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Abstract: A series of new derivatives (5–29) of marine-derived bostrycin (1) were 

synthesized. The in vitro cytotoxic activities of all compounds were evaluated against 

MCF-7, MDA-MB-435, A549, HepG2, HCT-116 and MCF-10A cells using the MTT 

method. The compounds 7, 8, 22, 23, 25, 28 and 29 of the total showed comparable activity 

to epirubicin, the positive control, against the tested cancer cell lines. However, these 

compounds also exhibited cytotoxicity towards MCF-10A cells. The structure-activity 

relationship (SAR) of bostrycin derivatives was also discussed based on the obtained 

experimental data. 
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1. Introduction 

A variety of tetrahydroanthraquinone derivatives isolated from fungi [1–6] and plants [7] display 

various biological properties including antibacterial [3,6], antiprotozoal [8], phytotoxic [9] and 

cytotoxic activities [7,10]. Previous studies have shown that tetrahydroanthraquinone derivatives can 

inhibit the growth of cultured cells of Nicotiana rustica, and act as a potent stimulator of NADH 

oxidation in mitochondria and electron acceptors in an enzyme preparation of diaphorase [11]. 

Bostrycin (1, Figure 1), a natural tetrahydroanthraquinone compound, was isolated from the mangrove 

endophytic fungus No. 1403 collected from the South China Sea, as well as three bostrycin analogues 

(2–4, Figure 1) [12–14]. The originally proposed structure of bostrycin was identified by interpretation 

of spectral date (IR, UV, MS, 1H NMR, 13C NMR) [15–17], and then revised by Kelly and his  

co-workers [18] on the basis of the total synthesis of (+/−)-bostrycin and an X-ray crystal structure of 

the O-isopropylidene derivative. Subsequently, Larsen’s group [19] revised the absolute configuration 

of (−)-bostrycin through an elegant asymmetric synthesis of (+)-bostrycin. Our recent studies have 

shown that bostrycin has broad-spectrum antitumor activity [13,14,20,21]. Bostrycin can induce 

apoptosis of breast cancer cells through Akt/FOXO pathway, revealing it is a potent apoptosis  

inducer [20]. Bostrycin also showed lethal cytotoxicity to yeast cells by inducing apoptosis via an 

Aif1p-dependent, mitochondria-mediated apoptotic pathway [22]. Chen et al. [23] reported that 

bostrycin can inhibit proliferation of human lung carcinoma A549 cells via downregulation of the 

P13K/Akt. The pharmacological and toxicological profiles of bostrycin, as well as its in vivo antitumor 

efficacy, provided us with reasonable optimism that bostrycin could become a promising Akt inhibitor 

and anticancer drug candidate [20]. However, there have been few studies on the structural 

modification and structure-activity relationship (SAR) of bostrycin. Therefore, our research interest 

was focused on the modification of bostrycin and its SAR study with the intention of discovering novel 

antitumor agents from bostrycin derivatives. In this work, a series of bostrycin derivatives (5–29, 

Schemes 1–3) were synthesized with variation at positions 2, 3, 6 and 7 of the tetrahydroanthraquinone 

core. All these natural and synthesized compounds were evaluated for their cytotoxic activities against 

five human cancer cell lines MCF-7, MDA-MB-435, A549, HepG2 and HCT-116, and one 

immortalized human breast epithelial cell line MCF-10A. The SAR was further discussed on the basis 

of the obtained experimental data. As we expected, some of the modified compounds exhibited strong 

anticancer activities against the tested cancer cells, with superior potency over the parent bostrycin. 
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Figure 1. Structures of bostrycin (1), deoxybostrycin (2), nigrosporin B (3) and 

austrocortinin (4). 
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Scheme 1. Synthesis of 2,3-ketal/substituted bostrycin derivatives 5–8. 
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Scheme 2. Synthesis of 6-aminosubstituted bostrycin derivatives 9–22. 
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Scheme 3. Synthesis of 6,7-thiosubstituted bostrycin derivatives 23–29. 

 

2. Results and Discussion 

2.1. Chemistry 

Bostrycin (1) and its analogues (2–4, Figure 1) were isolated from the mangrove endophytic fungus 

No. 1403 collected from the South China Sea [12–14]. To explore the effects of hydroxyl groups at C-2 

and C-3 positions in bostrycin on antitumor activity, 2,3-ketal/substituted derivatives 5–8 were 

synthesized (Scheme 1). Bostrycin was reacted with 2,2-dimethoxypropane, 3-methyl-2-butenal and 
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polyoxymethylene in the presence of 1 equiv of p-toluenesulfonic acid (TsOH) at room temperature, 

2,3-ketal derivatives 5, 6 and 7 were obtained respectively. Moreover, treatment of Bostrycin with 

triphosgene in the presence of pyridine at −10 °C gave compound 8. 

The nucleophilic substitution of 2,3-dichloro-1,4-naphthoquinone by various nucleophiles was 

employed as the key reaction [24–27] to afford the structurally diverse derivatives with variation on 

the C-6 and C-7 positions of bostrycin. We studied the reaction of bostrycin with various amines 

(Scheme 2) and thiols/dithiols (Scheme 3). When bostrycin was treated with various types of amines at 

room temperature or 50 °C using methanol as solvent, a series of alkyl/arylamino derivatives 9–22 

were obtained (Scheme 2). In addition, the preparation of compounds 15 and 16 required a longer 

reaction time and higher temperature presumably due to the low reactivity of the aryl amines used. 

This reaction involved a typical nucleophilic displacement of the methoxy group in bostrycin (1) with 

various amines as nucleophiles. The possible mechanism is depicted as in Figure 2. When bostrycin 

reacted with various thiols and dithiols at 0–5 °C in the presence of triethylamine, a series of alkylthio 

disubstituted derivatives 23–29 (at C-6 and C-7) were obtained (Scheme 3). We deduced the dithio 

substituted compounds might be obtained through two steps. Firstly, nucleophilic addition of an 

alkylthio anion to C-6 followed by elimination of the methoxy group to give a monothio substituted 

bostrycin intermediate. However, the second addition of another mole of alkylthio anion to C-7 can be 

smoothly carried out due to its strong nucleophilicity, and then tautomerization between the ketone and 

enol configuration takes place. Subsequently, the diphenol structure was oxidized to the target quinone 

structure (23–29) by the remaining large amount of starting material bostrycin and/or oxygen from the 

air. The detailed mechanism is proposed as in Figure 3. The structures of all the compounds were 

established on the basis of their nuclear magnetic resonance spectra (1H NMR, 13C NMR) and mass 

spectra (ESI, EI). 

Figure 2. Nucleophilic substitution of bostrycin and amines. 
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Figure 3. Nucleophilic substitution of bostrycin and thiols. 
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2.2. Biological Activity 

All compounds were evaluated for their in vitro cytotoxic activity against five human cancer cell 

lines including human breast MCF-7, human breast MDA-MB-435, human lung A549, human liver 

HepG2 and human colon HCT-116, and compared with their effects on the immortalized human breast 

epithelial cell line MCF-10A by MTT assay [20,28] using epirubicin (an anticancer drug used widely 

in the clinic [29–31]) as positive control. The results are summarized in Table 1 and discussed below. 

Table 1. Cytotoxicity of compounds 1–29 against MCF-7, MDA-MB-435, A549, HepG2, 

HCT-116 and MCF-10A cells (IC50, μM) a. 

Compound/ 

Cell Line 

MCF-7 b MDA-MB-435 b A549 b HepG2 b HCT-116 b MCF-10A b 

1 2.18 ± 0.14 2.82 ± 0.17 2.63 ± 0.33 7.71 ± 0.72 4.78 ± 0.03 14.08 ± 0.58 

2 2.69 ± 0.31 3.19 ± 0.92 4.49 ± 0.13 9.99 ± 0.55 5.69 ± 0.25 13.83 ± 0.76 

3 6.19 ± 0.60 2.91 ± 0.18 4.72 ± 0.17 31.01 ± 0.71 4.70 ± 0.39 28.63 ± 0.91 
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Table 1. Cont. 

4 >50 41.59 ± 2.63 >50 >50 >50 >50 

5 6.87 ± 0.33 5.96 ± 0.21 4.25 ± 0.16 36.95 ± 1.97 11.03 ± 1.35 18.11±1.30 

6 7.99 ± 0.09 11.67 ± 1.18 5.50 ± 0.24 22.34 ± 2.89 7.83 ± 0.32 34.15 ± 0.85 

7 2.52 ± 0.26 4.25 ± 0.57 0.78 ± 0.04 4.58 ± 0.50 3.06 ± 0.10 4.79 ± 0.52 

8 1.59 ± 0.16 1.26 ± 0.12 0.52 ± 0.02 3.32 ± 0.58 2.92 ± 0.06 21.72 ± 1.45 

9 3.58 ± 0.65 >50 31.07 ± 1.94 22.35 ± 1.16 34.24 ± 1.27 >50 

10 13.97 ± 0.98 >50 21.50 ± 1.43 18.00 ± 0.60 26.38 ± 0.89 >50 

11 1.08 ± 0.21 >50 25.14 ± 0.74 35.68 ± 1.29 36.46 ± 0.53 >50 

12 4.87 ± 0.23 4.25 ± 0.75 3.74 ± 0.67 12.91 ± 0.96 4.06 ± 0.65 Nt c 

13 35.55 ± 1.40 >50 >50 32.16 ± 2.43 35.93 ± 1.13 >50 

14 >50 >50 >50 >50 >50 >50 

15 3.72 ± 0.27 10.32 ± 0.45 4.87 ± 0.43 >50 4.84 ± 0.25 41.60 ± 0.51 

16 39.44 ± 0.68 36.41 ± 2.08 41.44 ± 2.86 30.31 ± 1.63 43.27 ± 1.56 Nt c 

17 28.66 ± 2.37 40.37 ± 1.49 21.30 ± 2.02 >50 20.63 ± 0.37 19.79 ± 0.63 

18 9.17 ± 0.28 25.56 ± 1.71 15.18 ± 0.42 >50 13.63 ± 1.85 27.69 ± 0.93 

19 7.94 ± 0.26 7.86 ± 1.20 6.25 ± 0.43 >50 4.92 ± 0.38 7.50 ± 0.69 

20 3.14 ± 0.31 4.04 ± 0.35 3.16 ± 0.23 1.99 ± 0.17 2.81 ± 0.31 Nt c 

21 4.62 ± 0.44 6.38 ± 0.47 3.06 ± 0.46 6.09 ± 1.14 3.25 ± 0.67 Nt c 

22 4.81 ± 0.40 0.95 ± 0.13 0.76 ± 0.03 6.61 ± 1.12 0.75 ± 0.05 Nt c 

23 0.71 ± 0.01 0.76 ± 0.06 4.07 ± 0.51 6.90 ± 0.26 0.95 ± 0.06 14.79 ± 0.96 

24 2.45 ± 0.48 7.05 ± 0.56 4.06 ± 0.42 4.03 ± 0.13 3.25 ± 0.54 30.64 ± 2.54 

25 2.60 ± 0.45 10.64 ± 1.11 0.71 ± 0.01 3.33 ± 0.66 0.74 ± 0.10 34.96 ± 1.94 

26 14.42 ± 0.42 13.33 ± 0.20 26.12 ± 3.15 22.66 ± 1.95 11.95 ± 1.53 Nt c 

27 6.01 ± 0.39 3.19 ± 0.15 7.31 ± 0.58 3.18 ± 0.75 3.08 ± 0.35 Nt c 

28 0.57 ± 0.04 0.63 ± 0.45 0.37 ± 0.04 0.82 ± 0.01 0.68 ± 0.08 0.81 ± 0.11 

29 3.18 ± 0.22 0.55 ± 0.11 4.06 ± 0.35 2.55 ± 0.55 0.73 ± 0.02 Nt c 

epirubicin d 0.96 ± 0.08 0.56 ± 0.06 0.61 ± 0.05 0.96 ± 0.02 0.48 ± 0.03 0.48 ± 0.08 
a IC50 values are taken as means ± standard deviation from three independent experiments; b MCF-7, human breast cancer 

cell line; MDA-MB-435, human breast cancer cell line; A549, human lung cancer cell line; HepG2, human liver cancer 

cell line; HCT-116, human colon cancer cell line; MCF-10A, the immortalized human breast epithelial cell line;  
c Nt = not tested; d Used as a positive control. 

Bostrycin analogues 2 and 3 exhibited comparable cytotoxic activity to bostrycin against all tested 

cancer cell lines, except for compound 3 for HepG2 cells, while compound 4 lost potency  

(IC50 > 50 μM). The activity profiles suggested that the hydroxyl groups at C-1 and/or C-10 in 

bostrycin were not essential for the cytotoxic activity whereas the tetrahydroaromatic ring with the 

polyhydroxyl groups was the key pharmacophore of bostrycin. 

These bostrycin derivatives were tested on inhibitory activity against the growth of several tumor 

cell lines along with one immortalized human breast epithelial cell line. As shown in Table 1, some 

modified compounds exhibited much better activity than bostrycin, and even displayed comparable 

activity to epirubicin against the cancer cells tested. However, the majority of compounds were also 

highly cytotoxic to the immortalized human breast epithelial cells. For example, the activities of 

compounds 7 (IC50 = 0.78 μM) and 8 (IC50 = 0.52 μM) against A549 cells have comparable activity to 

those of epirubicin (IC50 = 0.61 μM). A similar potency profile was observed with compounds 22 
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(against MDA-MB-435, A549 and HCT-116 cells), 23 (against MCF-7, MDA-MB-435 and HCT-116 

cells), 25 (against A549 and HCT-116 cells) and 29 (against MDA-MB-435 and HCT-116 cells). 

Significantly, compound 28 showed broad-spectrum antitumor activity, with equal potency to 

epirubicin against MCF-7, MDA-MB-435, A549, HepG2 and HCT-116 cells lines with IC50 values of 

0.57, 0.63, 0.37, 0.82 and 0.68 μM, which were 3.8-, 4.5-, 7.1-, 9.4- and 7.0-fold more active than 

bostrycin (with IC50 value of 2.18, 2.82, 2.63, 7.71 and 4.78 μM), respectively. However, these 

compounds also exerted marked cytotoxic effect on immortalized human breast epithelial cells. 

Moreover, compounds 7 and 8 exhibited excellent selective activity for A549 cells over other cancer 

cells, and the cytotoxic activity of compounds 9 and 11 against MCF-7 cell line was much stronger 

than for other kinds of cancer cell lines. Compound 28 (IC50 = 0.57 μM) possessed the most potent 

activity against HepG2 cells. The SAR analysis revealed that: (1) 2,3-ketal derivatives 5 and 6 showed 

a slight decrease in antiproliferative activity compared to bostrycin. However, compound 8 displayed 

stronger activity, which indicated that the protection of C-2 and C-3 with a dioxylcarbonyl group was 

favorable for activity; (2) Compound 7 with a hydroxymethyl group at C-1 position and a methylene 

group at C-2 and C-3 positions, showed comparable activity to epirubicin for A549 cells;  

(3) Secondary heterocyclic amine-substituted derivatives (20–22) possessed more potency than 

primary amine-substituted derivatives (9–11 and 13–19) against all cancer cells except for MCF-7 

cells. The results suggested that derivatives bearing tertiary amino groups have better activity than 

derivatives bearing secondary amino groups; (4) Although compounds 9 and 11 displayed significantly 

decreased potency compared to that of bostrycin against five human cancer cells except for MCF-7 

cells, they had improved selectivity for MCF-7 cells over other cancer cells; (5) Compared to 

alkylamino derivatives 9–11, longer alkylamino substituents seems beneficial for anticancer activity, 

as exemplified by compound 12 with significantly improved activity against MDA-MB-435, A549 and 

HCT-116 cells; (6) Phenylamino-substituted derivative 15 exhibited better antiproliferative activity 

than all other primary amine-substituted derivatives against A549 and HCT-116 cells, except for 

compound 12; (7) Compared to derivatives 20, 21, 4-phenylpiperidine-substituted derivative 22 

exhibited comparable activity to epirubicin against MDA-MB-435, A549 and HCT-116 cells, which 

indicated that a larger group substituted at the 6-piperidine position may be helpful for activity;  

(8) Disubstituted thiol derivatives 23–25 and 27 showed strong cytotoxic activity against five human 

cancer cell lines with IC50 values of 0.71–10.64 μM; (9) The length of the carbon chain of alkylthio 

substituents also affected the antiproliferative activity of the compounds against different cancer cells. 

For example, for compounds 23–25, the activity to inhibit the growth of MCF-7 and MDA-MB-435 

cells was decreased as the length of the carbon chain of alkylthio substituents was increased. However, 

for A549 and HepG2 cells, the order of activity was reversed; (10) Dithiol-substituted derivatives 28, 

29 displayed potent cytotoxic activity against five human cancer cell lines, especially, compound 28 

which generally exhibited comparable activity to epirubicin against five human cancer cell lines. 
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3. Experimental Section 

3.1. Chemistry 

Reagents and solvents were commercially available. Solvents were dried and purified using 

standard procedures prior to use. Melting points were measured on an X-4 micromelting point 

apparatus and were uncorrected. IR spectra were measured on a Bruker Vector 22 spectrophotometer 

using KBr pellets. NMR spectra were determined on a Varian Inova-500 NB spectrometer or Bruker 

AV-400 NB spectrometer in CDCl3 or DMSO-d6 using TMS as internal standard, and coupling 

constants (J) are in Hz. EI mass spectra were recorded on a DSQ mass spectrometer and ESI mass 

spectra were obtained on a LCQ DECA XP LC-MS mass spectrometer. Flash column chromatography 

was performed with silica gel (Qing dao Ocean Chemical Factory, 200–300 mesh) eluted with 

petroleum ether–dichloromethane or dichloromethane–methanol, and C18 reversed phase silica gel 

(Welch Material, Inc., 45 μm) eluted with methanol–water. 

3.2. Preparation of Bostrycin (1), Deoxybostrycin (2), Nigrosporin B (3) and Austrocortinin (4) 

Bostrycin (1) and its analogues (2–4) were isolated from the secondary metabolites of the mangrove 

endophytic fungus Nigrospora sp. No. 1403 collected from the South China Sea according to literature 

procedures [12–14]. 

Bostrycin (1). Red solid (MeOH); mp: 252–254 °C; [α]25 
D  −272 (c 2.2 × 10−4, MeOH); IR (KBr):  

νmax = 3532, 3512, 3480, 3367, 3031, 2991, 2934, 2893, 2857, 1595, 1478, 1460, 1441 cm−1; 1H NMR 

(400 MHz, DMSO-d6): δ 13.39 (s, 1H, 9-OH), 12.63 (s, 1H, 10-OH), 6.48 (s, 1H, 7-H), 5.23  

(d, J = 4.9 Hz, 1H, 1-OH), 4.93 (d, J = 4.8 Hz, 1H, 2-OH), 4.75 (t, J = 4.9 Hz, 1H, 1-H), 4.48 (s, 1H,  

3-OH), 3.92 (s, 3H, 6-OMe), 3.53 (t, J = 4.8 Hz, 1H, 2-H), 2.74 (d, J = 18.2 Hz, 1H, 4-Hb), 2.67  

(d, J = 18.2 Hz, 1H, 4-Ha), 1.23 (s, 3H, 3-CH3); 
13C NMR (125 MHz, DMSO-d6): δ 184.29 (C-8), 

177.49 (C-5), 160.45 (C-9), 160.22 (C-6), 160.07 (C-10), 139.44 (C-9a), 136.80 (C-4a), 109.85 and 

109.51 (C-7 and C-10a), 107.49 (C-8a), 76.40 (C-2), 69.33 (C-3), 68.30 (C-1), 56.97 (6-OMe), 34.89 

(C-4), 25.67 (3-CH3); EIMS m/z 336 [M]+ (23), 318 (17), 303 (9), 289 (19), 271 (12), 263 (100), 

247 (11), 234 (35), 216 (16). 

Deoxybostrycin (2). Red solid (MeOH); mp: 224–225 °C; [α]25 
D  +90.9 (c 1.1 × 10−4, MeOH);  

1H NMR (300 MHz, DMSO-d6): δ 13.18 (s, 1H, 9-OH), 12.62 (s, 1H, 10-OH), 6.42 (s, 1H, 7-H), 4.82 

(d, J = 5.1 Hz, 1H, 2-OH), 4.48 (s, 1H, 3-OH), 3.88 (s, 3H, 6-OMe), 3.61 (dt, J = 7.3, 5.1 Hz, 1H, 2-H), 

2.82 (dd, J = 18.3, 5.1 Hz, 1H, 1-Hb), 2.77 (d, J = 18.1 Hz, 1H, 4-Hb), 2.64 (dd, J = 18.3, 7.3 Hz, 1H,  

1-Ha), 2.56 (d, J = 18.1 Hz, 1H, 4-Ha), 1.18 (s, 3H, 3-CH3); 
13C NMR (125 MHz, DMSO-d6): δ 183.39 

(C-8), 176.35 (C-5), 161.31 (C-10), 160.38 (C-6), 159.67 (C-9), 138.88 (C-9a), 136.33 (C-4a), 109.47 

(C-7), 108.97 (C-10a), 106.85 (C-8a), 70.12 (C-2), 68.81 (C-3), 56.95 (6-OMe), 35.72 (C-4),  

29.91 (C-1), 25.39 (3-CH3); EIMS m/z 320 [M]+ (100), 302 (41), 287 (30), 259 (61), 247 (96),  

234 (20), 219 (45), 205 (10). 

Nigrosporin B (3). Yellow solid (MeOH); mp: >300 °C; [α]25 
D  +131.4 (c 1.75 × 10−4, MeOH);  

1H NMR (400 MHz, DMSO-d6): δ 12.67 (s, 1H, 9-OH), 7.26 (s, 1H, 10-H), 6.29 (s, 1H, 7-H),  

4.76 (d, J = 3.6 Hz, 1H, 2-OH), 4.39 (s, 1H, 3-OH), 3.88 (s, 3H, 6-OMe), 3.66 (m, 1H, 2-H), 2.93  
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(d, J = 17.5 Hz, 1H, 4-Hb), 2.85 (dd, J = 18.4, 4.9 Hz, 1H, 1-Hb), 2.77 (d, J = 17.5 Hz, 1H, 4-Ha), 2.69 

(dd, J = 18.4, 7.1 Hz, 1H, 4-Ha), 1.17 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 190.76 (C-8), 

178.79 (C-5), 161.11 (C-6), 158.31 (C-9), 144.01 (C-4a), 131.70 (C-9a), 127.95 (C-10a), 119.37  

(C-10), 110.65 (C-8a), 109.33 (C-7), 70.51 (C-2), 69.41 (C-3), 56.78 (6-OMe), 41.67 (C-4), 29.75  

(C-1), 25.07 (3-CH3); EIMS m/z 304 [M]+ (34), 286 (85), 271 (100), 257 (57), 243 (94), 229 (45), 215 

(54), 201 (23). 

Austrocortinin (4). Yellow solid (CH2Cl2); mp: 232–233 °C; 1H NMR (400 MHz, CDCl3): δ 13.59 

(s, 1H, 8-OH), 13.47 (s, 1H, 5-OH), 8.25 (d, J = 8.0 Hz, 1H, 1-H), 8.16 (m, 1H, 4-H), 7.64  

(d m, J = 8.0 Hz, 1H, 2-H), 6.72 (s, 1H, 7-H), 4.03 (s, 3H, 6-OMe), 2.57 (br s, 3H, 3-CH3); EIMS  

m/z 284 [M]+ (100), 266 (28), 238 (23), 210 (22), 182 (8), 157 (5), 139 (6). 

3.3. Synthetic Methods of Compounds 

3.3.1. Synthesis of 2,3-O-(isopropylidene) Bostrycin (5) 

To a solution of 1 (50 mg, 0.149 mmol) in 10 mL of tetrahydrofuran was added  

2,2-dimethoxypropane (310 mg, 3.0 mmol) and p-toluenesulfonic acid (25.6 mg, 0.149 mmol). The 

reaction mixture was stirred for 20 h at room temperature. The reaction mixture was diluted with water 

(20 mL) and extracted with dichloromethane (3 × 50 mL). The combined organic phase was washed 

with saturated sodium chloride, dried over anhydrous magnesium sulfate, and concentrated in vacuo. 

The resulting residue was purified on a silica gel column using petroleum ether–dichloromethane  

(v/v 1:1) as eluent to obtain 48.5 mg of compound 5. Yield 90%; red solid (CH2Cl2); mp: 228–229 °C; 

IR (KBr): νmax = 3486, 3036, 2989, 2972, 2937, 2890, 1598, 1427, 1384 cm−1; 1H NMR (400 MHz, 

CDCl3) δ 13.18 (s, 1H, 9-OH), 12.60 (s, 1H, 10-OH), 6.18 (s, 1H, 7-H), 5.51 (d, J = 2.7 Hz, 1H, 1-H), 

4.41 (d, J = 2.7 Hz, 1H, 2-H), 3.93 (s, 3H, 6-OMe), 3.41 (d, J = 16.7 Hz, 1H, 4-Hb), 2.72 (d, J = 16.7 Hz, 

1H, 4-Ha), 1.64 (s, 3H, 3-CH3), 1.40 (s, 3H, 2′-CH3), 1.03 (s, 3H, 3′-CH3); EIMS m/z 376 [M]+ (19), 

361 (8), 318 (83), 301 (33), 289 (100), 273 (43), 257 (24), 243 (16). 

3.3.2. Synthesis of 2,3-O-(3′-methylbut-2′-enyl) Bostrycin (6) 

To a solution of 1 (50 mg, 0.149 mmol) in 10 mL of tetrahydrofuran was added 3-methyl-2-butenal 

(37.5 mg, 0.45 mmol) and p-toluenesulfonic acid (25.6 mg, 0.149 mmol). The reaction mixture was 

stirred for 10 h at room temperature. The reaction mixture was diluted with water (20 mL) and 

extracted with dichloromethane (3 × 50 mL). The combined organic phase was washed with saturated 

sodium chloride, dried over anhydrous magnesium sulfate, and concentrated in vacuo. The resulting 

residue was purified on a silica gel column using dichloromethane as eluent to obtain 47.9 mg of 

compound 6. Yield 80%; red solid (CH2Cl2); mp: 200–201 °C; IR (KBr): νmax = 3522, 3083, 2962, 

2928, 2873, 1598, 1571, 1437, 1407, 1376 cm−1; 1H NMR (400 MHz, CDCl3) δ 13.09 (s, 1H, 9-OH), 

12.53 (s, 1H, 10-OH), 6.12 (s, 1H, 7-H), 5.50 (d, J = 7.6 Hz, 1H, 1′-H), 5.45 (d, J = 2.5 Hz, 1H, 1-H), 

4.72 (d septet, J = 7.6, 1.2 Hz, 1H, 2′-H), 4.20 (d, J = 2.5 Hz, 1H, 2-H), 3.92 (s, 3H, 6-OMe),  

3.51 (d, J = 16.3 Hz, 1H, 4-Hb), 2.67 (d, J = 16.3 Hz, 1H, 4-Ha), 1.67 and 1.60 (d, J = 1.2 Hz, 4′-CH3 

and 5′-CH3), 1.57 (s, 3H, 3-CH3); 
13C NMR (100MHz, CDCl3): δ 186.45 (C-8), 180.60 (C-5), 160.69 

(C-6), 158.54 (C-10), 156.95 (C-9), 141.85 (C-3′), 138.10 (C-9a), 137.86 (C-4a), 120.51 (C-2′), 110.97 
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(C-10a), 109.92 (C-7), 108.79 (C-8a), 97.27 (C-1′), 83.05 (C-2), 79.12 (C-3), 62.82 (C-1),  

56.77 (6-OMe), 31.27 (C-4), 26.34 (3-CH3), 25.73 and 18.39 (C-4′ and C-5′); EIMS m/z 402 [M]+ (5), 

387 (2), 318 (100), 301 (42), 289 (96), 271 (39), 257 (26), 243 (19). 

3.3.3. Synthesis of 1-O-(hydroxymethyl)-2,3-O-(methylene) Bostrycin (7) 

To a solution of 1 (100 mg, 0.298 mmol) in 10 mL of tetrahydrofuran was added polyoxymethylene 

(45 mg) and p-toluenesulfonic acid (51.2 mg, 0.298 mmol). The reaction mixture was stirred for 10 h 

at room temperature. The reaction mixture was diluted with water (20 mL) and extracted with 

dichloromethane (3 × 50 mL). The combined organic phase was washed with saturated sodium 

chloride, dried over anhydrous magnesium sulfate, and concentrated in vacuo. The resulting residue 

was purified on a silica gel column using dichloromethane–methanol (v/v 200:1) as eluent to obtain  

27 mg of compound 7. Yield 24%; red solid (CH2Cl2); mp: 233–234 °C; IR (KBr): νmax = 3519, 3040, 

2956, 2927, 2901, 2871, 1603, 1568, 1460, 1435, 1408 cm−1; 1H NMR (400 MHz, CDCl3): δ 13.23  

(s, 1H, 9-OH), 12.64 (s, 1H, 10-OH), 6.17 (s, 1H, 7-H), 5.23 (d, J = 7.1 Hz, 1H, 1′-Hb), 5.19  

(d, J = 4.4 Hz, 1H, 2′-Hb), 5.12 (dd, J = 7.5, 1.6 Hz, 1H, 2-H), 5.07 (d, J = 4.4 Hz, 1H, 2′-Ha), 5.04  

(d, J = 7.1 Hz, 1H, 1′-Ha), 3.92 (s, 3H, 6-OMe), 3.63 (d, J = 7.5 Hz, 1H, 1-H), 3.18 (d, J = 18.9 Hz, 1H,  

4-Hb), 2.69 (dd, J = 18.9, 1.6 Hz, 1H, 4-Ha), 1.50 (s, 3H, 3-CH3); 
13C NMR (100 MHz, CDCl3):  

δ 185.53 (C-8), 179.56 (C-5), 160.47 (C-6), 159.42 and 159.38 (C-9 and C-10), 136.41 (C-9a), 135.98 

(C-4a), 110.53 (C-10a), 110.12 (C-7), 108.64 (C-8a), 93.69 and 91.57 (C-1′ and C-2′), 84.98 (C-2), 

75.52 (C-3), 70.64 (C-1), 56.71 (6-OMe), 36.47 (C-4), 26.25 (3-CH3); EIMS m/z 378 [M]+ (86), 

348 (14), 330 (45), 300 (100), 272 (80), 257 (45), 229 (28), 203 (11). 

3.3.4. Synthesis of 2,3-O-(carbonyl) Bostrycin (8) 

To a solution of 1 (100 mg, 0.298 mmol) and pyridine (235 mg, 0.298 mmol) in 5 mL of 

dichloromethane at −10 °C was added a solution of triphosgene in 2 mL of dichloromethane dropwise. 

The reaction mixture was stirred for 30 min, and then a saturated aqueous solution of ammonium 

chloride (2 mL) was added. The reaction mixture was diluted with water (10 mL) and extracted with 

dichloromethane (3 × 50 mL). The combined organic phase was successively washed with dilute 

aqueous hydrochloric acid (2 M), water, saturated sodium chloride, dried over anhydrous magnesium 

sulfate, and concentrated in vacuo. The resulting residue was purified on a silica gel column using 

dichloromethane–methanol (v/v 200:1) as eluent to obtain 30.2 mg of compound 8. Yield 28%; red 

solid (MeOH); mp: 246–247 °C; IR (KBr): νmax = 3403, 3081, 2977, 2942, 2850, 1814, 1603, 1570, 

1435, 1411 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 13.14 (s, 1H, 9-OH), 12.32 (s, 1H, 10-OH),  

6.45 (s, 1H, 7-H), 6.20 (d, J = 4.1 Hz, 1H, 1-OH), 5.33 (dd, J = 4.1, 2.9 Hz, 1H, 1-H), 4.88  

(d, J = 2.9 Hz, 1H, 2-H), 3.92 (s, 3H, 6-OMe), 3.54 (d, J = 16.5 Hz, 1H, 4-Hb), 2.81 (d, J = 16.5 Hz, 

1H, 4-Ha), 1.76 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 188.35 (C-8), 182.04 (C-5), 161.05  

(C-6), 154.53 (C-10), 153.90 (C-9), 152.64 (C=O), 135.93 (C-9a), 134.16 (C-4a), 111.60 (C-10a), 

110.10 (C-7), 109.56 (C-8a), 82.59 (C-3), 81.25 (C-2), 59.75 (C-1), 57.11 (6-OMe), 29.89 (C-4), 27.21 

(3-CH3); EIMS m/z 362 [M]+ (46), 318 (17), 300 (100), 282 (29), 254 (19), 229 (25), 216 (10), 

201 (11). 
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3.3.5. General Procedure: Synthesis of Compounds 9–22 

To a solution of 1 (1 equiv, 50 mg, 0.149 mmol) in 10 mL of methanol was added the 

corresponding amine (5 equiv). The reaction mixture was stirred at room temperature until the starting 

material disappeared (with aniline and 4-methoxyaniline, the reaction mixture was heated to 50 °C). 

The solvent was removed under reduced pressure. The resulting residue was purified on a silica gel 

column using dichloromethane–methanol as eluent, and then a C18 reversed phase silica gel column 

using methanol–water as eluent to obtain the corresponding products. 

6-(Methylamino)-6-demethoxybostrycin (9). Yield 53.6%; red solid (MeOH); mp: 266–267 °C;  

IR (KBr): νmax = 3532, 3457, 3389, 3319, 2973, 2928, 2843, 2808, 1584, 1517, 1418 cm−1; 1H NMR  

(400 MHz, DMSO-d6): δ 14.47 (s, 1H, 9-OH), 12.32 (s, 1H, 10-OH), 8.02 (q, J = 5.0 Hz, 1H, NH), 

5.57 (s, 1H, 7-H), 5.14 (d, J = 4.8 Hz, 1H, 1-OH), 4.96 (d, J = 4.6 Hz, 1H, 2-OH), 4.75 (t, J = 4.8 Hz, 

1H, 1-H), 4.50 (s, 1H, 3-OH), 3.52 (t, J = 4.6 Hz, 1H, 2-H), 2.83 (d, J = 5.0 Hz, 3H, NHCH3), 2.72  

(d, J = 17.8 Hz, 1H, 4-Hb), 2.64 (d, J = 17.8 Hz, 1H, 4-Ha), 1.23 (s, 3H, 3-CH3); 
13C NMR (125 MHz, 

DMSO-d6): δ 185.83 (C-8), 183.20 (C-5), 155.33 and 155.22 (C-9 and C-10), 150.44 (C-6), 139.49  

(C-9a), 132.93 (C-4a), 109.60 (C-10a), 107.92 (C-8a), 98.58 (C-7), 76.38 (C-2), 69.36 (C-3), 68.56  

(C-1), 34.75 (C-4), 29.08 (NHCH3), 25.68 (3-CH3); EIMS m/z 335 [M]+ (46), 317 (14), 288 (31), 

261 (65), 246 (11), 233 (100), 218 (23), 204 (8). 

6-(n-Propylamino)-6-demethoxybostrycin (10). Yield 50.2%; red solid (MeOH); mp: 210–211 °C; 

IR (KBr): νmax = 3555, 3439, 3385, 3280, 3085, 2966, 2934, 2907, 2876, 1581, 1510, 1433 cm−1;  
1H NMR (400 MHz, DMSO-d6): δ 14.51 (s, 1H, 9-OH), 12.33 (s, 1H, 10-OH), 7.97 (br t, 1H, NH), 

5.67 (s, 1H, 7-H), 5.14 (d, J = 4.4 Hz, 1H, 1-OH), 4.95 (d, J = 4.2 Hz, 1H, 2-OH), 4.74 (t, J = 4.4 Hz, 

1H, 1-H), 4.49 (s, 1H, 3-OH), 3.51 (t, J = 4.2 Hz, 1H, 2-H), 3.18 (q, J = 7.3 Hz, 2H, 1′-CH2), 2.72  

(d, J = 17.8 Hz, 1H, 4-Hb), 2.64 (d, J = 17.8 Hz, 1H, 4-Ha), 1.60 (sextet, J = 7.4 Hz, 2H, 2′-CH2), 1.22 

(s, 3H, 3-CH3), 0.91 (t, J = 7.5 Hz, 3H, 3′-CH3); 
13C NMR (125 MHz, DMSO-d6): δ 185.87 (C-8), 

183.30 (C-5), 155.27 and 155.25 (C-9 and C-10), 149.57 (C-6), 139.53 (C-9a), 132.89 (C-4a), 109.63 

(C-10a), 107.83 (C-8a), 98.56 (C-7), 76.38 (C-2), 69.36 (C-3), 68.57 (C-1), 43.72 (C-1′), 34.74 (C-4), 

25.67 (3-CH3), 20.67 (C-2′), 11.26 (C-3′); EIMS m/z 363 [M]+ (43), 345 (13), 316 (53), 302 (16), 

289 (83), 261 (61), 232 (100), 218 (30). 

6-(n-Butylamino)-6-demethoxybostrycin (11). Yield 48.5%; red solid (MeOH); mp: 236–237 °C; 

IR (KBr): νmax = 3559, 3427, 3283, 3090, 2956, 2932, 2872, 1579, 1510, 1443 cm–1; 1H NMR 

(500 MHz, DMSO-d6): δ 14.47 (s, 1H, 9-OH), 12.32 (s, 1H, 10-OH), 7.89 (t, J = 5.4 Hz, 1H, NH), 

5.65 (s, 1H, 7-H), 5.07 (d, J = 4.7 Hz, 1H, 1-OH), 4.88 (d, J = 4.8 Hz, 1H, 2-OH), 4.75 (t, J = 4.7 Hz, 

1H, 1-H), 4.43 (s, 1H, 3-OH), 3.52 (t, J = 4.8 Hz, 1H, 2-H), 3.21 (dt, J = 5.4, 7.5 Hz, 2H, 1′-CH2), 2.73  

(d, J = 17.8 Hz, 1H, 4-Hb), 2.65 (d, J = 17.8 Hz, 1H, 4-Ha), 1.57 (pentet, J = 7.5 Hz, 2H, 2′-CH2), 1.34 

(sextet, J = 7.3 Hz, 2H, 3′-CH2), 1.23 (s, 3H, 3-CH3), 0.91 (t, J = 7.5 Hz, 3H, 4′-CH3); 
13C NMR  

(125 MHz, DMSO-d6): δ 185.82 (C-8), 183.26 (C-5), 155.29 (C-9 and C-10), 149.53 (C-6), 139.52  

(C-9a), 132.91 (C-4a), 109.62 (C-10a), 107.83 (C-8a), 98.50 (C-7), 76.38 (C-2), 69.36 (C-3), 68.58  

(C-1), 41.80 (C-1′), 34.75 (C-4), 29.34 (C-2′), 25.67 (3-CH3), 19.60 (C-3′), 13.56 (C-4′); EIMS  

m/z 377 [M]+ (43), 359 (18), 341 (21), 303 (98), 275 (70), 260 (24), 232 (100), 218 (35). 
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6-(n-Hexylamino)-6-demethoxybostrycin (12). Yield 45%; red solid (MeOH); mp: 203–204 °C; 

IR (KBr): νmax = 3557, 3384, 3285, 3089, 2955, 2929, 2859, 1578, 1512, 1436 cm−1; 1H NMR 

(400 MHz, DMSO-d6): δ 14.47 (s, 1H, 9-OH), 12.33 (s, 1H, 10-OH), 7.91 (t, J = 6.1 Hz, 1H, NH), 

5.65 (s, 1H, 7-H), 5.08 (d, J = 4.8 Hz, 1H, 1-OH), 4.89 (d, J = 4.6 Hz, 1H, 3-OH), 4.75 (t, J = 4.8 Hz, 

1H, 1-H), 4.44 (s, 1H, 3-OH), 3.52 (t, J = 4.6 Hz, 1H, 2-H), 3.21 (dt, J = 6.1, 7.0 Hz, 2H, 1′-CH2), 2.73 

(d, J = 17.8 Hz, 1H, 4-Hb), 2.65 (d, J = 17.8 Hz, 1H, 4-Ha), 1.58 (pentet, J = 7.0 Hz, 2H, 2′-CH2), 

1.37–1.26 (m, 6H, 3′, 4′ and 5′-CH2), 1.23 (s, 3H, 3-CH3), 0.87 (t, J = 7.1 Hz, 3H, 6′-CH3); 
13C NMR 

(100 MHz, DMSO-d6): δ 185.90 (C-8), 183.36 (C-5), 155.31 and 155.27 (C-9 and C-10), 149.55 (C-6), 

139.58 (C-9a), 132.92 (C-4a), 109.67 (C-10a), 107.87 (C-8a), 98.54 (C-7), 76.41 (C-2), 69.39 (C-3), 

68.60 (C-1), 42.11 (C-1′), 34.77 (C-4), 30.87 (C-2′), 27.23 and 26.07 (C-3′ and C-4′), 25.70 (3-CH3), 

21.97 (C-5′), 13.82 (C-6′); EIMS m/z 405 [M]+ (29), 387 (10), 358 (39), 331 (85), 303 (67), 382 (30), 

323 (100), 218 (32). 

6-(2′-Hydroxyethylamino)-6-demethoxybostrycin (13). Yield 30%; red solid (MeOH); mp:  

202–203 °C; IR (KBr): νmax = 3374, 2968, 2924, 2898, 2857, 1587, 1518, 1439, 1402 cm–1; 1H NMR 

(500 MHz, DMSO-d6): δ 14.45 (s, 1H, 9-OH), 12.31 (s, 1H, 10-OH), 7.70 (t, J = 6.0 Hz, 1H, NH), 

5.73 (s, 1H, 7-H), 5.12 (d, J = 4.6 Hz, 1H, 1-OH), 4.92 (d, J = 4.4 Hz, 1H, 2-OH), 4.89 (t, J = 6.0 Hz, 

1H, 2′-OH), 4.74 (t, J = 4.6 Hz, 1H, 1-H), 4.46 (s, 1H, 3-OH), 3.61 (q, J = 6.0 Hz, 2H, 2′-CH2), 3.51  

(t, J = 4.4 Hz, 1H, 2-H), 3.29 (q, J = 6.0 Hz, 2H, 1′-CH2), 2.72 (d, J = 17.8 Hz, 1H, 4-Hb), 2.65  

(d, J = 17.8 Hz, 1H, 4-Ha), 1.22 (s, 3H, 3-CH3); 
13C NMR (125 MHz, DMSO-d6): δ 185.92 (C-8), 

183.03 (C-5), 155.40 (C-9 and C-10), 149.79 (C-6), 139.56 (C-9a), 133.08 (C-4a), 109.55 (C-10a), 

107.81 (C-8a), 98.95 (C-7), 76.38 (C-2), 69.36 (C-3), 68.58 (C-1), 58.41 (C-2′), 44.81 (C-1′), 34.78  

(C-4), 25.68 (3-CH3); EIMS m/z 365 [M]+ (8), 349 (24), 327 (13), 314 (100), 298 (39), 282 (73), 

276 (16), 232 (24). 

6-[(2″-Hydroxyethoxy)ethylamino]-6-demethoxybostrycin (14). Yield 40.2%; red solid (MeOH); 

mp: 112–113 °C; IR (KBr): νmax = 3376, 2973, 2922, 2872, 1584, 1516, 1439, 1373 cm−1; 1H NMR 

(400 MHz, DMSO-d6): δ 14.38 (s, 1H, 9-OH), 12.30 (s, 1H, 10-OH), 7.68 (t, J = 5.6 Hz, 1H, NH), 

5.74 (s, 1H, 7-H), 5.14 (d, J = 4.8 Hz, 1H, 1-OH), 4.94 (d, J = 4.6 Hz, 1H, 2-OH), 4.75 (t, J = 4.8 Hz, 

1H, 1-H), 4.68 (t, J = 5.2 Hz, 1H, 2″-OH), 4.50 (s, 1H, 3-OH), 3.65 (t, J = 5.6 Hz, 2H, 1″-CH2),  

3.58–3.50 (m, 5H, 2-H, 2′-CH2 and 2″-CH2), 3.40 (q, J = 5.6 Hz, 2H, 1′-CH2), 2.74 (d, J = 17.8 Hz, 1H, 

4-Hb), 2.65 (d, J = 17.8 Hz, 1H, 4-Ha), 1.24 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 186.59 

(C-8), 183.63 (C-5), 155.87 and 155.84 (C-9 and C-10), 150.12 (C-6), 140.09 (C-9a), 133.61 (C-4a), 

110.09 (C-10a), 108.34 (C-8a), 99.65 (C-7), 76.92 (C-2), 72.60 (C-2′), 69.96 (C-3), 69.12 (C-1), 67.93 

(C-1″), 60.65 (C-2″), 42.65 (C-1′), 35.29 (C-4), 26.16 (3-CH3); EIMS m/z 409 [M]+ (2), 389 (24), 

373 (4), 357 (5), 327 (9), 314 (100), 300 (27), 282 (31). 

6-(Phenylamino)-6-demethoxybostrycin (15). Yield 60.4%; red solid (MeOH); mp: 226–227 °C; 

IR (KBr): νmax = 3576, 3560, 3409, 3248, 3037, 2968, 2919, 2901, 2850, 1587, 1572, 1521, 1444 cm−1;  
1H NMR (500 MHz, DMSO-d6): δ 14.16 (s, 1H, 9-OH), 12.47 (s, 1H, 10-OH), 9.50 (br s, 1H, NH), 

7.51–7.28 (m, 5H, Ar-H), 6.07 (s, 1H, 7-H), 5.13 (br s, 1H, 1-OH), 4.91 (d, J = 4.5 Hz, 1H, 2-OH), 

4.81 (br t, 1H, 1-H), 4.45 (s, 1H, 3-OH), 3.57 (t, J = 4.6 Hz, 1H, 2-H), 2.80 (d, J = 17.9 Hz, 1H, 4-Hb), 

2.72 (d, J = 17.9 Hz, 1H, 4-Ha), 1.28 (s, 3H, 3-CH3); 
13C NMR (125 MHz, DMSO-d6): δ 186.46 (C-8), 

182.83 (C-5), 155.87 and 155.73 (C-9 and C-10), 147.33 (C-6), 139.49 (C-9a), 137.65 (C-1′), 133.97 
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(C-4a), 129.27 (C-3′ and C-5′), 125.63 (C-4′), 123.91 (C-2′ and C-6′), 109.63 (C-10a), 107.84 (C-8a), 

101.33 (C-7), 76.40 (C-2), 69.36 (C-3), 68.51 (C-1), 34.86 (C-4), 25.68 (3-CH3); EIMS m/z 397 [M]+ 

(20), 377 (45), 361 (28), 345 (27), 324 (53), 295 (100), 280 (14), 266 (4). 

6-(p-Methoxyphenylamino)-6-demethoxybostrycin (16). Yield 50.1%; red solid (MeOH); mp:  

202–203 °C; IR (KBr): νmax = 3379, 3260, 3032, 2964, 2921, 2838, 1585, 1522, 1440, 1418 cm−1;  
1H NMR (400 MHz, DMSO-d6): δ 14.22 (s, 1H, 9-OH), 12.43 (s, 1H, 10-OH), 9.43 (br s, 1H, NH), 

7.33 (d, J = 8.6 Hz, 2H, Ar-H), 7.05 (br d, J = 8.6 Hz, 2H, Ar-H), 5.88 (s, 1H, 7-H), 5.11 (br s, 1H,  

1-OH), 4.91 (br s, 1H, 2-OH), 4.79 (br t, 1H, 1-H), 4.46 (s, 1H, 3-OH), 3.81 (s, 3H, 4′-OMe), 3.56  

(br t, 1H, 2-H), 2.79 (d, J = 17.9 Hz, 1H, 4-Hb), 2.70 (d, J = 17.9 Hz, 1H, 4-Ha), 1.27 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 186.55 (C-8), 183.34 (C-5), 157.25 (C-4′), 155.58 and 155.51 (C-9 

and C-10), 148.02 (C-6), 139.60 (C-9a), 133.67 (C-4a), 130.22 (C-1′), 125.83 (C-2′ and C-6′), 114.58 

(C-3′ and C-5′), 109.75 (C-10a), 107.95 (C-8a), 100.50 (C-7), 76.47 (C-2), 69.45 (C-3), 68.58 (C-1), 

55.34 (4′-OMe), 34.89 (C-4), 25.76 (3-CH3); EIMS m/z 427 [M]+ (29), 407 (74), 392 (53), 360 (44), 

325 (41), 310 (33), 284 (18), 263 (100). 

6-(Benzylamino)-6-demethoxybostrycin (17). Yield 52.6%; red solid (MeOH); mp: 153–154 °C; 

IR (KBr): νmax = 3384, 3064, 2971, 2927, 2907, 1581, 1513, 1438, 1373 cm−1; 1H NMR (400 MHz, 

DMSO-d6): δ 14.30 (s, 1H, 9-OH), 12.36 (s, 1H, 10-OH), 8.51 (t, J = 6.4 Hz, 1H, NH), 7.36–7.25  

(m, 5H, Ar-H), 5.58 (s, 1H, 7-H), 5.09 (d, J = 4.8 Hz, 1H, 1-OH), 4.90 (d, J = 4.6 Hz, 1H, 2-OH), 4.74  

(t, J = 4.8 Hz, 1H, 1-H), 4.49 (d, J = 6.4 Hz, 2H, NHCH2Ph), 4.44 (s, 1H, 3-OH), 3.52 (t, J = 4.6 Hz, 

1H, 2-H), 2.74 (d, J = 17.9 Hz, 1H, 4-Hb), 2.66 (d, J = 17.9 Hz, 1H, 4-Ha), 1.23 (s, 3H, 3-CH3);  
13C NMR (100 MHz, DMSO-d6): δ 185.98 (C-8), 183.29 (C-5), 155.46 and 155.38 (C-9 and C-10), 

149.54 (C-6), 139.57 (C-9a), 137.08 (C-1′), 133.24 (C-4a), 128.49 (C-3′ and C-5′), 127.16 and 127.12 

(C-2′, C-4′ and C-6′), 109.67 (C-10a), 107.79 (C-8a), 99.84 (C-7), 76.41 (C-2), 69.38 (C-3), 68.56  

(C-1), 45.25 (NHCH2), 34.79 (C-4), 25.70 (3-CH3); EIMS m/z 411 [M]+ (4), 391 (10), 359 (12), 

337 (13), 302 (23), 284 (11), 218 (19), 204 (5), 91 (100). 

6-(p-Methoxybenzylamino)-6-demethoxybostrycin (18). Yield 55.3%; red solid (MeOH); mp:  

149–150 °C; IR (KBr): νmax = 3375, 3072, 2968, 2932, 2912, 2837, 1581, 1513, 1438, 1399 cm−1;  
1H NMR (400 MHz, DMSO-d6): δ 14.33 (s, 1H, 9-OH), 12.35 (s, 1H, 10-OH), 8.47 (t, J = 6.4 Hz, 1H, 

NH), 7.32–6.88 (m, 4H, Ar-H), 5.59 (s, 1H, 7-H), 5.10 (d, J = 4.8 Hz, 1H, 1-OH), 4.91 (d, J = 4.6 Hz, 

1H, 2-OH), 4.74 (t, J = 4.8 Hz, 1H, 1-H), 4.45 (s, 1H, 3-OH), 4.41 (d, J = 6.4 Hz, 2H, NHCH2Ph), 3.73 

(s, 3H, 4′-OMe), 3.51 (t, J = 4.6 Hz, 1H, 2-H), 2.73 (d, J = 17.8 Hz, 1H, 4-Hb), 2.65 (d, J = 17.8 Hz, 

1H, 4-Ha), 1.22 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 185.94 (C-8), 183.37 (C-5),  

158.44 (C-4′), 155.45 and 155.35 (C-9 and C-10), 149.40 (C-6), 139.59 (C-9a), 133.20 (C-4a), 128.89 

and 128.55 (C-1′, C-2′ and C-6′), 113.91 (C-3′ and C-5′), 109.66 (C-10a), 107.80 (C-8a), 99.74 (C-7), 

76.42 (C-2), 69.40 (C-3), 68.58 (C-1), 55.02 (4′-OMe), 44.74 (NHCH2), 34.80 (C-4), 25.72 (3-CH3); 

EIMS m/z 441 [M]+ (2), 425 (3), 407 (2), 389 (1), 320 (3), 302 (2), 274 (1), 232 (4), 121 (100). 

6-(p-Fluorobenzylamino)-6-demethoxybostrycin (19). Yield 43.2%; red solid (MeOH); mp:  

147–148 °C; IR (KBr): νmax = 3376, 3076, 2971, 2928, 2858, 1582, 1510, 1442, 1420 cm–1; 1H NMR 

(400 MHz, DMSO-d6): δ 14.29 (s, 1H, 9-OH), 12.35 (s, 1H, 10-OH), 8.49 (t, J = 6.4 Hz, 1H, NH), 

7.45–7.14 (m, 4H, Ar-H), 5.60 (s, 1H, 7-H), 5.09 (d, J = 4.7 Hz, 1H, 1-OH), 4.90 (d, J = 4.8 Hz, 1H,  
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2-OH), 4.74 (t, J = 4.7 Hz, 1H, 1-H), 4.47 (d, J = 6.4 Hz, 2H, NHCH2Ph), 4.44 (s, 1H, 3-OH), 3.52  

(t, J = 4.8 Hz, 1H, 2-H), 2.74 (d, J = 17.8 Hz, 1H, 4-Hb), 2.65 (d, J = 17.8 Hz, 1H, 4-Ha), 1.23 (s, 3H, 

3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 186.02 (C-8), 183.26 (C-5), 161.31 (C-4′), 155.46 and 

155.36 (C-9 and C-10), 149.42 (C-6), 139.55 (C-9a), 133.26 (C-4a), 129.25 and 129.17 (C-1′, C-2′ and 

C-6′), 115.21 (C-3′ and C-5′), 109.66 (C-10a), 107.78 (C-8a), 99.84 (C-7), 76.41 (C-2), 69.38 (C-3), 

68.56 (C-1), 44.48 (NHCH2), 34.78 (C-4), 25.69 (3-CH3); ESIMS m/z 428 [M − 1]−. 

6-(Piperidin-1-yl)-6-demethoxybostrycin (20). Yield 55%; red solid (MeOH); mp: 199–200 °C; IR 

(KBr): νmax = 3557, 3399, 3054, 2928, 2855, 1597, 1576, 1548, 1447, 1429 cm−1; 1H NMR (400 MHz, 

DMSO-d6): δ 14.10 (s, 1H, 9-OH), 12.58 (s, 1H, 10-OH), 6.03 (s, 1H, 7-H), 5.08 (d, J = 4.9 Hz, 1H,  

1-OH), 4.88 (d, J = 4.7 Hz, 1H, 2-OH), 4.78 (t, J = 4.9 Hz, 1H, 1-H), 4.42 (s, 1H, 3-OH), 3.58 (br s, 

4H, 2′-CH2 and 6′-CH2), 3.55 (t, J = 4.7 Hz, 1H, 2-H), 2.76 (d, J = 17.9 Hz, 1H, 4-Hb), 2.67 (d,  

J = 17.9 Hz, 1H, 4-Ha), 1.68 (br s, 6H, 3′-CH2, 4′-CH2 and 5′-CH2), 1.25 (s, 3H, 3-CH3); 
13C NMR  

(100 MHz, DMSO-d6): δ 185.33 (C-8), 184.27 (C-5), 156.12 and 155.91 (C-9 and C-10), 153.93 (C-6), 

138.50 (C-9a), 134.27 (C-4a), 111.14 (C-10a), 109.30 (C-7), 108.02 (C-8a), 76.45 (C-2), 69.45 (C-3), 

68.50 (C-1), 50.40 (C-2′ and C-6′), 35.00 (C-4), 25.75 (3-CH3), 25.46 (C-3′ and C-5′), 23.67 (C-4′); 

EIMS m/z 389 [M]+ (37), 371 (30), 353 (17), 316 (100), 300 (12), 286 (24), 258 (10), 242 (9). 

6-(4′-Methylpiperidin-1-yl)-6-demethoxybostrycin (21). Yield 56.7%; red solid (MeOH); mp:  

162–163 °C; IR (KBr): νmax = 3559, 3408, 3055, 2948, 2927, 2855, 1597, 1580, 1550, 1451,  

1432 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 14.10 (s, 1H, 9-OH), 12.59 (s, 1H, 10-OH), 6.04 (s, 1H, 

7-H), 5.09 (d, J = 4.8 Hz, 1H, 1-OH), 4.88 (d, J = 4.6 Hz, 1H, 2-OH), 4.78 (t, J = 4.8 Hz, 1H, 1-H), 

4.42 (s, 1H, 3-OH), 4.13 (m, 2H, 2′-Hb and 6′-Hb), 3.55 (t, J = 4.6 Hz, 1H, 2-H), 3.05 (m, 2H, 2′-Ha 

and 6′-Ha), 2.76 (d, J = 17.9 Hz, 1H, 4-Hb), 2.68 (d, J = 17.9 Hz, 1H, 4-Ha), 1.71 (m, 1H, 4′-H), 1.70 

(m, 2H, 3′-Hb and 5′-Hb), 1.27 (m, 2H, 3′-Ha and 5′-Ha), 1.26 (s, 3H, 3-CH3), 0.97 (d, J = 6.1 Hz, 3H,  

4′-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 185.13 (C-8), 184.04 (C-5), 156.33 and 156.05 (C-9 and 

C-10), 153.83 (C-6), 138.48 (C-9a), 134.32 (C-4a), 111.11 (C-10a), 109.46 (C-7), 107.99 (C-8a), 

76.43 (C-2), 69.42 (C-3), 68.50 (C-1), 49.63 and 49.56 (C-2′ and C-6′), 34.99 (C-4), 33.61 and 33.52 

(C-3′ and C-5′), 29.99 (C-4′), 25.71 (3-CH3), 21.41 (4′-CH3); EIMS m/z 403 [M]+ (33), 385 (34), 

367 (50), 330 (100), 314 (31), 300 (28), 286 (20), 270 (15). 

6-(4′-Phenylpiperidin-1-yl)-6-demethoxybostrycin (22). Yield 45.6%; red solid (MeOH); mp:  

221–222 °C; IR (KBr): νmax = 3538, 3397, 3033, 2956, 2933, 2900, 2870, 1570, 1539, 1495,  

1455 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 14.07 (s, 1H, 9-OH), 12.60 (s, 1H, 10-OH), 7.35–7.26 

(m, 4H, Ar-H), 7.21 (m, 1H, Ar-H), 6.10 (s, 1H, 7-H), 5.12 (d, J = 4.7 Hz, 1H, 1-OH), 4.90  

(d, J = 4.8 Hz, 1H, 2-OH), 4.77 (t, J = 4.7 Hz, 1H, 1-H), 4.44 (s, 1H, 3-OH), 4.27 (m, 2H, 2′-Hb and  

6′-Hb), 3.53 (t, J = 4.8 Hz, 1H, 2-H), 3.15 (m, 2H, 2′-Ha and 6′-Ha), 2.83 (m, 1H, 4′-H), 2.75  

(d, J = 17.9 Hz, 1H, 4-Hb), 2.66 (d, J = 17.9 Hz, 1H, 4-Ha), 1.91–1.76 (m, 4H, 3′-CH2 and 5′-CH2), 

1.24 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 185.24 (C-8), 184.04 (C-5), 156.35 and 

156.12 (C-9 and C-10), 153.80 (C-6), 145.33 (C-1″), 138.53 (C-9a), 134.39 (C-4a), 128.38, 126.67 and 

126.19 (C-2″, C-3″, C-4″, C-5″ and C-6″), 111.12 (C-10a), 109.84 (C-7), 108.01 (C-8a), 76.43 (C-2), 

69.42 (C-3), 68.49 (C-1), 50.00 and 49.92 (C-2′ and C-6′), 41.32 (C-4′), 34.99 (C-4), 32.77 and 32.66 

(C-3′ and C-5′), 25.71 (3-CH3); EIMS m/z 465 [M]+ (53), 445 (85), 429 (91), 413 (66), 392 (100), 

376 (12), 362 (16), 328 (62). 
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3.3.6. General Procedure: Synthesis of Compounds 23–29 

To a solution of 1 (1 equiv, 50 mg, 0.149 mmol) and triethylamine (8 equiv) in 10 mL of methanol 

was added the corresponding thiol (4 equiv). The reaction mixture was stirred at 0–5 °C until the 

starting material disappeared. The solvent was removed under reduced pressure. The resulting residue 

was purified on a silica gel column using dichloromethane–methanol as eluent, and then a C18 

reversed phase silica gel column using methanol–water as eluent to obtain the corresponding products. 

6,7-bis(Ethylthio)-6-demethoxybostrycin (23). Yield 60.4%; red solid (MeOH); mp: 180–181 °C; 

IR (KBr): νmax = 3561, 3379, 2968, 2923, 2865, 1604, 1572, 1486, 1447, 1426 cm−1; 1H NMR  

(400 MHz, DMSO-d6): δ 13.22 (s, 1H, 9-OH), 13.04 (s, 1H, 10-OH), 5.29 (d, J = 4.5 Hz, 1H, 1-OH), 

4.94 (d, J = 4.4 Hz, 1H, 2-OH), 4.75 (br t, 1H, 1-H), 4.49 (s, 1H, 3-OH), 3.53 (t, J = 4.4 Hz, 1H, 2-H), 

3.30–3.24 (m, 4H, 1′-CH2 and 1″-CH2), 2.74 (d, J = 18.5 Hz, 1H, 4-Hb), 2.67 (d, J = 18.5 Hz, 1H,  

4-Ha), 1.24–1.20 (m, 9H, 3-CH3, 2′-CH3 and 2″-CH3); 
13C NMR(100 MHz, DMSO-d6): δ 175.67  

(C-5), 175.55 (C-8), 164.61 (C-9), 163.16 (C-10), 145.75 (C-7), 145.07 (C-6), 138.58 and 138.54  

(C-4a and C-9a), 109.69 (C-10a), 109.32 (C-8a), 76.36 (C-2), 69.24 (C-3), 68.17 (C-1), 34.95 (C-4), 

28.70 and 28.64 (C-1′ and C-1″), 25.53 (3-CH3), 15.03 and 15.00 (C-2′ and C-2″); EIMS m/z 426 [M]+ 

(8), 408 (10), 390 (3), 379 (21), 361 (100), 345 (28), 333 (79), 319 (22). 

6,7-bis(n-Butylthio)-6-demethoxybostrycin (24). Yield 51.2%; red solid (MeOH); mp: 124–125 °C; 

IR (KBr): νmax = 3551, 3400, 2958, 2929, 2871, 1599, 1532, 1431, 1377 cm−1; 1H NMR (400 MHz, 

DMSO-d6): δ 13.23 (s, 1H, 9-OH), 13.05 (s, 1H, 10-OH), 5.29 (br s, 1H, 1-OH), 4.94 (br s, 1H, 2-OH), 

4.75 (br s, 1H, 1-H), 4.49 (s, 1H, 3-OH), 3.53 (d, J = 4.4 Hz, 1H, 2-H), 3.29–3.20 (m, 4H, 1′-CH2 and 

1″-CH2), 2.73 (d, J = 18.4 Hz, 1H, 4-Hb), 2.67 (d, J = 18.4 Hz, 1H, 4-Ha), 1.58–1.46 (m, 4H, 2′-CH2 

and 2″-CH2), 1.39 (sextet, J = 7.2 Hz, 4H, 3′-CH2 and 3″-CH2), 1.23 (s, 3H, 3-CH3), 0.86  

(br t, J = 7.2 Hz, 6H, 4′-CH3 and 4″-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 175.85 (C-5), 175.74 

(C-8), 164.55 (C-9), 163.07 (C-10), 146.16 (C-7), 145.52 (C-6), 138.59 and 138.55 (C-4a and C-9a), 

109.76 (C-10a), 109.37 (C-8a), 76.39 (C-2), 69.30 (C-3), 68.20 (C-1), 35.00 (C-4), 34.15 and 34.09 

(C-1′ and C-1″), 31.84 and 31.81 (C-2′ and C-2″), 25.61 (3-CH3), 21.10 (C-3′ and C-3″), 13.37 (C-4′ 

and C-4″); EIMS m/z 482 [M]+ (2), 464 (3), 446 (8), 430 (2), 405 (28), 389 (100), 373 (31), 361 (14). 

6,7-bis(n-Hexylthio)-6-demethoxybostrycin (25). Yield 42.6%; red solid (MeOH); mp: 112–113°C; 

IR (KBr): νmax = 3545, 3370, 2956, 2925, 2854, 1598, 1433, 1419, 1379 cm−1; 1H NMR (400 MHz, 

DMSO-d6): δ 13.23 (s, 1H, 9-OH), 13.05 (s, 1H, 10-OH), 5.29 (d, J = 4.9 Hz, 1H, 1-OH), 4.94 (br s, 

1H, 2-OH), 4.75 (br t, 1H, 1-H), 4.49 (s, 1H, 3-OH), 3.53 (br d, 1H, 2-H), 3.29–3.19 (m, 4H, 1′-CH2 

and 1″-CH2), 2.73 (d, J = 18.4 Hz, 1H, 4-Hb), 2.67 (d, J = 18.4 Hz, 1H, 4-Ha), 1.59–1.47 (m, 4H,  

2′-CH2 and 2″-CH2), 1.44–1.30 (m, 4H, 3′-CH2 and 3″-CH2), 1.23 (br s, 11H, 3-CH3, 4′-CH2, 4″-CH2, 
5′-CH2 and 5″-CH2), 0.87–0.79 (m, 6H, 6′-CH3 and 6″-CH3); 

13C NMR (100 MHz, DMSO-d6):  

δ 175.87 (C-5), 175.75 (C-8), 164.52 (C-9), 163.03 (C-10), 146.17 (C-7), 145.53 (C-6), 138.58 and 

138.54 (C-4a and C-9a), 109.74 (C-10a), 109.36 (C-8a), 76.38 (C-2), 69.30 (C-3), 68.20 (C-1), 34.99 

(C-4), 34.48 and 34.41 (C-1′ and C-1″), 30.65, 29.71, 29.68 and 27.58 (C-2′, C-2″, C-3′, C-3″, C-4′ and 

C-4″), 25.60 (3-CH3), 21.91 (C-5′ and C-5″), 13.76 (C-6′ and C-6″); EIMS m/z 538 [M]+ (4), 502 (4), 

433 (26), 417 (100), 401 (21), 389 (12), 347 (7), 335 (20). 
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6,7-bis(2′-Hydroxyethylthio)-6-demethoxybostrycin (26). Yield 28.7%; red solid (MeOH); mp:  

156–158 °C; IR (KBr): νmax = 3560, 3405, 2960, 2928, 2874, 2862, 1606, 1573, 1488, 1426 cm−1;  
1H NMR (400 MHz, DMSO-d6): δ 13.17 (s, 1H, 9-OH), 12.99 (s, 1H, 10-OH), 5.27 (d, J = 4.3 Hz, 1H, 

1-OH), 4.92 (br d, 1H, 2-OH), 4.89 and 4.88 (each br t, 1H, 2′-OH and 2″-OH), 4.77 (br t, 1H, 1-H), 

4.47 (s, 1H, 3-OH), 3.61 (q, J = 4.8 Hz, 4H, 2′-CH2 and 2″-CH2), 3.55 (br t, 1H, 2-H), 3.41–3.32 (m, 

4H, 1′-CH2 and 1″-CH2), 2.76 (d, J = 18.4 Hz, 1H, 4-Hb), 2.69 (d, J = 18.4 Hz, 1H, 4-Ha), 1.25 (s, 3H, 

3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 177.50 (C-5), 177.37 (C-8), 162.54 (C-9), 160.90 (C-10), 

146.93 (C-7), 146.41 (C-6), 138.10 and 138.02 (C-4a and C-9a), 109.91 (C-10a), 109.49 (C-8a), 76.45 

(C-2), 69.36 (C-3), 68.26 (C-1), 61.05 (C-2′ and C-2″), 37.13 and 37.09 (C-1′ and C-1″), 35.06 (C-4), 

25.68 (3-CH3); ESIMS m/z 457 [M − 1]−. 

6,7-bis(3′-Hydroxy-n-propylthio)-6-demethoxybostrycin (27). Yield 32.5%; red solid (MeOH); mp: 

150–151 °C; IR (KBr): νmax = 3550, 3423, 2993, 2925, 2874, 2855, 1599, 1528, 1430, 1403, 1375 cm−1; 
1H NMR (400 MHz, DMSO-d6): δ 13.20 (s, 1H, 9-OH), 13.03 (s, 1H, 10-OH), 5.25 (d, J = 4.3 Hz, 1H, 

1-OH), 4.90 (d, J = 4.2 Hz, 1H, 2-OH), 4.75 (br t, 1H, 1-H), 4.50–4.43 (m, 3H, 3′-OH, 3″-OH and  

3-OH), 3.52 (t, J = 4.2 Hz, 1H, 2-H), 3.47 (q, J = 6.4 Hz, 4H, 3′-CH2 and 3″-CH2), 3.36–3.28 (m, 4H, 

1′-CH2 and 1″-CH2), 2.74 (d, J = 18.4 Hz, 1H, 4-Hb), 2.67 (d, J = 18.4 Hz, 1H, 4-Ha), 1.68 (pentet,  

J = 6.4 Hz, 4H, 2′-CH2 and 2″-CH2), 1.23 (s, 3H, 3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 176.23 

(C-5), 176.12 (C-8), 164.14 (C-9), 162.61 (C-10), 146.32 (C-7), 145.73 (C-6), 138.51 and 138.48  

(C-4a and C-9a), 109.85 (C-10a), 109.45 (C-8a), 76.43 (C-2), 69.35 (C-3), 68.23 (C-1), 59.09 (C-3′ 

and C-3″), 35.04 (C-4), 33.07 and 33.04 (C-1′ and C-1″), 31.46 and 31.40 (C-2′ and C-2″), 25.67  

(3-CH3); ESIMS m/z 485 [M − 1]−. 

6,7-(Ethan-1′,2′-yl-dithio)-6-demethoxybostrycin (28). Yield 24.8%; red solid (MeOH); mp: >300 °C; 

IR (KBr): νmax = 3417, 2966, 2925, 2857, 1588, 1513, 1436, 1375 cm−1; 1H NMR (400 MHz,  

DMSO-d6): δ 12.84 (s, 1H, 9-OH), 12.67 (s, 1H, 10-OH), 5.26 (br s, 1H, 1-OH), 4.94 (d, J = 4.4 Hz, 

1H, 2-OH), 4.75 (d, J = 4.6 Hz, 1H, 1-H), 4.49 (s, 1H, 3-OH), 3.53 (t, J = 4.4 Hz, 1H, 2-H), 3.35 (br s, 

4H, 1′-CH2 and 2′-CH2), 2.75 (d, J = 18.2 Hz, 1H, 4-Hb), 2.68 (d, J = 18.2 Hz, 1H, 4-Ha), 1.23 (s, 3H, 

3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 180.54 and 180.42 (C-5 and C-8), 157.65 (C-9), 155.72 

(C-10), 140.74 (C-7), 140.20 (C-6), 137.39 and 137.23 (C-4a and C-9a), 108.17 (C-10a), 107.66  

(C-8a), 76.43 (C-2), 69.29 (C-3), 68.30 (C-1), 35.11 (C-4), 26.17 and 26.08 (C-1′ and C-2′), 25.67  

(3-CH3); EIMS m/z 396 [M]+ (6), 376 (28), 360 (100), 344 (47), 332 (22), 307 (23), 294 (13), 279 (12). 

6,7-(Butan-2′,3′-yl-dithio)-6-demethoxybostrycin (29). Yield 63.5%; red solid (MeOH); mp:  

146–147 °C; IR (KBr): νmax = 3446, 3250, 2960, 2916, 2859, 1589, 1516, 1441, 1418 cm−1; 1H NMR 

(400 MHz, DMSO-d6): δ 12.85 (s, 1H, 9-OH), 12.69 (s, 1H, 10-OH), 5.22 (br s, 1H, 1-OH), 4.91  

(d, J = 4.6 Hz, 1H, 2-OH), 4.75 (d, J = 4.5 Hz, 1H, 1-H), 4.45 (s, 1H, 3-OH), 3.67 and 3.48 (each m, 

1H, 2′-CH and 3′-CH), 3.54 (t, J = 4.6 Hz, 1H, 2-H), 2.75 (d, J = 18.3 Hz, 1H, 4-Hb), 2.68  

(d, J = 18.3 Hz, 1H, 4-Ha), 1.32 and 1.30 (each d, J = 6.2 Hz, 3H, 1′-CH3 and 4′-CH3), 1.23 (s, 3H,  

3-CH3); 
13C NMR (100 MHz, DMSO-d6): δ 180.69 and 180.66 (C-5 and C-8), 157.58 (C-9), 155.64 

(C-10), 139.83 (C-7), 138.71 (C-6), 137.39 and 137.18 (C-4a and C-9a), 108.38 (C-10a), 107.86  

(C-8a), 76.46 (C-2), 69.33 (C-3), 68.32 (C-1), 35.11 (C-4), 25.70 (3-CH3), 22.99 and 22.89 (C-2′ and 

C-3′), 17.60 (C-1′ and C-4′); EIMS m/z 424 [M]+ (8), 406 (5), 388 (3), 351 (29), 335 (5), 322 (9), 

307 (5), 295 (13), 71 (100). 
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3.4. Antitumor Activity in Vitro 

3.4.1. Cell Culture 

MCF-7, MDA-MB-435, A549, HepG2 and HCT-116 cells were cultured in Dulbecco’s 

modification Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal 

bovine serum (FBS, Hyclone, Logan, UT, USA), 2 mM L-glutamine, 100 μg/mL streptomycin and  

100 U/mL penicillin (Invitrogen). MCF-10A cells were cultured in keratinocyte serum free medium 

(KSFM) supplemented with 0.1–0.2 ng/mL human recombinant epidermal growth factor and  

20–30 μg/mL bovine pituitary extract (Invitrogen). The cells were incubated at 37 °C in a humidified 

atmosphere with 5% CO2. 

3.4.2. Assessment of Antitumor Activity by MTT Assay 

Cells were harvested during logarithmic growth phase and seeded in 96-well plates at a density of  

1 × 104 cells/mL, and cultured at 37 °C in a humidified incubator (5% CO2) for 24 h, followed by 

exposure to various concentrations of compounds tested for 48 h. Subsequently 20 μL of MTT 

(Genview, Houston, TX, USA) solution (5 mg/mL) was added to each well and mixed, the cells were 

then incubated for an additional 4 h. Culture supernatant was moved, 150 μL of DMSO (Sangon 

Biotech, Shanghai, China) was added to each well to fully dissolve the MTT-formazan crystals. Cell 

growth inhibition was determined by measuring the absorbance (Abs) at λ = 570 nm using a 

microplate reader and calculated according to the following equation:  

Growth inhibition = (1 − OD of treated cells/OD of control cells) × 100%  

The half maximal inhibitory concentrations (IC50) were obtained from liner regression analysis of 

the concentration-response curves plotted for each tested compound. 

4. Conclusions 

This paper has reported the synthesis and biological evaluation of a novel class of bostrycin 

derivatives against a panel of tumor cells along with one type of immortalized human breast epithelial 

cells. Encouragingly, some modified compounds displayed superior cytotoxicity over the parent 

compound bostrycin and equal anticancer potency to epirubicin which served as a reference anticancer 

drug. However, the majority of compounds also exhibited marked cytotoxicity towards MCF-10A cells. 

Preliminary SAR study indicated that the enhanced cytotoxicity was fulfilled by dioxylcarbonyl groups 

at C-2 and C-3 positions, tertiary amino groups at C-6 position and alkylthio groups at C-6 and C-7 

positions of the bostrycin. These positive results could serve as a valuable guideline for further 

research on the structural optimization, mechanism study and development of bostrycin derivatives as 

novel antitumor agents. 
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