3D description and decreases
the computational cost needed for the computation of the
descriptors.

The gained velocity allows for the exploration of a very high
number of protein regions, which is an important advantage for
the application of the method to molecular dynamics simulation
data, for a quick guide in the design of new therapeutic molecules
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and for the study of the effects of multiple mutations in the inter-
action between two or more molecules.

To analyze the contribution of shape complementarity in the
binding between two proteins, we first apply the method to a large
dataset of experimentally solved protein-protein complexes
(protein-protein Dataset, about 4600), where we test its ability to
recognize the high shape complementarity exhibited by interact-
ing regions with respect to random ones. Then, for a subset of
protein-protein complexes, we blindly sampled the entire surfaces
of couples of the interacting proteins, comparing all the possible
binding sites of the molecular partners, to predict the actual molec-
ular binding site with a completely unsupervised procedure.

Although our procedure does not return complex binding pose,
we compare our predictions with those obtained with a state of the
art docking methods, Z-dock algorithm [47], looking at the per-
centage of predicted native contacts in the binding region of the
predicted complex. Finally, we characterized correctly predicted
and incorrectly predicted binding regions in terms of hydrophobic
contacts and hydrogen bonds at the interface in order to better
investigate the role of shape in binding.

2. Results

2.1. Computational protocol

Describing a surface region with a set of numbers independent
of its orientation in space (expansion coefficients) allows a quick
and easy comparison between regions of different proteins. In
recent years indeed, some computational approaches based on
the 3D Zernike formalism have been developed to exploit the com-
pactness and the rotation invariance of this formalism
[40,38,41,37,42]. Moreover, even the Zernike 2D formalism was
also used to study protein regions, but only considering pockets
for small compounds [48].

We present here a new theoretical procedure for characterizing
any molecular surface regions using the 2D Zernike polynomials
formalism, just requiring that the considered portion is small
enough to be seen as a surjective function in 2D space.

In Fig. 1 we depict the steps of the computational protocol.
The first step of this algorithm is to select a patch, R, defined as

the set of surface points constituting the region of interest. In prin-
ciple, R can have an arbitrary profile, but in this work, we use a
spherical region having radius Rsand centered in one point of the
surface. Once the patch has been selected, we build a plane passing
through R and we orient the coordinates such as the z-axis is per-
pendicular to the plane. Thus, given a point C on the z-axis, we
define the angle h as the largest angle between the z-axis and a
secant connecting C to any point of the surface R. C is then set so
that h ¼ 45� and each surface point is labeled with its distance to
C; r. We then build a square grid, associating each pixel with the
mean r value calculated on the points inside it. Such a 2D function
can be expanded on the basis of the Zernike polynomials. The norm
of the coefficients of this expansion constitutes the Zernike invari-
ant descriptors. In the next section, we provide a summary of the
main features of the Zernike basis. Several good reviews, like
[49], offer more detailed discussions.

When comparing patches, the relative orientation of the
patches must be evaluated. Intuitively, if we search for similar
regions we must compare patches having the same orientation,
i.e. the solvent-exposed part of the surfaces must be oriented in
the same direction for both patches. If we want to assess the com-
plementarity between two patches, we have to orient the patches
contrariwise, i.e. one patch with the solvent-exposed part toward
the positive z-axis (‘up’) and one toward the negative z-axis
(‘down’).



Fig. 1. Surface patch decomposition in the 2D Zernike basis. a) Molecular representation of a protein surface. The red region highlights a possible patch. b) Each patch is first
oriented along the z-axis, then a cone is build such that all surface points are contained inside the cone. c) 2D projection of the patch. The origin of such cone is used to assign
the color in the plane, as the distance between the origin and each point of the surface. d) Zernike invariant associated to the selected patch. Each invariant is defined as the
modulus of the coefficients obtained projecting the patch against the Zernike basis. e) Surface reconstruction at different orders.
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Finally, we note that the rotation invariance makes this
approach a suitable methodology for the study of the compatibility
between interface regions. Indeed, two perfectly complementary
surfaces share the same Zernike descriptors, since exists a rotation
that perfectly maps one surface in the other.
2.2. Shape complementarity contribution in protein-protein complexes

In this section we use our compact description to evaluate the
complementarity between interface regions of couples of proteins
experimentally solved in complex, compared to the complemen-
tarity obtained when random surface regions are considered.

We selected the dataset proposed in a recent paper [23], com-
posed of about 4600 experimentally determined structures of
protein-protein complexes. For each complex, we computed the
molecular surfaces of the two proteins separately, say protein 1
and protein 2 (see Materials and Methods for details). We thus
selected for both the molecules the fraction of surface points hav-
ing a distance smaller than 3 Å to any partner surface points.

We next proceeded to identify the geometrical center of each
patch and to define the two patches, R1 and R2, accroding to the
procedure previously described. Then, the two patches are summa-
rized with their 2D Zernike invariant descriptors, allowing us to
easily compare their shape complementarity in terms of the eucli-
dean distance between their descriptors. As a rule, the more the
complementary the smaller the distance between their corre-
sponding Zernike vectors [40].

To quantitatively evaluate the level of complementarity these
interacting regions exhibit, we measured how much the distance
between the Zernike descriptors of a pair of interacting binding
sites is smaller than the distances between random patches. In par-
ticular, we populated the random set with 10000 patches,
extracted from the 100 biggest proteins of the dataset, each time
selecting randomly one surface point as the center of the sphere.

Therefore, for each protein-protein complex, we defined the real
distance as the distance between the actual interacting surfaces,
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comparing them with the values observed when the binding site
of one protein and the random patch set are compared.

In Fig. 2a, we analyzed the shape complementarity as a function
of the two key parameters of the method, i.e. the radius of the
sphere which defines the patch, Rs and the Zernike maximum
expansion order, n. The color of the map corresponds to the Area
Under the ROC Curve performed using the real and random dis-
tance distributions, considering all the complexes in the dataset.
At low expansion orders, the real binding patches can be confused
with random ones, since low orders can not capture the necessary
level of detail (see Fig. 1e). When the order is increased, the values
of complementarity characterizing the real patches clearly over-
come the random results, as we can better see from Fig. 2b. Upon
varying Rs instead, we obtained an optimum in the complementar-
ity when considering patches of 6–8 Å of radius (see Fig. 2c). This
optimum arises from the fact that when too small patches are con-
sidered it is lacking sufficient detail to distinguish the compatibil-
ity between interacting regions, while on the other end, large
patches include non-interacting zones and so will have low com-
plementarity per se. Remarkably, using an accurate level of expan-
sion (n � 10) and a radius of about 8 Å, the shape complementarity
of the binding region is enough to distinguish the real patches from
random decoys with an AUC of the ROC higher than 0.70.

In the next section, leveraging on these results, we develop a
new partner-specific algorithm for the blind identification of inter-
face binding regions.
2.3. Blind recognition of protein binding regions

The geometrical procedure we adopted to reduce the dimen-
sionality of the Zernike expansion (from the 3D to 2D formalism)
guarantees a great gain in terms of computation time, allowing
an extensive sampling of the surfaces in a reasonable time. Indeed,
for a couple of proteins in a complex, we compute the Zernike
descriptors of the patches centered in all the points of the two sur-
faces. Therefore, for each point i of the protein 1, we can compute



Fig. 2. Parameter variation. a) Performance, measured by the AUC of the ROC curve, in discriminating the real binding region against a set of random patches from the Protein
Dataset (see Methods), upon varying the patch radius, Rs and the expansion order, n of the Zernike basis. b) AUC of the ROC as a function of the expansion order for four fixed
values of Rs . c) AUC of the ROC as a function of the patch radius, Rs for four fixed values of n.
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the euclidean distance between its patch and all the patches built
on the points of the protein 2. We thus associate the point i to the
minimum distance value observed -the binding propensity - that is
the maximum complementarity recorded between the Zernike
descriptors of a given patch and the patches of the molecular part-
ner. After all surface points are associated with their binding
propensity, we performed a smoothing process (see Methods for
details) to highlight the signal in specific regions characterized
mostly by low distance values. In this process each point is associ-
ated with the mean value of the points in its neighborhood: the
basic idea is that the interacting region should be made up mostly
of elements with high complementarity and therefore a high aver-
age value of binding propensity values.

To identify the interacting regions of two proteins, we sampled
all the molecular surfaces of the two partners to compare the best
results in terms of binding propensity to the experimentally
solved binding region. We select the first 10 percentiles of the
Protein Dataset ordered according to the sizes of the complexes
and we analyzed, for each protein structure, the ability to predict
the regions involved in the interaction. Considering the two dis-
tributions of binding propensity regarding the surface points
involved or not in the interactions, to evaluate the performance
of our method we used three descriptors: Od (defined as the part
of the curve that is not in common with another distribution),
AUC of the ROC curve and AUC of the PR curve (see Method for
details).

61% of the analyzed proteins have an Od value greater than 0,
while 50% and 12% have an 0d value greater than 0.2 and 0.5
respectively. Similarly, the area under both the ROC and PR curves
was also calculated to measure the method’s performance. 58% of
all proteins are characterized by an AUC of the ROC greater than
0.50. 39% and 12% of the proteins have an AUC of the ROC curve
greater than 0.60 and 0.80, respectively. To also take into account
the performance of the method concerning the imbalance between
the classes, we studied the AUC of the PR curve. Indeed, a
precision-recall curve shows the relationship between positive
predictive value (precision) and sensitivity (recall) for every possi-
ble cut-off. In particular, we consider the relationship between the
actual area and the area of the corresponding random classifier.
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57% of all proteins have a ratio between AUC of the PR curve and
AUC of the random curve greater than 1, meaning that these are
the proteins with better performance than a random classifier.
Moreover, 22% and 12% of the proteins have this descriptor
greater than 2 and 3 respectively.

Ultimately, our method identifies the real region of interaction
in about 60%, representing a promising result that can be com-
pared with the ability of docking methods to identify the experi-
mental pose as the best one [33]. To this end, for a portion of the
dataset composed of 50 randomly selected proteins (each in com-
plex with the corresponding partner), we performed a contact
analysis of the docking poses provided by the Z-dock server [47].
Although an exhaustive comparison with docking outcomes is
not trivial, we show that most of the binding sites that are poorly
predicted by the docking algorithm and instead identified with our
method (see Fig. S1). This seems to suggest that at the present
stage our binding propensity score could be used to aid the docking
algorithm, or/and to perform pose selection.

To investigate the relationship between the nature of the inter-
face regions and the predictive capacity of the method, we defined
the degree of roughness of each surface molecular region (see
Methods). The analysis proposed here, for the first time, compares
the method’s ability to recognize interacting patches with their
roughness. In particular, for each protein, we studied the AUC of
the ROC curve as a function of the roughness of its binding region.

Fig. 3d) shows that there is an evident correlation between
these two quantities. Our method reaches excellent performance
when it deals with flat binding regions (low roughness), although
even highly non-flat regions (high roughness) can be well charac-
terized and well predicted by the method. At intermediate rough-
ness values, often shape complementarity does not suffice to
identify the correct binding region.

An excessively accurate level of description of the molecular
surface, corresponding to a too large order of expansion, would
model molecular details unnecessary for the study of binding. On
the contrary, reducing the order of expansion of a superficial patch
would create a too inaccurate representation that can not recog-
nize the shape difference between interacting and random regions.
As shown in Fig. 3b), the right balance of the expansion order



Fig. 3. Blind identification of the binding regions. a) Overlap, AUC of the ROC and AUC of the PR for the first ten percentiles of the Protein dataset when order by size of the
complexes. For all three descriptors, red (respectively blue) bars correspond to proteins for which the binding region is (resp. is not) correctly identified by the
complemetarity-driven blind search as described in text. b) Sketch of the three possible representation of the binding region (left) obtained by the Zernike expansion:
depending on the expansion order, n. c) Surface and cartoon representation of three example complexes, colored according to the binding propensity. From top to bottom the
roughness (see Eq. 7) of the real binding region decreases. d) AUC of the ROC vs Roughness for the first ten percentiles of the Protein Dataset ordered by size. Points are colored
according to the size of the corresponding protein. e) AUC of the ROC as a function of the expansion order for the three examples of panel c).
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allows us to have an optimal representation of the interacting
molecular surfaces.

Lastly, we performed an analysis to check whether the perfor-
mance obtained for a protein, considering each descriptor adopted,
is comparable to the performance of the partner. In Fig. 4 we show
the scatter plots for the adopted three descriptors for protein 1 vs
protein 2. The O� d descriptor, the ROC AUC, and the PR’s AUC
have Pearson correlation values of 54%;62%, and 68% respectively
(in all cases p-value is lower than 10�5).

This result highlights the robustness of the method, capable of
finding similar patches to each other. High correlation values mean
that when the method can identify the protein 1 interface, in the
same way, it can identify the corresponding protein 2 interface.
Similarly, if the method fails to identify the protein 1 interface, it
also tends to fail to identify the protein 2 interface. Each value of
the three descriptors was calculated using a double smoothing pro-
cedure of the binding propensity values. As shown in Fig. 4b the
smooth procedure progressively improves (or worsens) the perfor-
mance in finding the real interface regions. Notably, analysing the
hydrogen bond network in the binding region we observed some
differences in the h-bond organization between proteins that our
formalism predict correctly or incorrectly, while hydrophobic
interactions seems to not discriminate between these 2 categories
(See Supporting Information Fig. S2, S3 and S4).
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3. Discussion

Interactions between proteins sum up a very complex interplay
between electrostatic, hydrophobic, and geometrical requirements.
The electrostatic contribution, being long-ranged, is often regarded
as the driving force of the interaction [50,51], influencing the diffu-
sive dynamics of the proteins, while they are still apart. At shorter
distances, the shape complementarity between the interacting
portions dictates the stabilizing role exerted by van der Waals
interactions.

In particular, biological complexes typically exhibit intermolec-
ular interfaces of high shape complementarity. Even if relying
solely on the geometrical contribution is not sufficient for an
exhaustive determination of the binding [23], computational dock-
ing approaches use shape complementarity measurements as a
guide in their searching algorithms [52,53]. Consequently, devel-
oping faster and more accurate shape comparison methods is
essential both for better understanding interactions and for
improving existing docking strategies.

In the present paper, we developed a computational procedure
to describe the shape of portions of the protein molecular surface
using 2D Zernike descriptors. The 2D Zernike polynomial forms a
complete basis in which any function of two variables defined in
a unitary disc can be decomposed. While widely used in optics,



Fig. 4. Analysis of the three descriptors. a) Comparison between the Od of the two proteins forming the complexes of the first ten percentiles of the Protein Dataset ordered by
size (left). The same for AUC of the ROC curve (center) and AUC of the PR curve (right) b) Od of the smaller 50 proteins of the Protein Dataset for different rounds of smoothing.
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its application to structural biology was possible only after that
Canterakis extended the formalism to 3D space [54]. The compact
representation of the protein surface in terms of a numerical vector
together with the possibility to easily define rotational invariant
observables make the Zernike formalism very suitable for shape
and complementarity investigations [40,38,41,37,42], although at
the cost of increasing the dimension of the basis space and the con-
sequences of the computational cost (an expansion to the 20th
order has 1771 coefficients in 3D against the 121 complex coeffi-
cients in 2D).

Our novel protocol allows us to project a three-dimensional
portion of the protein surface onto a 2D unitary disk with a mini-
mal loss of information and exploit the velocity of the 2D decom-
position to describe the shape of each patch and rapidly assess
its complementarity with others.

The approach presented here is based on a new geometric rep-
resentation of local molecular surfaces, defining an identifiable
point of view from which it is possible to univocally study the
selected surface patch. Each portion of the molecular surface can
thus be represented within a cone with its vertex defined in such
a way that the maximum angle between this point and any other
of the surface is fixed. Furthermore, the information of the distance
of each point from the vertex of the cone is also considered in the
projection of the points on a plane to use the 2D Zernike formalism.

Analyzing a large dataset of protein-protein complexes we
found that the interaction regions have a specific, more-than-
random complementarity when defined with a radius of 6–8 Å
from the center of the region. The order of the expansion (n) plays
an important role too, in fact, on average our ability to distinguish
the real binding patch from random decoys increases with the
order of the expansion, i.e. the resolution of the expansion. How-
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ever, a more detailed analysis showed that the resolution with
which one describes the shape should be weighed against the
roughness of the interacting region. In fact, for those proteins
whose binding region is rough both using a low and high-
resolution one fails to identify the real binding region in a blind
shape-driven research. An intermediate level of resolution works
better because it well captures the overall shape, which is comple-
mentary, without too much noise. These observations are in per-
fect agreement with what found in [55].

In conclusion, the method we proposed to describe locally the
shape of protein surface and measure the complementarity
between couples of patches allowed for an investigation of the
interacting regions of a large structural dataset and for rapid and
blind identification of the binding region, whose encouraging per-
formance paves the way to its application to guide docking
algorithms.
4. Materials and methods

4.1. Dataset of protein complexes

A dataset of protein-protein complexes experimentally solved
in X-ray crystallography is taken from [23]. We only selected pair
interactions regarding chains with more than 50 residues. The
protein-protein dataset is therefore composed of 4605 complexes.
4.2. Computation of molecular surfaces

For each protein of the dataset (X-ray structure in PDB format
[56]), we use DMS [57] to compute the solvent accessible surface,
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using a density of 5 points per Å
2
and a water probe radius of 1.4 Å.

The unit normals vector, for each point of the surface, was calcu-
lated using the flag �n.

4.3. 2D Zernike polynomials and invariants

Each function of two variables, f r;/ð Þ (polar coordinates)
defined inside the region r < 1 (unitary circle), can be decomposed
in the Zernike basis as

f r;/ð Þ ¼
X1
n¼0

Xm¼n

m¼0

cnmZnm ð1Þ

with

cnm ¼ nþ 1ð Þ
p

Znmjf ¼ nþ 1ð Þ
p

Z 1

0
drr

Z 2p

0
d/Z�

nm r;/ð Þf r;/ð Þ: ð2Þ

being the expansion coefficients, while the complex functions,
Znm r;/ð Þ are the Zernike polynomials. Each polynomial is composed
by a radial and an angular part,

Znm ¼ Rnm rð Þeim/: ð3Þ
where the radial part for any n and m, is given by

Rnm rð Þ ¼
Xn�m

2

k¼0

�1ð Þk n� kð Þ!
k! nþm

2 � k
� �

! n�m
2 � k

� �
!
rn�2k ð4Þ

Since for each couple of polynomials the following relation
holds

ZnmjZn0m0 ¼ p
nþ 1ð Þ dnn0dmm0 ð5Þ

the complete set of polynomials forms a basis and knowing the set
of complex coefficients, cnmf g allows for a univocal reconstruction
of the original image (with a resolution that depends on the order
of expansion, N ¼ max nð Þ).

4.4. Zernike invariant descriptors for complementarity

Since the modulus of each coefficient (znm ¼ jcnmj) does not
depend on the phase, i.e. it is invariant for rotations around the ori-
gin of the unitary circle, the shape similarity between two patches
can be assessed by comparing the Zernike invariants of their asso-
ciated 2D projections. In particular, we measured the similarity
between patch i and j as the euclidean distance between the invari-
ant vectors, i.e.

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM¼121

k¼1

zki � zkj
� �2

vuut ð6Þ
4.5. Smoothing procedure

In order to refine the binding propensity scores, we performed a
smoothing process. In particular, for each point, P, of the surface
we select all the points having a spatial distance smaller than
6 Å from P. Then, we associate to P a novel binding propensity,
computed as the mean of binding propensity of the selected points.

4.6. Descriptors used in the blind search evaluation

In what follows we define the descriptors used throughout the
paper:

� Roughness:
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Rp ¼ 1
Npatch

Z rmax

0

Z 2p

0
jf r;/ð Þjd/dr ð7Þ
� Od: given two probability density distributions, q1 xð Þ and q2 xð Þ,
we define the overlap between the two distributions [58] as
O
�
d ¼

Z
minx q1 xð Þ;q2 xð Þ½ �dx ð8Þ

While the so defined observable is positively defined and ranges
in the interval [0,1], with 0 in case of null overlap and 1 full over-
lap of the densities, we are interested in a descriptor able to
assess whether the two distribution are also in the right order,
i.e. if the binding site distribution has smaller scores than the
non interaction points. To do so we define the Od descriptor as

follows: if O
�
d is less than 0, then we define the overlap-based

descriptor as:

Od ¼ �1� O
�
d ð9Þ

Otherwise, the descriptor is defined as:

Od ¼ 1� O
�
d ð10Þ

� AUC of the ROC: one of the most used descriptor for evaluating
the performance of a predictive method. It is defined as the
number of false positive rate (x-axis in the plot) versus the true
positive rate (y-axis in the plot) for a number of different
threshold values. In this work, ROC analysis is performed using
ROCR package of R [59].

� AUC of the PR: A precision-recall curve is defined as the preci-
sion (y-axis), which are also called positive predictive values,
as function on the recall (x-axis), also known as sensitivity, for
different threshold values. Here we also formally define the Pre-
cision and Recall parameters:
Precision ¼ TruePositive
TruePositiveþ FalsePositiveð Þ ð11Þ
Recall ¼ TruePositive
TruePositiveþ FalseNegativeð Þ ð12Þ

In this work we have considered the relationship between the
AUC of the PR curve with respect to the area of the random
curve. We performed PR analysis by using PRROC of R [60].
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