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Abstract: Background: Vaccine mediated SARS-CoV-2 antibody responses should be carefully evalu-
ated. With regular follow-up in healthy individuals, we aimed to determine SARS-CoV-2 serological
responses post three doses of immunization and prior to breakthrough infections in the Canadian pop-
ulation. Methods: In a prospective cohort study, we enrolled 140 healthy participants post COVID-19
vaccination in Kingston, Ontario, Canada. IgG antibodies against the SARS-CoV-2 spike receptor–
binding domain were quantified by immunoassay post three doses of immunization. With COVID-19
rapid antigen test, polymerase chain reaction, and whole genome sequencing, 27 breakthrough
infections were identified. Results: Following SARS-CoV-2 vaccine (including BNT162b2, AZD1222,
and mRNA-1273), the median serum anti-spike protein antibody level was 143.6 BAU/mL (binding
antibody unit, interquartile range 79.0–266.6) post the first dose of immunization, 1046.4 BAU/mL
(423.9–1738.2) post the second dose, and 1604.7 BAU/mL (700.1–3764.0) post the third dose. Ob-
served differences were significant (p ≤ 0.001). The median antibody level of 1604.7 BAU/mL post
third dose is 45.6 times that of the seroconversion level (35.2 BAU/mL). This indicates that most
vaccines approved are effective in producing robust antibody responses. In seven breakthrough
cases characterized by whole genome sequencing, prior to infection, antibody concentrations of
breakthrough cases were at 3249.4 (Delta), 2748.4 (Delta), 4893.9 (Omicron), 209.1 (Omicron), and
231.5 (Omicron), 725.7 (Omicron), and 2346.6 (Omicron) BAU/mL. Compared with the average
antibody concentration of 2057.7 BAU/mL (58 times that of the seroconversion concentration) from
above seven cases, 37.2% of triple vaccinated, 19.0% of double vaccinated, and 1.5% single dosed
individuals have higher SARS-CoV-2 antibody levels. Conclusions: Most vaccines are effective in
producing robust antibody responses when more than one dose is given, and the more doses the
higher the serological response. Likely due to the highly contagious nature of SARS-CoV-2 variants,
a significant number of participants have SARS-CoV-2 antibody responses lower than the average
antibody concentration prior to the known breakthrough infections. Additional vaccination is likely
required to ensure immunity against infection by SARS-CoV-2.

Keywords: SARS-CoV-2; vaccine; immunity; serology

1. Introduction

It has been more than two years into the global pandemic of SARS-CoV-2 infection and
over twelve billion doses of vaccines have been administered [1]. COVID-19 vaccine effec-
tiveness should be carefully evaluated and explicitly defined, especially for mRNA vaccines
which are based on new technology. Currently, Health Canada has approved six vaccines
for a national immunization program, e.g., Moderna SpikeVax (mRNA, mRNA-1273),
Pfizer-BioNTech Comirnaty (mRNA, BNT162b2), AstraZeneca Vaxzevria (viral vector-
based, AZD1222), Janssen (Johnson & Johnson, New Brunswick, NJ, USA, viral-vector
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based, Ad26.COV2.S), Novavax Nuvaxovid (protein-based vaccine), Medicago Covifenz
(plant based virus-like particle) [2]. The U.S. Food and Drug Administration (FDA) has
approved similar COVID-19 vaccines for Emergency Use [3].

Based on the extensive knowledge from other vaccination programs, there are multiple
markers to evaluate vaccine efficacy. These markers include antibody levels determined
by enzyme-linked immunosorbent assay (ELISA), viral and bacterial neutralization assay,
interferon assay, and hemagglutination assay [4]. ELISA is the most commonly used
methodology to evaluate immunity after immunization. The ELISA based methodology
generally outperforms immunochromatographic (ICT) assay for the detection of SARS-
CoV-2 antibodies due to superior analytical sensitivity and specificity [5]. For most other
vaccines, a universal cut-off based on semi-quantitative or quantitative ELISA is often
chosen to represent protection and immunity [4]. As demonstrated by the Rubella vaccine,
the cut-off value should be continuously monitored and adjusted with the aid of large
epidemiological studies [6,7]. Due to our limited knowledge regarding the serological
responses prior to breakthrough infection, it is unknown if a similar cut-off level for
prevention against infection could be selected for SARS-CoV-2 vaccines.

Limited data exist about serological responses longitudinally post three doses of
vaccination, as well as antibody levels prior to breakthrough COVID-19 infections. In
this prospective study, we followed up immunized healthy individuals for antibody re-
sponses post three doses and prior to breakthrough infections. This knowledge is critical to
evaluate serological responses and to determine the association between antibody levels
and infection.

2. Materials and Methods
2.1. Recruitment, Sample, and Data Collection

Institutional ethics committee approval and consent from participants were obtained.
In this prospective cohort study from May 2021 to July 2022, we enrolled healthy par-
ticipants post COVID-19 vaccination in Kingston, Ontario, Canada. The health status of
participants was determined by volunteer reporting, and participants with underlying
medical conditions potentially affecting their immune function were excluded in this study.
140 healthy participants were followed-up longitudinally. The interval between blood
collection and a specific dose was predetermined with the intention of using one single
blood collection to represent the likely antibody level before the next dose was offered.
Participants were categorised into each group, based on the type of vaccine they received
for their first, second, and third doses. If a participant received only BNT162b2 for their
first, second, and third doses they were placed in the BNT162b2 category. If a participant
received only AZD1222 for their first, second, and third doses they were placed in the
AZD1222 category. If a participant received only mRNA-1273 for their first, second, and
third doses they were placed in the mRNA-1273 category. If a participant received more
than one of the following BNT162b2, AZD1222 or mRNA-1273 for their first, second, and
third doses they were placed in the Mixed Dose category.

2.2. Quantitative Antibody Measurement

IgG antibodies against the SARS-CoV-2 spike receptor–binding domain were quanti-
fied by ELISA (EUROIMMUN, product number: EI 2606-9601-10). ELISA were coated with
the spike protein in the receptor–binding domain of SARS-CoV-2 expressed recombinantly
in the human cell line HEK 293. The method has been authorized for clinical use by Health
Canada and Emergency Use Authorization by the FDA. This quantitative method has a
linear range between 3.2 to 384 BAU/mL (binding antibody unit). Samples with results
over 384 BAU/mL were diluted by a factor of 20 to 30-fold to obtain numeric results. A
cut-off of 35.2 BAU/mL was used to determine the seroconversion (recommended by the
method manufacturer).
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2.3. Breakthrough Case Identification and Characterization

The infection status of the study participants was monitored by standard public health
protocol in Ontario, Canada. Testing strategy using COVID-19 rapid antigen test and
polymerase chain reaction (PCR) test was based on public health testing protocol. COVID-
19 antigen rapid test (BTNX, Markham, ON, Canada) was distributed to participants by
Queens’ University. PCR/Gene mutation analysis was performed at Kingston Public
Health laboratory following standard protocol. Both positive and negative PCR results
were reported to the Public Health Ontario database. To determine the variants of infection,
PCR positive samples were further tested by whole genome sequencing (WGS) using the
COVID Seq Test (Illumina). Libraries were loaded at 9 pM for 2 × 150 bp sequencing on
the MiSeq instrument (Illumina). Sequencing files were de-multiplexed using the native
instrument software for downstream analytics. Illumina’s iVar software was used to trim
primer sequences and generate a consensus sequence with a minimum read depth of
50 and a minimum frequency threshold of 0.6. Phylogenies were created using Augur
from Nextstrain’s bioinformatic toolkit (https://github.com/nextstrain/augur, accessed
on 20 August 2022) using the ancestral genome (MN908947.3) as the reference and root for
the phylogenetic trees.

2.4. Statistical Analysis

All statistical analysis was performed using R Statistical Software (the R Foundation,
United State). A Shapiro–Wilk normality test was performed on each group to determine if
it was normally distributed. Groups that were normally distributed had results reported as
means. For groups that were not normally distributed, results were reported as medians
and interquartile range (IQR), and a non-parametric Kruskal- Wallis test was performed to
determine statistical significance amongst the groups.

3. Results
3.1. Characteristics of the Study Cohort

The baseline characteristics of study participants are summarized in Table 1. All
140 participants received SARS-CoV-2 vaccines following the recommended dose and
dosing interval in Ontario, Canada. The median antibody concentrations were 143.6, 1046.4,
and 1604.7 BAU/mL following the first, second, and third dose of the vaccine, respectively.
On average, there was 7.2 times increase in antibody concentration from the first to second
dose. From the second to third dose, there was an average increase of 1.5 times in antibody
concentration. A Kruskal–Wallis test was conducted comparing the median antibody
concentration between the three doses, which found a significant difference in these values
(p < 0.001).

Table 1. Characteristics of 140 Healthy Study Participants.

Characteristic Antibody Concentration,
BAU/mL, Median (IQR)

Age, median (range) 55 (20–89)
Sex (n)

Male (%) 46 (32.9)
Female (%) 94 (67.1)

Vaccine Received (n)
FIRST DOSE

BNT162b2 37 120.8 (81.9–216.0)
AZD1222 20 107.2 (55.1–192.5)

mRNA-1273 6 1096.8 (410.8–1877.8)
Median antibody concentration
for all vaccines (n and median) 63 143.6 (79.0–266.6)

https://github.com/nextstrain/augur
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Table 1. Cont.

Characteristic Antibody Concentration,
BAU/mL, Median (IQR)

Days between 1st dose and blood
collection, mean (SD) 62.8 (±28.4)

Days between 1st and 2nd dose,
mean (SD) 77.1 (±25.9)

SECOND DOSE
BNT162b2 40 1245.2 (475.2–1951.5)

Mixed 70 1146.6 (634.5–1760.1)
AZD1222 11 188.4 (88.6–279.1)

mRNA-1273 4 1731.3 (820.6–3541.2)
Median antibody concentration
for all vaccines (n and median) 126 1046.4 (423.9–1738.2)

Days between 2nd dose and
blood collection, mean (SD) 72.7 (±51.4)

Days between 2nd and 3rd dose,
mean (SD) 179.8 (±42.5)

THIRD DOSE
BNT162b2 24 1570.5 (985.7–3765.4)

Mixed 50 1559.1 (627.8–3561.3)
AZD1222 0 NA

mRNA-1273 2 4265.4 (2959.7–5571.2)
Median antibody concentration
for all vaccines (n and median) 79 1604.7 (700.1–3764.0)

Days between 3rd dose and blood
collection, mean (SD) 135.8 (±35.1)

p value * <0.001
* p < 0.001 when comparing the antibody concentration between the median antibody concentration of the
three doses.

3.2. Characteristics of Breakthrough Cases

Table 2 describes the characteristics of seven breakthrough cases characterized by
WGS with the variants identified. All breakthrough infections occurred post the second and
prior to the third dose. The highest first dose antibody result was 538.2 BAU/mL, whereas
the lowest was 118.1 BAU/mL. It is also interesting to note that the antibody levels vary
significantly amongst the second dose antibody results prior to the breakthrough infections.
The highest level of antibody generated after the second dose was 4893.9 BAU/mL, whereas
the lowest level was 209.1 BAU/mL, with the mean concentration at 2057.7 BAU/mL. The
third dose antibody concentrations, which were collected after infection and one booster
dose, are also shown. The lowest antibody concentration was 5962.5 BAU/mL, while
the highest was 9673.8 BAU/mL, with the mean concentration at 7535.8 BAU/mL. This
average concentration was 2.8 times of the average antibody concentration derived from
all participants post third dose.

For 27 individuals with breakthrough infections, the average antibody concentration
prior to infection was 1911.3 BAU/mL, while the highest antibody concentration was
8717.7 BAU/mL. Since it is known that COVID-19 antigen rapid test has relatively poor
clinical sensitivity and specificity when compared with PCR and WGS, the details of those
27 cases are not shown and further discussion focuses on the seven breakthrough cases that
were characterized by WGS.
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Table 2. Characteristics of seven breakthrough cases confirmed by PCR and WGS.

Characteristic Delta Delta Omicron Omicron Omicron Omicron Omicron

Age 58 58 57 70 49 56 45
Sex Female Male Female Male Male Female Male

FIRST DOSE
Vaccine mRNA-1273 BNT162b2 BNT162b2 AZD1222 BNT162b2 AZD1222 BNT162b2

Days between blood
collection and 1st dose 56 days 26 days 61 days N/A N/A N/A N/A

Antibody (BAU/mL) 268.5 538.2 118.2 N/A N/A N/A N/A
Interval between 1st

and 2nd dose 64 days 49 days 80 days 66 days 114 days 79 days 91 days

SECOND DOSE
Vaccine mRNA-1273 BNT162b2 mRNA-1273 BNT162b2 BNT162b2 BNT162b2 BNT162b2

Interval between blood
collection and 2nd dose 54 days 25 days 25 days 107 days 115 days 67 days 56 days

Interval between 2nd
dose blood collection

and infection
102 days 115 days 163 days 85 days 29 days 252 days 352 days

Antibody prior to
infection

(BAU/mL)
3249.4 2748.4 4893.9 209.1 231.5 725.7 2346.6

Interval between 2nd
and 3rd dose N/A N/A 177 days N/A N/A N/A 170 days

THIRD DOSE
Vaccine BNT162b2 BNT162b2 BNT162b2 BNT162b2 BNT162b2 BNT162b2 BNT162b2

Interval between blood
collection and 3rd dose N/A N/A 107 days N/A N/A N/A 202 days

3rd dose Antibody
Result (BAU/mL) 5962.5 9019.5 N/A N/A 9673.8 6915.3 6108

3.3. Individual Trend of Vaccine Mediated Serological Responese

Figure 1 shows the change in antibody levels after receiving the first, second, and third
dose of each participants’ respective vaccines. Each line is drawn from the antibody levels
measured after the first dose, to the second, and then third dose for the same participant.
In Figure 1, the colour of the dot corresponds to the dose of the vaccine that a participant
received. A blue dot represents the antibody concentration of a first dose, a green dot repre-
sents the antibody concentration of a second dose, and a pink dot represents the antibody
concentration of a third dose. For all vaccine groups, 98.2% of participants demonstrated a
higher second dose antibody concentration than the first dose, and 58.9% had a higher third
dose antibody concentration compared to the second dose (i.e., 41.1% became lower on the
third dose). In the BNT162b2 category, the median antibody concentration between the first
and second dose increased by a factor of 10.3, and 1.2 between the second and third dose.
It should be noted that decreases in individual antibody concentration were also observed
between the second and third dose. 100% of participants who received the BNT162b2
vaccine demonstrated an increase in antibodies between the first and second dose, while
only 66.6% of participants demonstrated an increase in antibodies between the second and
third dose. In the Mixed Dose category, the median antibody concentration increased by a
factor of 1.3 between the second and third dose. Additionally, only 54.2% of participants
demonstrated an increase in antibody concentration, while 45.8% demonstrated a decrease.
In the mRNA-1273 category, the average antibody concentration between the first and
second dose increased by a factor of 1.6, and 2.4 between the second and third dose. 66.6%
of participants demonstrated an increase in antibody concentration between the first and
second dose, while only 50% of participants demonstrated an increase between the second
and third dose. The cohort of AZD1222 vaccine had limited participants and no compar-
isons between doses could be made. Times of increase were not provided in the last two
categories due to a limited number of participants. A Kruskal–Wallis test was conducted
to compare the first (120.8 BAU/mL), second (1245.2 BAU/mL), and third dose antibody
concentrations (1570.5 BAU/mL) of the BNT162b2 group, which demonstrated a significant
difference in antibody concentration between each group (p < 0.001). A Kruskal- Wallis test
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was conducted to compare the second (1146.6 BAU/mL) and third dose (1559.1 BAU/mL)
average antibody concentrations from the Mixed Dose category, which demonstrated no
significant difference between the antibody concentrations (p = 0.15). Due to a limited num-
ber of participants, no statistical analyses were performed for the AZD1222 or mRNA-1273
groups.
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Figure 1. Antibody concentration after the first, second, and third doses.

Figure 2 shows the median and the range of participant antibody concentrations after
receiving the first, second, and third dose of their respective COVID-19 vaccine. In Figure 2,
the colours of the boxplots correspond to the type of vaccine that they represent. Red
corresponds to the antibody concentrations from participants who received BNT162b2
for their first, second or third dose. Yellow corresponds to the antibody concentrations
from participants who received a Mixed dose for their second or third dose of the vac-
cine. Purple corresponds to the antibody concentrations from participants who received
AZD-1222 for their first or second dose of the vaccine, and blue corresponds to the anti-
body concentrations from participants who received mRNA-1273 for their first, second or
third dose. The boxplots are categorized by vaccine types, including BNT162b2, Mixed
Dose, AZD1222, and mRNA-1273. When compared with 4893.9 BAU/mL (the highest
antibody concentration prior to a known breakthrough infection), post second dose of
vaccination, 2.5% of participants who received both BNT162b2, 4.3% of participants who
received mixed vaccines, and 25.0% of participants who received both mRNA-1273, had
antibody levels above 4893.9 BAU/mL. No participants that received the AZD1222 vaccine
for both doses had antibody levels above 4893.9 BAU/mL post second dose. Following a
third dose of vaccination, 12.5%, 18.0%, and 50% of participants who received either all
doses of BNT162b2, mixed, and all doses of mRNA-1273, respectively, had antibody levels
above 4894.9 BAU/mL. When all vaccine groups were combined, the percentage over
4893.9 BAU/mL was 0%, 4.0%, and 17.1% for the first, second, and third dose, respectively.

When compared with 2057.7 BAU/mL (the average antibody concentrations in seven
infections confirmed by WGS), 22.5%, 20.0%, and 50.0%, of participants who received two
doses of BNT162b2, two doses of mixed types, and two doses of mRNA-1273, respectively,
had antibody levels above 2057.7 BAU/mL. Post third dose of vaccination, 41.7%, 38.0%,
and 50.0% of participants who received all BNT162b2, mixed dose, and all mRNA-1273,
respectively, had antibody levels above 2057.7 BAU/mL. When all vaccine groups were
combined, the percentage over 2057.7 BAU/mL was 1.5%, 19.0%, and 37.2% for the first,
second, and third dose, respectively.
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centrations in seven infections confirmed by WGS. The percentages shown in green represent the
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A Kruskal–Wallis test demonstrated a significant difference in antibody concentra-
tion levels amongst the different vaccine types for the first and second dose (first dose,
p < 0.002; second dose, p < 0.001). However, no significant difference was seen in antibody
concentration levels amongst the different vaccine types for the third dose (p = 0.47).

4. Discussion

Our data demonstrates that when additional dosing of SARS-CoV-2 vaccines were
administered in healthy individuals, the median antibody levels (for all vaccines combined)
continuously rise from the first, second, to a booster dose (p < 0.002). This finding concurs
with other observations, where similar increases were found [8–11]. There is evidence
that SARS-CoV-2 vaccination induces mucosal antibody responses that correlate well with
antibody concentration in the circulation, which supports the use of serum antibody level
to evaluate immunity [12]. In our cohort, there was a 7.2-fold increase in antibody levels
from the first to second dose, and a 1.5-fold increase from the second to third dose. When
we categorized the antibody concentration into four groups, we observed a significant
statistical difference among antibody concentration in the first (p < 0.002) and second
dose (p < 0.001), but not in the third dose (p = 0.47). This suggests that the difference in
vaccine-mediated serological response diminishes after multiple doses are administered.
Our findings are in agreement with some observations [10] but contradict others [8]. As the
unit of testing result are reported differently (EIA units in [10], U/mL in [8], and BAU/mL
in our study), we suspect this difference may be due to different methods used to measure
the antibody levels. This may reflect different serological assays used which render results
incomparable. Standardized and comparable serological testing is essential to evaluate
humoral immunity post vaccination. We suggest all methods should be traceable to the
WHO International Standard for anti-SARS-CoV-2 immunoglobulin (NIBSC code 20/136)
as is our method [13].

Interestingly, although on average there was 1.5 times increase in antibody levels from
the second dose to the third, 41.1% of our participants demonstrated a lower third dose
level when compared with the second. When serological responses are closely monitored
at multiple shorter intervals longitudinally, it is known that the antibody levels peak
at about 4 to 6 weeks, then gradually taper down over time [14,15]. In our cohort, the
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average interval between the third dose and blood collection was 4.5 months, while it
was 2.4 months between blood collection and the second dose. This prolonged interval
following the third dose was preselected intentionally to evaluate long-term immunity
prior to the next booster dose with single blood collection. Likely due to this prolonged
interval of 4.5 months, some individuals demonstrated the third dose antibody levels
lower than that of their second dose. Additionally, we observed that the average of third
dose antibody levels was 1.5 times that of the second dose, whereas other studies have
reported approximately a 4 times difference. This is likely due to the shorter 4-week interval
between blood collection and vaccination [10]. Our finding of lower antibody levels at
approximately 4.5 months post a third dose in some individuals (when compared with
the second dose) could inform the public health policy regarding the optimal vaccination
interval. In Canada, for individuals 12 years of age and older for whom boosters are offered,
the recommended interval is ≥6 months after completion of a primary series [16]. The FDA
suggests that the vaccine may be administered to individuals 50 years of age and older
at least 4 months after receiving a first booster dose [17]. While such recommendations
are appropriate for the majority of our population, a small percentage of the population
may benefit from shorter vaccination intervals to ensure that their antibody levels do not
drop significantly. Clearly, there are multiple factors to be considered in the development
of public health policy and maintaining a high antibody level is only one of those factors.

Another less likely explanation for the decreased third dose serological responses in
some individuals is that they have reached the peak antibody concentration possible. Their
lower antibody levels could be due to analytical variation in the serological method, i.e.,
their true antibody levels have peaked and only fluctuate slightly between the second and
third doses. This hypothesis contradicts other findings which showed antibody responses
continuously rise from the third to fourth dose [18]. Nevertheless, it is important to
understand whether booster doses further increase serological responses or mostly only
maintain existing antibody levels. We are currently following up our participants for the
fourth dose antibody measurement.

The adaptive immunity includes humoral immunity, which protects against extracellu-
lar microbes and their toxins, and cell-mediated (or cellular) immunity, which is responsible
for defense against intracellular microbes. Post-vaccination, it is known that in the absence
of antibodies, CD8 + T lymphocytes specific to conserved viral epitopes correlated with
cross-protection against symptomatic influenza [19]. A similar phenomenon is also seen in
the case of rubella, where low antibody levels may not always be indicative of susceptibility
to infection [20]. T lymphocytes comprise a major part of the adaptive immune response
to the SARS-CoV-2 virus [21]. Understanding the T lymphocyte response to SARS-CoV-2
can increase our knowledge about the immunogenicity of the vaccines. The assessment of
cellular responses relies on time-consuming, laborious, and expensive assays, and as such,
are not routinely used. Therefore, serological testing is the primary tool to evaluate the
efficacy of most vaccines.

For most other vaccines, a universal cut-off based on semi-quantitative or quantitative
ELISA is often chosen to represent protection and immunity. This cut-off is in the range from
1 to 64 times that of the seroconversion concentration [4]. To date, no vaccine developed for
other pathogens requires a serological response of more than 64 times of the seroconversion
concentration to render immunity. The method manufacturer, Euroimmun, recommends a
cutoff of 35.2 BAU/mL to indicate seroconversion (confirmed by our unpublished data).
The median antibody level of 1046.4 BAU/mL post second dose is 29.7 times that of the
seroconversion level, while the median antibody level of 1604.7 BAU/mL post third dose
is 45.6 times that of the seroconversion level. This indicates that most vaccines approved
are effective in producing robust antibody responses. Among 140 participants, 27 (19.3%)
developed breakthrough infections, which were primarily identified by rapid antigen test.
The average antibody concentration was 1911.3 BAU/mL prior to the infections in those
27 infections. Among the seven breakthrough cases which were further categorized by
WGS, the average antibody concentration prior to infection was 2057.7 BAU/mL, while the
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highest was 4893.9 BAU/mL, representing 58.4 and 139.0 times that of the seroconversion
level, respectively. This suggests that certain SARS-CoV-2 variants (Delta and especially
Omicron) are more contagious than most other pathogens for which we have developed
effective vaccines, likely due to their capacities to evade neutralization more efficiently [22].

Before the surge of various variants of concern, SARS-CoV-2 vaccine breakthrough
infections occurred in only a small fraction of all vaccinated persons and accounted for a
small percentage of all COVID-19 cases [23–25]. Prevention against Delta variant infection
was reported at approximately 70% in recent literature [26,27]. Based on recent surveillance
data, CDC has reported reduced protection against symptomatic infection at 62.8% for
Omicron post 3 Janssen mRNA doses at 2 to 4 months since last dose [28]. Breakthrough
is observed with other vaccines, such as the influenza vaccine [29]. Many factors likely
contribute to the prevention of breakthrough infections, such as adaptive immunity in
the host and public health measures. Our data, based on a small cohort, suggests that
vaccine mediated antibody response is not the only factor contributing to the prevention of
infection, as 62.8% of triple vaccinated and 81.0% of double vaccinated individuals have
SARS-CoV-2 antibody responses lower than the average antibody concentration of known
breakthrough cases. Therefore, effective public health measures (e.g., social distancing or
masking) likely contributed to the observed 62.8% immunity for Omicron infection post
third dose, in addition to antibody responses. Conceivably, a lower serological response
is potentially protective against infection when the dose of viral exposure is low, which
could be achieved by effective public measures. Our findings suggest that different from
other vaccination programs, a universal cut-off based on serological response likely is not
appropriate for SARS-CoV-2 vaccines as public health measures could further improve
immunity for infection for individuals with low serological responses. A larger cohort
is required to compare with our findings, which are based on limited participants and
breakthrough infections, and therefore are not conclusive. While we acknowledge that the
antibody responses in some individuals may not be sufficient to provide protection against
infection, the critical role of vaccination in this pandemic could not be underestimated. To
highlight this effect, the assessment of vaccine effectiveness should also focus on severe
outcomes including hospitalization, ICU admission, or death, and not only breakthrough
infections [30,31].

5. Limitations

First, our cohorts were small in size. Second, the antibody trend cannot be monitored
with a single blood collection post each dose; however, this is the approach (using single
serological testing) to evaluate other vaccinations. There were sizable variations in blood
collection intervals post each dose, e.g., 2.4 months post the second dose versus 4.5 months
post the third dose. Antibody measurements at strictly controlled time intervals would
make statistical comparisons more reliable. In this manuscript, we did not test neutralising
antibody concentration. Neutralising antibodies might represent the best method to eval-
uate humoral immunity, but their use for routine population-based testing is unpractical
due to technical requirements [32], and they do not provide equal protection against all
variants [33]. The focus on humoral immunity may not reflect long term immunity in the
form of memory B cells or in the T-cell response. Studies to assess memory B cell function
and T-cell immunity using assays are underway.

6. Conclusions

Most vaccines are effective in producing robust antibody responses when more than
one dose is given, and the more doses the higher serological responses. Likely due to
the highly contagious nature of SARS-CoV-2 variants, 37.2% of triple vaccinated, 19.0%
of double vaccinated individuals, and 1.5% of individuals with a single dose have SARS-
CoV-2 antibody responses higher than the average antibody concentration prior to known
breakthrough cases. The lower antibody levels in many participants even after three doses
suggest additional vaccination is likely required to ensure immunity.
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