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Abstract

Brain imaging genetics, an emerging and rapidly growing research field, studies the relationship 

between genetic variations and brain imaging quantitative traits (QTs) to gain new insights into 

the phenotypic characteristics and genetic mechanisms of the brain. Heritability is an important 

measurement to quantify the proportion of the observed variance in an imaging QT that is 

explained by genetic factors, and can often be used to prioritize brain QTs for subsequent imaging 

genetic association studies. Most existing studies define regional imaging QTs using predefined 

brain parcellation schemes such as the automated anatomical labeling (AAL) atlas. However, the 

power to dissect genetic underpinnings under QTs defined in such an unsupervised fashion could 

be negatively affected by heterogeneity within the regions in the partition. To bridge this gap, we 

propose a novel method to define highly heritable brain regions. Based on voxelwise heritability 

estimates, we extract brain regions containing spatially connected voxels with high heritability. We 

perform an empirical study on the amyloid imaging and whole genome sequencing data from a 

landmark Alzheimer’s disease biobank; and demonstrate the regions defined by our method have 

much higher estimated heritabilities than the regions defined by the AAL atlas. Our proposed 
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method refines the imaging endophenotype constructions in light of their genetic dissection, and 

yields more powerful imaging QTs for subsequent detection of genetic risk factors along with 

better interpretability.
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1. Introduction

Brain imaging genetics,1–3 an emerging and rapidly growing research field, studies the 

relationship between genetic variations and brain imaging quantitative traits (QTs) to 

gain new insights into the phenotypic characteristics and genetic mechanisms of the 

brain. With recent advances in multimodal neuroimaging and high throughput genotyping 

and sequencing technologies, researchers are able to investigate the mechanisms behind 

biological and/or pathological pathways from genetic determinants to brain structure and 

function and then to the human cognition, behaviors and disorders. In particular, the 

availability of rapidly growing brain imaging and genomics biobanks has led to a large 

body of literature concerning methodological developments and biomedical applications in 

brain imaging genetics (e.g.,4–10).

Heritability11 is an important measurement to quantify the proportion of the observed 

variance in an imaging QT that is explained by genetic factors, and can often be used to 

prioritize brain QTs for subsequent imaging genetic association studies. Currently, many 

existing heritability studies couple the atlas-based brain parcellations with imaging measures 

to define the brain QTs. However, most of the brain parcellations are predefined based on 

the anatomical knowledge and/or structural and functional annotation without embracing 

genetic explanation for the corresponding regions of interest (ROIs). Thus, in brain 

imaging genetics, regional imaging QTs are often defined based on these predefined brain 

parcellation schemes such as the automated anatomical labeling (AAL) atlas.12 However, the 

power to dissect genetic underpinnings under QTs defined in such an unsupervised fashion 

could be negatively affected by heterogeneity within the regions in the partition.

To bridge this gap, we propose a novel method to define highly heritable brain regions. 

We employ the Genome-wide Complex Trait Analysis (GCTA),13 which is a widely used 

statistical tool for heritability estimation. It utilizes the individual-level genetic data to 

construct the genetic relationships among subjects and uses a mixed linear model to quantify 

the environmental effect and genetic effect for the variation of phenotypic quantitative traits. 

In this work, we propose a data driven method to group highly heritable voxel-level imaging 

QTs according to their significance level estimated from GCTA and their spatial location.

From voxelwise heritability estimates, we extract brain regions containing spatially 

connected voxels with high heritability based on a user-specified threshold. To evaluate 

our proposed method, we apply our data driven method to the amyloid imaging 

data and the whole genome sequencing (WGS) data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort,14–16 which is a landmark Alzheimer’s disease 
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biobank. We demonstrate the regions defined by our method have much higher estimated 

heritabilities than the regions defined by the AAL atlas. Our proposed method refines the 

imaging endophenotype constructions in light of their genetic dissection, and yields more 

powerful imaging QTs for subsequent detection of genetic risk factors along with better 

interpretability.

The rest of this paper is organized as follows. We introduce our heritability estimation 

method in Section 2, discuss our data and materials in Section 3, describe our experimental 

workflow in Section 4, present and discuss our results in Section 5, and conclude the paper 

in Section 6.

2. Method

Given an imaging QT, its heritability11 is defined to be the proportion of its total phenotypic 

variance that is explained by the aggregated genetic effect captured by pedigree information 

or all the single nucleotide polymorphisms (SNPs) on a genotyping or sequencing array.1 

Since ADNI is a population study instead of a family study, subjects are unrelated and 

no pedigree information is available for heritability analysis. However, there is SNP-based 

genotyping and WGS data in ADNI. Therefore we focus on estimating heritability using the 

SNP data.

In particular, we use the following linear mixed effects (LME) model to estimate SNP-based 

heritability:13

y = Xβ + W u + ε, (1)

where y is an N × 1 vector of quantitative traits (QTs) with N being the number of subjects, 

β is the vector of fixed effects, X is the matrix of confounding variables (i.e., age, sex 

and population structure represented by first 10 principal components in our experiments), 

u is a vector of SNPs effects with u N 0, Iσu2 , where I is an identity matrix, and W is a 

standardized genotype matrix. ε N 0, Iσε2  is the error term. The genetic relationship matrix 

(GRM) between individuals is defined as A = W W ′
M , where M is the number of SNPs.

In fact, heritability17 is formally defined as the proportion of phenotypic variation that is due 

to variation in genetic values. In the LME model, it can be computed as

ℎ2 = Mσu2

Mσu2 + σε2
= Mσu2

σy2
. (2)

The LME model has already been implemented in the GCTA tool.13 Thus, in this work, we 

directly use GCTA to compute heritability for all the studied QTs.

3. Materials

Data used in the preparation of this article were obtained from the ADNI database.14–16 

Specifically, the genetic data used in our analysis were the ADNI whole genome sequencing 
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(WGS) data downloaded from the Alzheimer’s Disease Sequencing Project (ADSP) website 

at https://www.niagads.org/adsp.18,19 All the imaging and other data were downloaded from 

the ADNI website at https://adni.loni.usc.edu.

The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). The up-to-date information about the ADNI is available at https://www.adni-info.org.

Our WGS data contains 31,200,009 SNPs with 1,546 samples. We performed the quality 

control (QC) using the following criteria: minor allele frequency (MAF) > 0.001; call rate 

(GENO) > 98%; identity-by-descent (IDB) estimates < 0.25; Hardy-Weinberg test at 10−6 

significance threshold; missing rate per person (MIND) < 0.05; excluding the outliers from 

Heterozygosity X missingness plot. After QC, 15,363,329 SNPs and 1,546 samples are 

preserved.

Out of 1,546 subjects with the WGS data available after QC, 1,047 participants have 

complete [18F]florbetapir (AV45) PET data (measuring amyloid burden) and are included 

in our analysis. Table 1 shows the participant characteristics; and our analysis includes 

333 cognitively normal (CN), 384 mild cognitive impairment (MCI), and 330 AD subjects. 

For these AV45 PET scans, the data was registered to the Montreal Neurological Institute 

space, and the standard uptake value ratio was computed by intensity normalization using 

the cerebellar curs reference region. ROI-level AV45 measures were extracted based on 

the AAL atlas,12 where 116 ROI-level QTs were obtained by averaging all the voxel-level 

measures within each ROI.

4. Experimental Workflow

The overall pipeline for our proposed method identifying highly heritable self-defined 

regions is shown in Figure 1. Starting from the three dimensional brain phenotype 

measurements, we first vectorize the 3D measurements into a single vector for each 

subject in Step (a). After filtering the background voxels defined by voxels with phenotype 

measurements being all 0 across all the subjects in Step (a), we are able to formulate 

a two dimensional voxel-based phenotype measurements matrix (M1 in Figure 1). The 

vectorization step is done with the voxels’ 3D coordinates preserved in a different file 

where the file stores the index and the spatial location for each brain voxel. In Step (b), we 

calculate the genetic relationship matrix (GRM) (M3 in Figure 1) using the WGS data from 

ADNI (M2 in Figure 1) to quantify the genetic similarity between subjects.

GCTA heritability analysis for each voxel-based QT is performed in Step (c) using the 

GRM and adjusted by age, sex and population structure represented by first 10 principal 

components. After performing the Step (c), for each voxel-based QT, we are able to 

calculate its heritability and the p-value. After estimation of the heritability with p-value 

for each voxel, we map the heritability and p-value for each voxel to the 3D brain and 
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construct a heritability brain map and a p-value brain map. In Step (d), we filter out all the 

insignificant voxels and then group the top 10%, 20%, 30% and all the 100% significant 

voxels to construct our highly heritable self-defined regions by averaging all the voxel-level 

QTs within the regions which is shown in Step (f-1). Specifically, we smooth the p-value 

brain map using Gaussian kernel with standard deviation 0.5. The smoothing step is realized 

by ndimage.gaussian_filter function in scipy Python package.20 Then we construct a binary 

brain map according to the brain voxel significant level. Every voxel passing the 0.05 

significant threshold (i.e., p < 0.05) is marked as 1 and the rest voxels are marked as 0. 

The ROI is constructed using connected_components function in connected-components-3d 

(cc3d) Python package.21 The detailed description of the functions can be found online.

Finally in Step (g-1), we perform the GCTA heritability analysis again to calculate the 

heritability for each self-defined region (M4 in Figure 1). For evaluating our self-defined 

regions, we perform comparative heritability analyses for the following two sets of regions. 

In the first comparison, we extract ROIs using a similar strategy by grouping and averaging 

the top 10%, 20% and 30% insignificant voxels together in Step (e) and Step (f-2), and then 

calculating the heritability for each region (M5 in Figure 1) in Step (g-2). In the second 

comparison, we compute the heritability for the regional level AV45 measurements defined 

by the AAL atlas (M6 in Figure 1) in Step (g-3).

5. Results and Discussion

Table 2 summarizes our comparative heritability analysis results, indicating a remarkably 

high heritability for our self-defined highly heritable regions (Table 2(a)) compared to 

the regions defined by the AAL atlas (Table 2(b)) and the regions defined by the GCTA 

insignificant voxels (Table 2(c)). Almost all the regions defined by our proposed method 

have high GCTA estimated heritability:

• 100% of those ROIs whose variations can be explained at least 90% by the 

genetic variations for the regions defined by the top 10% significant voxels;

• more than 90% of variations of ROIs can be explained at least 90% by the 

genetic variations for the regions defined by the top 20% and top 30% significant 

voxels;

• for those regions defined by all the significant voxels, more than 80% of ROIs 

can be explained at least 90% by the genetic variations.

At least 96.6% of all the regions defined by our proposed method have GCTA heritability 

estimates more than 80%. Among those 116 ROIs defined by the AAL atlas, on the other 

hand, there are only 21(18.1%) of the regions with heritability > 80%.

To further evaluate our pipeline and demonstrate our extracted regions have higher 

heritability measurements, we apply the pipeline onto all the insignificant brain voxels 

estimated by GCTA, and evaluate the heritability estimation on the regions extracted from 

top 10%, top 20%, and top 30% insignificant voxels. The results are shown in Table 2(c). 

As we expected, all the regions extracted by insignificant voxels have relatively low GCTA 

estimated heritability. There are less than 10% of the ROIs extracted from top 10% and 
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top 20% of insignificant voxels have heritability greater than 50%; and less than 30% for 

those regions extracted from top 30% of insignificant voxels. These results re-assure that our 

proposed pipeline is able to robustly select highly heritable regions.

Figure 2 shows the distributions of GCTA heritability estimates (Figure 2a) and −log10(p-

value) (Figure 2b). A clear pattern shows that the regions defined by significant voxels have 

an extremely high estimated heritability and −log10(p-value). Most of the regions defined by 

insignificant voxels have low estimated heritability and −log10(p-value). Regions defined by 

the AAL atlas, serving as a baseline model, have heritability estimates and −log10(p-value) 

widely distributed over most of the spectrum. These results align with our expectation.

Figure 3 shows the heritability brain map comparing our high heritable self-defined regions 

and the ROIs from the AAL atlas. From top to bottom, it shows the GCTA estimated 

heritability for the regions extracted and smoothed using top 10%, 20%, 30% and all 

100% significant voxels from voxel-level GCTA heritability estimation results. The bottom 

row shows the GCTA estimated heritability results for the ROIs in the AAL atlas. As 

shown in the figure, our self-defined regions have much higher estimated heritability than 

the AAL-defined regions (almost all regions extracted from our proposed method have 

estimated heritability close to 1). Compared to the AAL regions, our extracted regions are 

able to target the highly heritable parts of the brain. We also compare our highly heritable 

self-defined regions with the regions extracted from insignificant voxels estimated from 

voxel level GCTA analysis. The results show that almost all the regions extracted from 

insignificant voxels are not heritable (i.e., GCTA estimated heritability ≤ 10−6). All these 

observations indicate that our proposed pipeline is able to capture highly heritable regions, 

and thus provide valuable information to guide subsequent imaging genetic analyses.

6. Conclusion

In this work, we proposed a novel pipeline to define and extract highly heritable brain 

regions in order to guide and support the subsequent brain imaging genetic studies. We 

employed the widely used GCTA tool to perform SNP-based heritability estimation for 

imaging quantitative traits (QTs). We presented a data driven method to group highly 

heritable voxel-level imaging QTs according to their significance level estimated from 

GCTA and their spatial location. Based on voxelwise heritability estimates, we extracted 

brain regions containing spatially connected voxels with high heritability. We performed an 

empirical study on the amyloid imaging and whole genome sequencing (WGS) data from 

the landmark ADNI biobank. We demonstrated the regions defined by our method have 

much higher heritability estimates than not only the regions defined by the widely used 

AAL atlas but also the regions formed by voxels with low heritability. Our proposed method 

refines the brain imaging endophenotype constructions in light of their genetic dissection, 

and can yield more powerful imaging QTs to gain new insights into the phenotypic 

characteristics and genetic mechanisms of the brain. A potential limitation of this work 

is that we only performed our analysis on a discovery cohort. We are currently identifying 

an independent imaging genetics cohort for a future replication study to perform an unbiased 

evaluation of the heritable imaging traits detected here.
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Fig. 1: Pipeline for identifying highly heritable self-defined regions.
Voxels after performing Step (d) and Step (e) form a selected subset of all brain voxels V 
meeting the corresponding selection criterion, where the number of voxels after Step (d) 

and Step (e) varies depending on the selection strategy (top 10%, top 20%, top 30%, or top 

100%). GRM (M3) constructed by the WGS data (M2) is applied four times in defining the 

regions (Step (c), once) and comparing the defined regions (Steps (g-1), (g-2), and (g-3), 

three times) respectively.
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Fig. 2: Comparison of the GCTA estimated heritability and −log10(p-value) for regions defined 
by significant voxels (green), AAL atlas (red), and insignificant voxels (blue).
Regions defined by significant voxels consist of the regions defined by top 10%, top 20%, 

top 30%, and top 100% significant voxels. Regions defined by insignificant voxels consist of 

the regions defined by top 10%, top 20%, and top 30% insignificant voxels.
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Fig. 3: Brain heritability map for comparison between the regions defined by the top significant 
voxels and the regions defined by the AAL atlas.
The AAL defined brain ROIs are much larger than the regions defined by our proposed 

pipeline, making the entire brain appear red. Although visually less striking, the proposed 

method has in fact yielded many more regions with high heritablity, see Table 2 and Figure 

2a for details. The heritability map for regions defined by insignificant voxels are not 

included in this figure as their signals are few and weak, and thus the resulting brain maps 

are visually no difference from the background.
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Table 1:
Participant characteristics.

Total number of subjects, age, and sex are shown in this table. The mean ± sd for the age of all subjects within 

each diagnosis group is reported. The number of male/female subjects within each diagnosis group is also 

introduced.

Diagnosis CN MCI AD Overall

Number 333 384 330 1,047

Age (mean ± sd) 77.2 ± 6.8 76.4 ± 7.7 77.3 ± 7.7 76.9 ± 7.5

Sex (M/F) 149/184 226/158 189/141 564/483
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Table 2:
Statistics of heritability estimates for ROIs defined by top significant voxels, top 
insignificant voxels, and the AAL atlas.

ROItotal: the total number of ROIs defined by the corresponding method; ROI>a%: the total number(proportion 

among all the ROIs) of ROIs with GCTA estimated heritability > a% in regions defined by the corresponding 

method; ROI<a%: the total number(proportion among all the ROIs) of ROIs with GCTA estimated heritability 

< a% in regions defined by the corresponding method;

(a) Proposed self-defined regions (extracted from top GCTA significant voxels)

Regions ROI total ROI >90% ROI >80% ROI >50% ROI <20% ROI <10%

Top 10% voxels 83 83(100%) 83(100%) 83(100%) 0(0%) 0(0%)

Top 20% voxels 119 117(98.3%) 119(100%) 119(100%) 0(0%) 0(0%)

Top 30% voxels 132 126(95.5%) 132(100%) 132(100%) 0(0%) 0(0%)

Top 100% voxels 118 99(83.9%) 114(96.6%) 118(100%) 0(0%) 0(0%)

(b) AAL atlas

Regions ROI total ROI >90% ROI >80% ROI >50% ROI <20% ROI <10%

AAL atlas 116 14(12.1%) 21(18.1%) 64(55.2%) 22(19.0%) 16(13.8%)

(c) Regions extracted from top GCTA insignificant voxels

Regions ROI total ROI >90% ROI >80% ROI >50% ROI <20% ROI <10%

Top 10% voxels 120 2(1.7%) 2(1.7%) 2(1.7%) 117(97.5%) 117(97.5%)

Top 20% voxels 116 10(8.6%) 10(8.6%) 10(8.6%) 105(90.5%) 90(77.6%)

Top 30% voxels 95 24(25.3%) 24(25.3%) 26(27.4%) 55(57.9%) 47(49.5%)
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