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Adult cats with a complete spinal cord transection at T12–T13 can relearn over a period
of days-to-weeks how to generate full weight-bearing stepping on a treadmill or standing
ability if trained specifically for that task. In the present study, we assessed short-term
(milliseconds to minutes) adaptations by repetitively imposing a mechanical perturbation
on the hindlimb of chronic spinal cats by placing a rod in the path of the leg during the
swing phase to trigger a tripping response.The kinematics and EMG were recorded during
control (10 steps), trip (1–60 steps with various patterns), and then release (without any
tripping stimulus, 10–20 steps) sequences. Our data show that the muscle activation pat-
terns and kinematics of the hindlimb in the step cycle immediately following the initial trip
(mechanosensory stimulation of the dorsal surface of the paw) was modified in a way that
increased the probability of avoiding the obstacle in the subsequent step. This indicates
that the spinal sensorimotor circuitry reprogrammed the trajectory of the swing following
a perturbation prior to the initiation of the swing phase of the subsequent step, in effect
“attempting” to avoid the re-occurrence of the perturbation. The average height of the
release steps was elevated compared to control regardless of the pattern and the length
of the trip sequences. In addition, the average impact force on the tripping rod tended to
be lower with repeated exposure to the tripping stimulus. EMG recordings suggest that
the semitendinosus, a primary knee flexor, was a major contributor to the adaptive tripping
response. These results demonstrate that the lumbosacral locomotor circuitry can modu-
late the activation patterns of the hindlimb motor pools within the time frame of single step
in a manner that tends to minimize repeated perturbations. Furthermore, these adaptations
remained evident for a number of steps after removal of the mechanosensory stimulation.
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INTRODUCTION
While experience-dependent plasticity clearly occurs in supraspinal
circuits controlling motor tasks, we now know that experience-
dependent plasticity also occurs in spinal circuits that control
posture and locomotion. For example, Di Giorgio and Menzio
(1946) reported that the asymmetric positions of the lower limbs
that are acquired after being exposed to an asymmetric vestibu-
lar input for about 30 min persists after a complete spinal cord
transection. Chopin and Buerger (1976) demonstrated that mid-
thoracic, complete spinal rats learned to avoid shock by keeping
the paw elevated above a threshold level within 5–20 min of being
exposed to a conditioning–learning paradigm. Complete spinal
rats also can adapt the hindlimb kinematics to a perturbing force
field so that a more normal stepping pattern is achieved within
a time frame of seconds to minutes (de Leon et al., 1999; Timo-
szyk et al., 2002; Heng and de Leon, 2007). Motor learning that
occurs over a period of days and weeks has been demonstrated in
numerous experiments in which complete spinal animals regain
and improve stepping or standing performance with daily practice
of these tasks (Barbeau and Rossignol, 1987; Lovely et al., 1990;

de Leon et al., 1998a,b). Given that learning-related phenomena
can occur within a short time frame (within seconds) presumably
within supraspinal circuits (Choi and Bastian, 2007), we hypoth-
esized that a similar learning phenomenon could occur in the
spinal cord within a similar time frame. In the present experiments,
we demonstrate learning-related responses that occur within sec-
onds of a tripping stimulus applied during the swing phase of
a step cycle in the cat after a complete, low-thoracic spinal cord
transection. We also found that the spinal circuitry is capable of
perceiving a mechanical perturbation of the step cycle in a way that
enhances the probability of sustaining successful locomotion, fur-
ther demonstrating the wide repertoire of sensorimotor processing
within the spinal locomotor circuitry.

MATERIALS AND METHODS
EXPERIMENTAL DESIGN
Four adult female cats (2–3 years of age) were used for these stud-
ies, with most of the data shown derived from three cats. Prior
to any surgery, the cats were acclimated to the treadmill and the
testing environment for several sessions, i.e., the cats were made
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to walk bipedally on a treadmill at speeds ranging from 0.2 to
1.0 m/s while in a harness supporting the upper body (de Leon
et al., 1998a). Intramuscular EMG electrodes were implanted in
selected hindlimb muscles and the spinal cord was completely
transected at a low-thoracic level. Starting 4 days after surgery, the
cats were step trained for 30 min/day, 5 days/week as described by
de Leon et al. (1998a). After 6 months of training, the cats were
subjected to tripping experiments periodically as described below.
All procedures were performed in accordance with the American
Physiological Society Animal Care Guidelines and were approved
by the Animal Use Committee at the University of California, Los
Angeles.

INTRAMUSCULAR EMG IMPLANTS
All surgical procedures were performed under aseptic conditions.
The cats were administered sodium pentobarbital (35 mg/kg, i.p.)
following pre-treatment with atropine sulfate (0.05 mg/kg) and
acepromazine maleate (0.2 mg/kg) administered intramuscularly.
Supplemental doses of anesthesia were administered as needed to
maintain a surgical level. All incisions were closed in layers, i.e., 4.0
chromic gut and 4-0 Ethilon suture were used to suture the fascia
and skin, respectively.

Prior to spinal cord transection, intramuscular recording elec-
trodes were implanted in selected hindlimb muscles using proce-
dures described in detail previously (Pierotti et al., 1989; de Leon
et al., 1994). Briefly, one amphenol connector having nine Teflon-
insulated stainless steel wires (AS 632, Cooner Wire, Chatsworth,
CA, USA) was secured to the skull with screws and dental cement.
The wires were passed subcutaneously from the connector to the
hindlimb. One wire with ∼2 cm of the Teflon removed at the
distal end was embedded in the back region and served as a com-
mon ground. Two wires were implanted in the following muscles
unilaterally: deep mid-region of the distal compartment of the
semitendinosus (St), mid-belly of the soleus (Sol), deep portion of
the mid-belly of the tibialis anterior (TA), and medial deep por-
tion of the mid-belly of the medial gastrocnemius (MG). The wires
were passed through the muscle using a 23-gage hypodermic nee-
dle and ∼0.5–1.0 mm of insulation was removed from each wire
to form the recording electrodes. After stimulation of the muscle
through the connector to ensure the proper placement of the elec-
trodes, each lead was secured with a suture at its entry and exit
from the muscle. The proper placement of all electrodes also was
verified post-mortem.

SPINAL CORD TRANSECTION
The spinal cord of each cat was transected completely at ∼T12
as described in detail previously (Roy et al., 1992). Briefly, a skin
incision was made on the back to expose the vertebral processes
between ∼T10 and L1. A partial laminectomy was performed at
the T12–T13 vertebral level to expose the spinal cord. Fine scis-
sors and forceps were used to cut the dura longitudinally and to
perform a complete transection beginning on the dorsal surface
of the cord while preserving the lateral and ventral dura. After the
transection, the ends of the cord retracted leaving a clear space.
The cut ends of the cord then were lifted gently using fine forceps
to assure that no residual spinal cord matter remained between
the two cut ends of the cord. Gel foam was packed between the

rostral and caudal segments of the cord as an anticoagulant. This
procedure allowed for the preservation of the large ventral artery
of the spinal cord.

ANIMAL CARE PROCEDURES
Post-spinal cord transection management of the spinal cats has
been detailed elsewhere (Roy et al., 1992). The cats were housed
together in spacious cage with the cage floors covered with shred-
ded newspaper. The bladders and colons of the cats were expressed
twice daily for the duration of the experiment. Dry kibble and
water were given ad libitum and wet food was given once daily.

ANIMAL TESTING
Prior to the surgeries, the animals were trained to step on the tread-
mill bipedally. Beginning 7 days post-surgery the animals were
step trained for 30 min/day, 5 days/week for 6 months. All trip-
ping experiments were performed over a period of ∼3 months
following the 6-month training period. During this period step-
ping performance remained stable. During step training, the cats
were placed in a thoracic vest that wrapped around the chest and
shoulder girdle to provide stability, but allowed the hindlimbs
to bear weight and to move freely on the treadmill belt. During
the testing while the cats were stepping on the treadmill, an in-
house designed tripping stainless steel rod mounted with a strain
gage was placed using a sliding carriage in the normal trajectory
of the limb such that it made contact with the dorsal surface of
the paw during the swing phase of the step. The tripping rod
was mounted onto a sliding chassis that utilized ball bearings to
minimize friction and vibration while at the same time main-
taining an exact position once in position. This design allowed
for a smooth entrance and exit of the rod from the plane of
motion of the hindlimb. There was no noise associated with the
rod sliding in and out. The chassis was locked into a housing
unit that had five different vertical slots allowing the chassis to
be moved and locked into five different vertical positions. The
results reported below are from the tests when the rod was placed
at 1.1 and 3.7 cm above the treadmill. The base of the housing unit
contained slots that allowed horizontal movement of the hous-
ing unit itself before it was locked down into position on the
treadmill. Thus there was freedom to move the rod horizontally
and vertically in the plane of motion before it was locked into
place to adjust the system to induce the perturbation at a con-
sistent point during the swing phase of the step cycle. Once the
tripping device was set, the rod entered the plane in the same
coordinates every time. The strain gage on the rod was calibrated
using weights between 10 and 200 g so that the magnitude of the
impact force of the paw onto the rod could be quantified. Each
sequence consisted of a series of steps that were either obstructed
(trip sequences) or not obstructed (control or release sequences)
by the tripping rod during the swing phase of the step cycle.
Control steps were either at the beginning of a sequence or at
least 50 steps after a series of obstructed steps. Release steps con-
sisted of steps not obstructed that followed immediately after a
series of obstructed steps. A typical sequence consisted of a series
of control steps (10 steps) followed by an alternating series of
trip (range from 1 to 60) and release steps (range from 10 to
20 steps).
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DATA RECORDING
A flexible insulated cable was used to connect the amphenol con-
nector to a recorder. Raw EMG signals were conditioned through a
wide band AC differential amplifier at a gain of 1000 and recorded
on an analog tape recorder (TEAC Model XR-510, TEAC Cor-
poration, Montebello, CA, USA) with a system bandwidth of
D.C. to 2.5 kHz. EMG signals were calibrated at the beginning
of each recording session using a 1 or 2 mV sine wave (500 Hz).
To record kinematics data, a camera (Panasonic System Camera,
WV D5100, Panasonic, Cypress, CA, USA) was oriented perpen-
dicular to the plane of motion. The video was recorded at 30
frames (60 fields) per seconds on VHS tape simultaneously with
a signal from a time code generator. The time code generator
was used to synchronize the EMG and force recordings. Strain
gage force and muscle EMG signals were calibrated, amplified,
recorded, and then stored on FM tape using a TEAC recorder. The
hindlimbs were shaved and small, round pieces of light-reflecting
tape were placed on bony landmarks, i.e., the iliac crest, greater
trochanter, head of the tibia, lateral malleolus, base of the calca-
neus, head of the fifth metatarsal (MTP), and the first phalanx of
the fifth digit, to be used to determine limb segment movement
(Figure 1A).

DATA ANALYSIS
The x and y coordinates of all the bony landmarks were digitized
using SIMI Motion and tracked using 2-D tracking within the pro-
gram. The location of the force bar and the level of the treadmill
(zero line) were digitized. The digitized points were exported into
text files and then graphed for trajectories and stick diagrams in
Excel. Step height was determined by measuring the largest dis-
tance between the paw (MTP) and the treadmill belt during the
swing phase of the step cycle. Three markers were used to deter-
mine changes at each joint angle. Hip angle was based on the
iliac crest, greater trochanter, and head of the tibia. Knee angle
was based on the greater trochanter, head of the tibia, and lateral
malleolus. Ankle angle was based on the head of the tibia, lateral
malleolus, and fifth metatarsal.

Kinematics analyses were performed on the same stepping
sequences from which EMG activity was recorded and analyzed.
Force data were calibrated and expressed in grams. EMG data
were sampled at 2 kHz, filtered with a 20–500 Hz band-pass fil-
ter, and rectified. Briefly, the onset and offset of each EMG burst
were marked to calculate burst duration. Mean EMG per burst was
calculated by averaging the EMG amplitude within a burst. Inte-
grated EMG (IEMG) was calculated as the product of the mean
burst EMG amplitude and duration. To examine the modulation
of EMG amplitudes between two muscles, joint probability distri-
bution plots (Figure 10) were generated. These amplitudes were
derived from a running five-point average of the mean amplitude
of multiple normalized step cycles.

STATISTICAL ANALYSES
Statistically significant differences were determined using a one-
way analysis of variance (ANOVA) using Monte Carlo simulations.
The mean data from all the groups were pooled into a single data
set before randomly sampling the data with replacement. Means
from each group were used to estimate the F value. This process

FIGURE 1 | (A) Schematic showing the bony landmarks in the cat hindlimb
used for kinematics analyses, the position of the trip rod, and the treadmill
surface. (B) Representative stick diagrams (17 ms between sticks) showing
the stance and swing phases for a pre-trip (Control) step and the first (Trip 1)
and second (Trip 2) trip steps. The horizontal lines denote the surface of the
treadmill. The thick lines in the stick diagrams duringTrip 1 andTrip 2 indicate
the frame when the foot touches the trip rod during the swing phase.

was repeated 10,000 times. The original F value was compared to
the simulated F value to determine any overlap in the confidence
bands. When the original F value was outside the 95% confidence
interval, the null hypothesis was rejected and there was a signif-
icant difference across groups at the P < 0.05 level (Efron and
Tibshirani, 1991).

RESULTS
ADAPTATION IN JOINT KINEMATICS DURING THE TRIP RESPONSE
Stick diagrams of the stance and swing phases for a control,
first trip step (Trip 1), and second trip step (Trip 2) of a five-
trip step sequence, are shown in Figure 1B. For the control step,
the hindlimb was allowed to proceed with an unperturbed swing
phase. For Trip 1, the paw hit the trip rod, lifted over the rod,
and extended forward further than the previous control step. For
Trip 2 that immediately followed Trip 1, the trajectory of the
paw changed prior to contact with the tripping rod, i.e., the paw
changed its trajectory before it hit the trip rod. These observations
were observed consistently during a number of sequences for the
three cats analyzed.
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FIGURE 2 |The time course of the changes in the hip, knee, and ankle

joint angles during the swing phase for a control,Trip 1, andTrip 2 step

are shown for two tripping sequences in a representative cat. The solid
symbols indicate the time when the foot touches the trip rod. The
kinematics of Trip 2 reflect an adaptive response relative to Trip 1 at all three
joints in both sequences. The stick figures in Figure 1B were generated
from the data shown for the first sequence.

The hip, knee, and ankle joint angles for Trip 1 during swing
were similar to the control step before contacting the trip rod, but
each of these angles were smaller after contact (Figure 2, sequence
1). For Trip 2, the joint angles were smaller prior to the paw con-
tacting the rod, indicating that the cat began to lift its hindlimb
before contacting the rod. The magnitude of the change during the
trip steps was greatest at the knee joint. Thus the increase in step
height during the trip compared to the control steps was primar-
ily attributable to an increase in knee flexion. Similar observations
were made in a second sequence of the tripping experiment within
that same session (Figure 2, sequence 2).

The trajectories of the knee, ankle, and foot (MTP joint)
throughout the step cycle for the same steps shown in Figure 2
are shown in Figure 3. There was an earlier initiation of the swing
phase in Trip 2 than Trip 1 in both sequences. These kinematics
changes are shown for three tripping sequences in all three cats
studied (Figure 4). The mean time when the foot started to lift
prior to contact with the trip rod (Pre-contact time) was 150–
350 ms shorter for Trip 2 than Trip 1 in all three cats (Figure 4A).
In addition, the distance from toe off to contact was shorter for
Trip 2 than Trip 1 in all sequences in all three cats (Figure 4B).
These data demonstrate a clear modification in the kinematics of
the swing phase to allow the paw to be at a higher position when
it reaches the point of the previous perturbation, thus increasing
the likelihood for a successful completion of the swing phase.

INCREASES IN MEAN STEP HEIGHT DURING THE RELEASE STEPS
AFTER A SINGLE, SHORT, OR LONG BOUT OF TRIP STEPS
Sequences with a varying number of trip steps resulted in an
increase in the mean step height during the release steps com-
pared to the control steps. For example, the mean step heights for
the control (10 steps), long trip (60 steps), and release (10 steps)

FIGURE 3 |The trajectory of the limb was changed immediately

after the initial trip. (A) The trajectory of the knee (tibial head), ankle
(lateral malleolus), and foot (metatarsophalangeal, MTP) for the same
steps in Figure 2 are shown. (B) An expanded plot of the trajectory of
the MTP during late stance and early swing of the Trip 1 and Trip 2 steps
are depicted. The solid symbols in (A,B) indicate when the foot touches
the trip rod. Note the earlier initiation of the swing phase in Trip 2 than
Trip 1 for both sequences.

steps during a single sequence were 2.8, 5.5, and 4.8 cm, respec-
tively (Figure 5A). In another cat, the mean step heights for the
control (9 steps), shorter trip series (10 steps), and release (9 steps)
steps during a single sequence were 2.1, 4.9, and 2.8 cm, respec-
tively (Figure 5B). In fact, the mean step height was significantly
higher during the release steps compared to the control steps after
a single trip sequence (ranging from 10 to 60 steps) in all four
cats studied. In another example, a trip sequence of only two steps
resulted in an increase in step height from 1.5 cm for the con-
trol steps (10 steps) to 2.5 cm during the release steps (9 steps;
Figure 5C). This elevated step height for the release steps occurred
in spite of the fact that the hindlimb collapsed in the first release
step (this step was excluded when calculating step height). The
subsequent series of 10 trip steps had no further effect on mean
step height during the ensuing release steps, but the mean step
height still was elevated compared to the control steps.

To further determine the temporal features of the tripping stim-
ulus, a perturbation was imposed on every third step (Figure 5D).
The sequence involved 9 control steps, a total of 10 trip steps with
2 release steps in between each perturbation, and a final 9 release
steps. In every case the height of the two release steps between
each trip step was elevated above control. In addition, the mean
step height for the final nine release steps was higher than for the
control steps, i.e., 3.2 vs. 2.5 cm. Occasionally the cats adapted the
height of the swing phase sufficiently to step over the rod with-
out touching it. For example, as shown in Figure 6 the cat’s paw
cleared the bar at steps 14, 16, 30, and 35 in a series of 52 tripped
steps. All of these data demonstrate that the spinal cats adjusted
the step trajectory as early as in the second trip step to lift the
leg higher.
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FIGURE 4 | (A) The pre-contact time, defined as the time when the foot
started to lift prior to contact with the trip rod, for Trip 2 compared to Trip 1
for three sequences is shown for three cats. The horizontal bar is the mean
for three sequences for each cat (range, 150–350 ms). A shorter pre-contact
time for Trip 2 than Trip 1 was present in all nine cases. (B) The distance
from toe off to contact with the trip rod for Trip 1 and Trip 2 for three
sequences is shown for the same three cats. All distances were shorter for
Trip 2 than Trip 1.

IMPACT FORCE ON THE TRIP ROD DECREASES WITH CONSECUTIVE
SEQUENCES
In general, the impact force decreased with repeated sequences.
For example, during the performance of three sequences the mean
impact force progressively decreased from 554 g (range,282–644 g)
during the first sequence, to 319 g (range, 202–512 g) for the sec-
ond sequence, to 247 g (range, 173–302 g) for the third sequence
(Figure 7A). Note that the average step height during the release
steps after each series of trip steps was higher than during the
control steps. The ratio of impact force:step height (Figure 7B)
showed the same pattern as for impact force (Figure 7A). This
decrease in the ratio across trip sequences was, at least in part, due
to a lower horizontal velocity during the swing prior to contact,
i.e., 0.75, 0.63, and 0.57 m/s for in first, second, and third tripping
sequence. A similar pattern was observed in three cats. Combined,
these data indicate that the spinal sensorimotor circuitry made
kinematics adjustments to minimize the impact force as early as
the second trip step.

MODULATION IN THE EMG PATTERNS DURING TRIP-RELEASE
SEQUENCES
EMG analysis was performed on four hindlimb muscles (St, TA,
Sol, and MG) of the tripped hindlimb in two cats and on two mus-
cles (St and TA) in a third cat. The mean EMG burst durations,

FIGURE 5 | Mean step heights during the release steps after long [(A)

60 trip steps], short [(B) 10 trip steps and (C) 2 and 10 trip steps], and

single [(D) trip every third step] trip series were higher than during the

control steps (P ≤ 0.005), reflecting a learning-related phenomenon.

Solid symbols, trip steps; open symbols, control steps; shaded areas, trip
series. *Significantly different from control.
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FIGURE 6 | Step height and peak impact force on the trip rod are

shown for 52 consecutive trip steps for a representative cat. Four steps
during which the limb avoided and cleared the trip rod are circled. Solid
symbols, trip steps; open symbols, control steps; shaded area, trip series.

FIGURE 7 | (A) The mean impact force on the trip rod (horizontal dashed
lines) is shown to progressively decrease during three successive short
trip-release sequences. Solid symbols, trip steps; open symbols, control
steps; shaded areas, trip series. (B) The ratios of peak impact force and
step height are shown for the same trip sequences in (A). Note that the
results in both (A) and (B) reflect a learning-related phenomenon that
occurs over a time frame of seconds. * and +Significantly different from the
first and second trip sequence, respectively.

FIGURE 8 | Bar graphs showing the mean (SEM) burst duration,

amplitude, and integrated EMG for the semitendinosus (St), tibialis

anterior (TA), soleus (Sol), and medial gastrocnemius (MG) muscles for

three trip-release sequences for a representative cat. Con, control
sequence, 10 steps; T1, first trip sequence, 20 steps; R1, first release
sequence, 20 steps; T2, second trip sequence, 20 steps; R2, second
release sequence, 20 steps; T3, third trip sequence, 20 steps; R3, third
release sequence, 20 steps. The horizontal lines above the bars denote
significant differences between conditions at P < 0.05. Note that the St
showed the highest activation levels compare to control during the trip
steps and that the MG showed a qualitatively similar pattern as the St.

EMG burst amplitudes, and IEMGs for a control (10 steps), three
trip (20 steps per series), and three release (20 steps per series)
sequences for one cat are shown in Figure 8. In general, the mean
burst durations for the St and MG, but not the Sol and TA, were
longer for the trip compared to control steps. The mean EMG
burst durations for the release steps generally were shorter than
for the trip steps within a sequence for the MG, with no appar-
ent trend for all other muscles. Mean EMG amplitudes and IEMG
in the St, MG, and Sol were generally lower for the release steps
compared to the trip steps. The other two cats in which EMG was
determined showed similar activation patterns.

To look at the changes in the timing of the EMG, rectified raw
EMG for the control, trip 1, release 1, and trip 2 sequences shown
in Figure 8 are plotted in Figure 9. For the St the amplitude at
the end of the EMG burst was markedly higher (P < 0.05) for the
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first trip series than the control series (Figure 9A). For the second
trip sequence (Trip 2), the pattern of the St EMG was similar to
control (Figure 9B). For the first trip sequence, the TA appears to
be activated earlier and to have an EMG burst amplitude similar
to control. The EMG amplitudes of the extensor muscles (Sol and
MG) were higher (P < 0.05) in the beginning of the stance phase
for the trip compared to the control and release sequences (see ∗ in
Figure 9A). The levels of activation of the TA, Sol, and MG vs. the
St (the muscle showing the most consistent changes in response
to the tripping stimulus) for a sequence of 10 control, 20 trip, and
20 release steps are shown in Figure 10. Note that the plots for
the control and release steps are similar (Figures 10A,C), whereas
the plots for the trip steps show an elevated level of activation for
the St and a higher level of co-activation for the St with the TA
(Figure 10B). The temporal sequence of the modulation of the
St EMG amplitude immediately after impact on the rod is shown
by the line connecting consecutive data points (green symbols) in
Figure 10B. Note that the elevated St activity and the co-activation
between the TA and St during the tripping steps had no impact on
the clear reciprocal relationship between the St with either the Sol
or MG. Similar observations were made in two other cats.

DISCUSSION
The “stumbling response” of the hindlimbs in complete, low-
thoracic spinal cats was characterized more than three decades ago
(Forssberg, 1979). These experiments demonstrated that a single
instantaneous perturbation of a complex motor task, i.e., stepping,
would result in a successful and instantaneously newly adopted
neural control strategy, at least for the duration of the ipsilateral

swing and contralateral stance phase of the step cycle for the whole
hindquarters to sustain continuous stepping. If the same mechan-
ical or electrical stimulus was applied during the stance phase of
the step cycle of the spinal cat, there was an immediate hyperexten-
sion of the ipsilateral limb, indicating a “state dependent” feature
of spinal “decision making.” There, however, has been no system-
atic examination as to whether there are residual effects manifested
in subsequent step cycles in complete spinal animals.

McVea and Pearson (2007) reported an elevated height of the
swing phase after 20 or more consecutive perturbations of the
swing phase in normal cats. This change in swing trajectory per-
sisted up to 24 h and the magnitude of this effect generally reached
a plateau within 120 repetitions of the perturbation. This effect was
not clearly evident after decerebration, and the authors concluded
that this phenomenon was mediated by supraspinal descending
systems. There were, however, some short-term residual effects
of repetitive stumbling in the decerebrated cats, but the elevated
height of the swing phase was sustained for only about five to
seven steps after removal of the perturbation. Given the multi-
ple observations that have shown learning-related phenomena in
the performance of a motor task within the lumbosacral spinal
circuitry with time courses of the learned tasks ranging from
minutes to weeks (Edgerton et al., 2001b; de Leon et al., 2002;
Timoszyk et al., 2002; Liu et al., 2005), we examined the persis-
tence of the tripping response in adult, chronic spinal cats that had
been trained to step. In these experiments we examined the time
frame of seconds over which experience-dependent modulation
of the control of stepping can occur in the spinal circuitry without
any supraspinal influence.

FIGURE 9 | Rectified EMG bursts for the St,TA, Sol, and MG of control (black traces, 10 steps precedingTrip 1),Trip 1 [red traces in (A) 20 steps],Trip 2

[red traces in (B) 20 steps], and release 1 [blue traces in (B), 20 steps] sequences. The gray shading is the SD for the control sequence. Muscle
abbreviations, same as in Figure 8. *Significantly higher than in the control and release sequences.
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FIGURE 10 |The level of activation of theTA, Sol, and MG vs. the St

for a sequence of 10 control (A), 20 trip (B), and 20 release steps (C) is

shown. Blue and red represent the swing and stance phases of the step
cycle, respectively. The green symbols in (B) represent the co-activation

between the TA and St immediately after the trip. The data points are a
five-point running average of the mean normalized EMG. Note the higher
level of activation of the St during the trip compared to the control and
release steps.

The present data demonstrate adaptive responses to a per-
turbation of the kinematics of the hindlimb in complete spinal
cats occurring within a single step cycle as well as over as many
as 60 continuous step cycles. These adaptive responses enhance
the probability of sustaining successful stepping while being chal-
lenged with a specific mechanical perturbation by elevating the
hindlimbs in a manner that tends to avoid the perturbation.
From a more highly integrative and conceptual perspective, these
responses reflect “recognition” of a specific complex afferent pat-
tern induced by the stimulus that results in an adjustment to
a subsequent encounter within the time frame of a single step
cycle, i.e., within the same step cycle the trajectory of the paw
is changed in a way that tends to avoid the previous perturba-
tion (Figures 1–4). The neuromotor strategy that mediates this
ipsilateral hyperflexion during the swing phase after the tripping
stimulus seems to be rather consistent for different experimental
preparations ranging from intact locomotion to fictive locomo-
tion (Quevedo et al., 2005; McVea and Pearson, 2007). A common
feature of this response is an increase in step height and earlier ini-
tiation of activation, particularly of motor pools associated with
knee flexion. In the present study these were the most predomi-
nant and consistent changes observed in response to the tripping
stimulus.

In essence the immediate response (within the same step cycle
as the initial perturbation) demonstrates a feed-forward control
mechanism within the spinal circuitry, i.e., a single instantaneous
sensory event that interrupts a step can be recognized as such, and
a response is initiated which modifies the limb trajectory not only
to complete that swing phase, but also to adjust the neural control
needed to avoid or minimize the perturbation in the succeeding
step cycle. The initial response in modifying the limb trajectory
within a single step cycle would seem to reflect “evolutionary
learning” (Edgerton et al., 2001a) in that a similar ability to adjust
the kinematics of a limb to a continuously changing environment
apparently has been acquired in a wide range of invertebrates and
vertebrates (Grillner, 1981). The more sustained responses that
occur as a result of repetitive presentations of the perturbations,
however, could be attributed to more classical learning phenom-
ena occurring over a range of time frames, undoubtedly engaging
different mechanisms.

Much of the emphasis on the response to stumbling during
locomotion has been on the initial“reflex”response with less atten-
tion given to the responses that are more delayed and sustained
over multiple step cycles. These latter responses are highly coordi-
nated responses requiring larger scale circuitries to control those
motor pools that generate locomotion. Early and late responses to
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stumbling perturbations that can sustain successful stepping after
a stumble during locomotion have been observed in uninjured
human adults (Schillings et al., 2000) and infants (Pang et al.,
2003), decerebrated ferrets (Lou and Bloedel, 1988), intact cats
(McVea and Pearson, 2007), and chronic spinal cats (Forssberg
et al., 1975). Other more complex perturbations, such as applying
force fields at specific phases of the step cycle in spinal rats, also
demonstrate that there is a range of highly coordinated and imme-
diate as well as delayed motor responses that have memory-related
properties (Timoszyk et al., 2002; Heng and de Leon, 2007). The
combination of the studies noted above demonstrate that the loco-
motor spinal circuitry can recognize, predict, and adapt to brief,
instantaneous as well as more prolonged perturbations of complex
motor tasks such as stepping.

Other examples demonstrate the detailed control that can be
exhibited by the proprioceptive input to the spinal cord in com-
plete spinal animals. Spinal rats and cats have the ability to step
in different directions when stepping on a treadmill (Grillner,
1981; Heng and de Leon, 2007; Courtine et al., 2009). Decer-
ebrate (Musienko et al., 2012) and spinal (unpublished obser-
vations) cats can make corrective responses to proprioceptive
input (lateral displacement of the hindquarters) to maintain bal-
ance during stepping. Similar responses in balance control during
standing have been reported in a human subject after complete
paralysis (Harkema et al., 2011). In addition, Wernig and Muller
(1991) reported that a completely paralyzed individual could ini-
tiate stepping by shifting his body weight, stretching the hip,
and leaning forward. Each of these observations, in addition to
the present data, demonstrate a significant level of sensory con-
trol that goes well beyond the control of the more stereotypical
unperturbed stepping that has been demonstrated in chronic
spinal cats. These observations reflect more than simple reflex-
driven responses as they encompass a more sophisticated process-
ing of sensory input, including feedforward as well as feedback
mechanisms.

The present results may be interpreted as a reflection of cen-
tral pattern generation. Central pattern generation, however, is
cyclic activity that occurs without any phasic sensory input. The
spinal model used herein, in contrast, encompasses the ability of
the spinal central pattern generators to dynamically process com-
plex sensory ensembles, make detailed decisions, in real time, and
execute the appropriate motor output (Courtine et al., 2009). In
fact, the spinal cord circuitry recognizes and habituates (learns) to
the sensory input, facilitating the avoidance of an obstacle during
stepping. Thus the present results should be interpreted within
a context that exceeds what is routinely considered to be central
pattern generation.

In summary, the spinal locomotor circuitry can recognize and
translate a simple, instantaneous stimulus (perturbation) into
a “useful” adaptation of a complex motor task (e.g., stepping).
This ability to sustain such an adaptive strategy demonstrates the
degree to which the spinal locomotor circuitry accommodates
in a rather routine way to continuing changes in environmen-
tal events, providing a neural substrate for making these behav-
iors essentially “automatic,” i.e., requiring little or no supraspinal
intervention. This capability is clearly evident in normal human
adults and infants and decerebrate cats and some features of
these immediate and later responses have been observed dur-
ing fictive locomotion in the cat (Quevedo et al., 2005). The
present data, combined with other studies addressing longer time
frames (Liu et al., 2005), demonstrate that a wide range of accom-
modating responses covering a time frame ranging from mil-
liseconds to minutes can be generated and that these responses
also can be “remembered” over this time frame in a manner
that facilitates sustained locomotion within the spinal locomotor
circuitry.
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