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ABSTRACT

In this study, we present the DNA-Binding Site
Identifier (DBSI), a new structure-based method for
predicting protein interaction sites for DNA binding.
DBSI was trained and validated on a data set of 263
proteins (TRAIN-263), tested on an independent set
of protein-DNA complexes (TEST-206) and data sets
of 29 unbound (APO-29) and 30 bound (HOLO-30)
protein structures distinct from the training data.
We computed 480 candidate features for identifying
protein residues that bind DNA, including new
features that capture the electrostatic microenviron-
ment within shells near the protein surface. Our itera-
tive feature selection process identified features
important in other models, as well as features
unique to the DBSI model, such as a banded electro-
static feature with spatial separation comparable
with the canonical width of the DNA minor groove.
Validations and comparisons with established
methods using a range of performance metrics
clearly demonstrate the predictive advantage of
DBSI, and its comparable performance on unbound
(APO-29) and bound (HOLO-30) conformations dem-
onstrates robustness to binding-induced protein
conformational changes. Finally, we offer our
feature data table to others for integration into their
own models or for testing improved feature selection
and model training strategies based on DBSI.

INTRODUCTION

Protein–DNA interactions play a pivotal role in many
biological processes, such as gene regulation, DNA repli-
cation, recombination and repair. Although the biophys-
ical principles that determine selective protein–DNA
binding are not entirely clear, effective models for predic-
tion of DNA-binding sites can shed light on the basic
mechanisms for recognition.

Many distinct methods have been developed to predict
DNA-binding residues on a protein surface (1–22). Some

of these are based on the primary sequence of a protein
(4,7,9,10,12,15–18,21), whereas others are built using
structure-based information (1,2,5,6,8,11,13,14,19,20,22).
Machine-learning methods such as support vector
machine (SVM) classifiers (15,19), neural networks (1,13)
and random forest-based approaches (16,18) have
been used for training feature-based models to identify
DNA-binding sites.
Sequence-based methods make predictions using pro-

perties derived from information such as the position-
specific scoring matrix (23), sequence conservation (24),
amino acid frequency (25), predicted secondary structure
(10), predicted solvent accessibility (10) and the
BLOSUM62 matrix (7). In contrast, structure-based
methods use properties such as electrostatic potential
(8), protein surface shape (14), secondary structure
(1,21), amino acid microenvironment (3,13) and relative
solvent accessible surface area (SASA) (21). In addition,
the biochemical characteristics of amino acid side chains
are important properties for characterizing DNA-binding
sites (3,8,26–30). Finally, some methods combine informa-
tion derived both from structural data and evolutionary
information. Using global protein structural alignments
and statistical potentials, Gao et al. (5) developed a know-
ledge-based method for predicting DNA-binding proteins
and their binding sites. Ozbek et al. (11) developed a
method to predict DNA-binding residues based on evolu-
tionary conservation and the fluctuation of side chains in
high-frequency Gaussian normal modes.
In this study, we introduce the DNA-Binding Site

Identifier (DBSI), a structure-based method for identify-
ing DNA-binding sites on proteins that are known or
believed to bind DNA. Starting with 480 features,
including a number of electrostatics features unique to
our model, DBSI was developed by optimizing the
feature combination and training parameters via a
forward selection iterative approach. Our results suggest
that DBSI can predict DNA-binding sites reliably, based
on cross-validation analysis on 263 training examples and
testing on 206 independent examples. In addition, by
studying proteins with both bound and unbound struc-
tures, we demonstrate that DBSI can predict DNA-
binding sites starting from the unbound structure with
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similar accuracy to predictions made using the bound
protein structure. This is a significant observation, as pre-
diction on unbound structures is the expected starting
point in practical applications. We present rigorous com-
parisons with established methods, including DISPLAR
and the consensus predictions of metaDBsite (12), which
are based on compilation of individual predictions of
DBS-Pred (1), DP-Bind (7), DISIS (10), BindN/BindN-rf
(16,17) and DNABindR (21). The comparative results es-
tablish a clear predictive advantage of DBSI in compari-
son with these outstanding existing methods. DBSI also
develops several new electrostatics-based features that are
both unique to our work and inspired by past observa-
tions on the importance of electrostatics to protein–DNA
recognition (3,8,26–30).

MATERIALS AND METHODS

Training and validation data

Several data sets were used in this study. The training data
set comes from Tjong et al.’s article (13), in which 264
proteins were used to train the DISPLAR model. We
used 263 complexes from their article, excluding one
(PDB ID: 1MJE), which had too many fragments
missing in the protein–DNA complex to be a reliable
training example. This data set contains one spurious
protein–RNA interface (PDB ID: 1U1Y), whereas the re-
maining 262 examples are protein–DNA complexes. The
PDB codes for this training data set (TRAIN-263) are
given in Supplementary Table S1. This data set contains
examples with up to 50% sequence identity. To avoid
training bias, examples with >25% sequence identity or
sharing a common fold were grouped together when per-
forming cross-validation, as described in ‘Evaluation of
Model Performance’ section
Our test data contain 206 examples compiled from the

data set of metaDBsite (12). The metaDBsite consensus
server was trained on a data set of 316 examples. Of these,
219 chains from 206 PDB files are distinct from the
examples in our training data set. We used this data set
(TEST-206) as an added test set for comparison between
methods. For this data set, we report aggregate perform-
ance as well as performance relative to sequence similarity
with examples in our training data.
Finally, we compiled bound and unbound structures for

DNA-binding proteins having low sequence identity to
examples in the TRAIN-263 data set. These examples
were derived from the articles of both Ozbek and Xiong
(11,19). Ozbek compiled 54 pairs of structures, which
included both protein–DNA complexes (HOLO) and
unbound proteins (APO). One of the HOLO complexes
(PDB ID: 1I6H) contains >2000 residues and was deleted
from our test data set because predictions on this example
would exert too much influence on the combined statistics
for the predictive results. Three additional APO proteins
were deleted as well, as two have only CA traces (PDB
IDs: 1LRP and 1BGT), and the third corresponds to 1I6H
(PDB ID: 1NIK), which was deleted from our APO data
set owing to its large size. For the remaining 53 bound
protein–DNA complexes and 50 unbound proteins, we

used the PISCES server (31) to calculate the homology
score between these proteins and the proteins in the
TRAIN-263 data set. Of these, we identified six HOLO
protein–DNA complexes and five APO proteins having a
sequence identity of <25% with examples in our training
set. Xiong used 83 protein–DNA complexes (HOLO-83)
and 83 unbound proteins (APO-83) as their test data, and
using the same procedure, we obtained an additional 24
protein–DNA complexes and unbound proteins. All
together, we identified 30 protein–DNA complexes for
use in our bound test data set (HOLO-30), for which 29
had available unbound structures suitable for use in our
unbound test data set (APO-29). The remaining unbound
example (PDB ID: 1LRP) contained only a CA trace.
PDB codes for all data sets are available in Supplementary
Table S1. Supplementary Table S2 also contains results
for alignments between the APO and HOLO examples.
Using TM-align (32), the root mean square deviation
(RMSD) calculation is reported for aligned subregions,
the full CA RMSD calculations based on these alignments
and the CA RMSD of surface interface and non-interface
residues. In addition, backbone and all-atom RMSD
values of aligned subregions are reported for the best
alignments obtained using PyMOL (33). For the full CA
RMSD based on the TM-align alignment, computed
RMSD values ranged from 0.45 to 24.38 Å, with a
median of 1.73 Å, a mean of 4.54 Å and a standard devi-
ation of 6.89 Å. For surface residues in the protein–DNA
interface, the RMSD values ranged from 0.18 to 29.31 Å
with a median of 1.64 Å, a mean of 4.53 Å and a standard
deviation of 7.08 Å. For surface residues outside the
protein interface, values ranged from 0.39 to 27.15 Å,
with a mean of 1.61 Å, a median of 4.89 Å and a
standard deviation of 7.33 Å. These values show that
non-trivial conformational changes occur between the
apo and holo structures, and that these changes occur
both for interface and non-interface residues.

Surface residues were defined as those with relative
SASA (defined as observed SASA compared with
maximum possible within an ALA-X-ALA tripeptide) of
at least 10%, as calculated by NACCESS (34). A surface
residue was classified as a DNA-binding residue if the
distance between any of its heavy atoms and a heavy
atom of DNA was within 5.0 Å. Based on this definition,
the TRAIN-263 data set contains 56 325 surface residues,
with 18% positive (DNA binding) and 82% negative
(non-DNA binding) examples; the TRAIN-206 data set
contains 38 666 surface residues, with 16% positive and
84% negative examples; the HOLO test data set
contains 7568 surface residues, with 13% positive and
87% negative examples; the APO test data set contains
6777 surface residues, with 12% positive and 88%
negative examples.

Evaluation of model performance

To avoid overfitting the training data, we applied both
standard leave one residue out cross-validation and
10-fold cross-validation. For the 10-fold cross-validation,
we divided the TRAIN-263 data set into 10 different
groups; proteins in nine groups were used to train
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models, and the proteins in the remaining group were used
to test the models. To avoid bias due to evolutionary re-
lationships between the training examples, proteins having
sequence identity >25% as determined using PISCES (31)
were assigned to the same group. Despite this sequence
identity threshold, proteins of a given tertiary structure
may exhibit a high degree of sequence variation. As a
further step to reduce training bias, TM-align (32) was
used to perform pairwise structural alignments on
proteins of the TRAIN-263 set. Proteins with a TM-
score exceeding 0.3 were placed into the same cross-valid-
ation group.

Because our data set contains more negative examples
than positive examples, overall accuracy is heavily biased
by the accuracy in predicting negative examples. To
provide a full characterization of predictive ability,
several other parameters are also used to evaluate the per-
formance of DBSI. These are ‘Sensitivity’, ‘Specificity’,
‘Precision’, ‘Accuracy’, ‘F1 Score’, ‘Strength’ and
‘Matthews Correlation Coefficient’, defined as follows:

Sensitivity ¼ TP
TP+FN Accuracy ¼ TP+TN

TP+TN+FP+FN

Specificity ¼ TN
TN+FP F1 Score ¼ 2 � Sensitivity �Precision

Sensitivity+Precision

Precision ¼ TP
TP+FP Strength ¼ Sensitivity+Specificity

2

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FN ÞðTN+FPÞðTN+FN Þ

p

Here, TP is the number of true positives; TN is the
number of true negatives; FP is the number of false posi-
tives; and FN is the number of false negatives. ‘Sensitivity’
is the accuracy for positive examples, ‘Specificity’ is the
accuracy for negative examples, ‘Precision’ is the accuracy
for all predicted positive examples, ‘F1 Score’ is a com-
bination of Sensitivity and Precision, and ‘Strength’ is the
average of Sensitivity and Specificity. These additional
parameters, along withMCC, provide a good complement
to Accuracy, which is easily biased in the case where there
is an imbalance between positive and negative examples in
the training or testing data sets.

In addition to these measures, the Area under the Curve
(AUC) of the Receiver Operating Characteristic (ROC)
curve is a useful metric for assessing predictive perform-
ance. The ROC curve shows the relationship between the
true positive rate (Sensitivity) and the false positive rate
(1.0-Specificity) as the cutoff score for distinguishing
positive and negative examples is adjusted. The cutoff
is varied from its lowest possible value (all examples
are predicted as positive examples, hence Sensitivity=1
and Specificity=0) to its highest possible value
(Sensitivity=0 and Specificity=1). The AUC indicates
how strongly the data are classified. For example, a
bimodal distribution for which all positive examples
were classified with score 1.0 and all negative examples
with score �1.0 would achieve an AUC of 1.0. In a real
setting, some classification scores will be nearer to zero,
and some examples will be misclassified. Models with

AUC< 0.5 are considered to be poor models, whereas ac-
ceptable models typically have AUC> 0.7 and more
highly predictive ones AUC> 0.8, with values of
AUC> 0.9 being challenging to achieve in practice.
Model training and feature selection. Different learning

methods such as Neural Networks (1,13), Random
Forests (16,18) and SVM, have been used for training
models to predict DNA-binding sites. In creating the
DBSI model, we used the SVMlight program (35) in con-
junction with a collection of 480 features outlined later in
the text. SVM finds a set of hyperplanes able to classify
two different classes of data with the largest margin, and it
demonstrates high-predictive accuracy while avoiding
over-fitting. Here, the surface residues in contact with
DNA are considered as positive examples, and the
surface residues that do not contact DNA are considered
as negative examples. In addition to SVMs, we also tried
training models using Random Forest (36) and decision
trees (37), but we determined that models built by SVMs
according to our iterative feature selection process,
described later in the text, gave the highest predictive
accuracy. The model development process occurred in
three stages: feature selection using 1000 data points,
SVM parameter selection using 6000 data points and full
training and validation on the entire data set of over
50 000 data points. The sets of 1000 and 6000 examples
were defined with 18% positive examples and 82%
negative examples, mirroring their frequencies within the
full training data set. This strategy was useful both to help
speed the model training process and to guarantee that
our model features and parameters were not overly
biased toward good performance on the full training
data set.
SVM kernel functions and parameters. We applied dif-

ferent SVM kernel functions (which transform the data
before deriving hyperplanes), such as polynomial kernels
and Gaussian kernels. The Gaussian kernels were found to
provide the best improvements over linear SVM. For the
Gaussian kernels, several parameters can be tuned to
obtain the highest accuracy. The parameter C controls
the trade-off between allowing training errors and
enforcing rigid margins; the parameter G determines the
Gaussian width; another parameter J is a cost factor, by
which training errors on positive examples outweigh
errors on negative examples. In optimizing the DBSI
model, we tested C values from 0.0 to 64.0, G values
from 0.0 to 2.0 and J values from 2.0 to 6.0.
Iterative feature selection. Because we had a large

number of features as well as a large data set, it was im-
portant to devise some strategy for feature selection. The
use of Random Forests (36) built using decision trees is a
common approach to feature selection. There are add-
itional strategies that apply a range of techniques, which
often attempt to prune the collection of features in one
manner or another (38–40). However, our collection of
features is large; therefore, we attempted a ‘bottom up’
rather than ‘top down’ approach to feature selection.
To speed the feature selection process, 1000 randomly

chosen data points from TRAIN-263 were used to identify
features with good predictive value for training the DBSI
model. First, the features were divided into general
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categories, e.g. electrostatics, position specific scoring
matrix (PSSM), microenvironment. We then trained
models on the reduced training set using individual
features (or PSSM feature groups.) Next, we trained a
model by combining the best individual features, then it-
eratively adding successive additional features. With each
iteration, we included an additional feature (or PSSM
feature group) and then retrained the model. The resulting
best model (in F1 Score) from one iteration became the
starting point for the next iteration. We terminated the
feature selection process once the F1 Score could no
longer be improved. Features within the electrostatics
and PSSM categories were found to have the best predict-
ive value; therefore, our starting model for the iterative
feature selection process was the best one that could be
built by combining a single electrostatics feature and a
single PSSM feature group.
Parameter refinement and cross-validation. Using the

best feature combination from our iterative selection
process, we optimized the SVM training parameters on
an expanded data set of 6000 randomly selected training
examples. The final DBSI model was then trained and
cross-validated on the entire training data set.

Features used in training the DBSI model

We generated several different types of features (both
structure-based and sequence-based) for identifying
DNA-binding sites. A complete list of 480 features used
in our study is given in Supplementary Table S3, and the
numbers assigned to the features in this table are given in
listings of the feature groups. Later in the text, we describe
each feature category and key details of the calculations.
The listing of features is divided into groups, so as to
avoid having the discussion be too dense. Roughly,
Features 1–13 describe simple features that can be
defined at the residue level using lookup tables or
standard calculations. Features 14–180 are derived for
each residue based on properties of neighboring residues
and/or calculations using grid-based local environments.
Features 181–480 are simply PSSM matrices with different
window sizes.
Residue characteristics (Features 1–4). Three simple

residue characteristics were used as features for this
study: hydrophobicity, size and charge. The Fauchere
and Pliska hydrophobic scale was used to express the
hydrophobicity of side chains (41). Residue size was
characterized by the maximum SASA within a ALA-X-
ALA tripeptide (42). This feature is a constant value in-
dependent of the residue’s context within a protein struc-
ture and is thus different than the value calculated
described in the SASA-based features. ARG and LYS
were assigned a charge of +1, ASP and GLU a charge
of �1, HIS a charge of +0.5, and all other residues a
charge of 0.
A new feature called pseudo hydrophobicity was

generated based on the combination of hydrophobicity
and charge. If the charge of the residue was non-
negative, the pseudo hydrophobicity was defined as the
hydrophobicity of the residue; if the charge of the
residue was negative, the pseudo hydrophobicity was

defined as the product of the hydrophobicity index and
the charge of the residue.

Secondary structure (Features 5 and 6). Secondary
structure assignments were made with DSSP (36,37),
which classifies protein residues as one of nine different
types: alpha helix (H), residue in isolated beta-bridge (B),
extended strand participates in beta ladder (E), 3-helix (or
310 helix) (G), 5-helix (or pi-helix) (I), hydrogen-bonded
turn (T), bend (S), loop (L) and irregular (no designation).
Across the entire training data set, each surface residue
was assigned, and the probability distribution of second-
ary structure types was tabulated along with the probabil-
ity distribution for just the DNA-binding residues. The
ratio of probabilities for the binding residues and all
surface residues were calculated for each secondary struc-
ture type. This results in a numerical value for each sec-
ondary structure classification, reflecting its propensity to
exist a protein–DNA interface. Also, a simple secondary
structure feature assigned a value of+1 to residues in an
extended strand (E), �1 to residues in an alpha helix, and
0 to all other residues.

SASA (Features 7–12). SASA was calculated by the
program NACCESS (34). The relative SASA of each
residue is calculated by using the corresponding SASA
of the tripeptide (ALA-X-ALA) as a reference. The
relative SASAs of the entire residue and the residue’s
side chain defined two features. Polar SASA, the relative
polar SASA, non-polar SASA and the relative non-polar
SASA were considered as four other features related to
SASA. The polar SASA is the total SASA of all oxygen
and nitrogen in the side chain, and the non-polar SASA is
the total SASA of all other of atoms in the side chain.

Polar atom availability (Feature 13). In a given side
chain, the availability of O and N atoms for participation
in hydrogen bonds was used as a feature. For example, in
the ARG side chain, there are three polar nitrogens. If N
of these atoms are making internal hydrogen bonds, the
feature value is set to 3-N. In general, the value of the
feature is the number of polar side chain atoms not
involved in internal hydrogen bonds.

Electrostatic potential (Features 14–41). We used the
PBEQ-Solver (43,44) to calculate the electrostatic poten-
tial of proteins using the CHARMM-GUI (45). The
PBEQ-Solver can be used to calculate protein electrostatic
potential and solvation energy, protein–protein electro-
static interaction energy and pKa of a titratable residue.
We also explored the use of APBS (46) in training and
testing our models, finding that calculations based on
PBEQ produced models with a somewhat higher true-
positive rate; however, as APBS is a popular and more
automatable option for electrostatics calculation, we
provide scripts for APBS that reproduce as closely as
possible the calculation we performed using PBEQ.

Several parameters must be specified when solving the
Poisson–Boltzmann equation using the PBEQ-Solver,
such as the dielectric constant for the protein interior,
the solvent dielectric constant, salt concentration, the
grid spacing in the finite-difference and the distance
between a protein atom and a grid point. We used all
PBEQ default values except for the assignment of the di-
electric constant for the protein interior (2.0), the coarse
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finite-difference grid spacing (1.0 Å) and the fine finite-dif-
ference grid spacing (0.5 Å). Values on the fine grid were
used for all described calculations.

At each atom, the electrostatic potential of nearby grid
points was averaged to create an atomic-scale electrostatic
feature. Local averaging of the electrostatic potential at
grid points between the van der Waals and solvent access-
ible surfaces was performed, using a solvent probe radius
of 1.4 Å. For each atom, values for the electrostatic po-
tential at grid points were averaged at grid points outside
the protein’s van der Waals surface but within a distance
that is the sum of the atom radius and the solvent radius.
Three additional groups of features (seven features/group)
were derived by moving the shell slightly outward, by
radius offsets 0.1, 0.3 and 0.5 Å. The region of the shell
maintains a width of 1.4 Å, regardless of the offset, but the
regions move farther away from the van der Waals surface
as the offset is varied. Mathematically, this is equivalent to
adding the offset value to the radius of all the atoms and
repeating the previous calculation described for the van
der Waals and solvent accessible surfaces. Figure 1 illus-
trates the details of this calculation at the atom level.
Figure 2 illustrates the change in residue level features as
the surface offset is increased.

Next, we derived local sums and averages of the residue-
level electrostatic features in the neighborhood of the
target residue. The sum was taken at neighboring
residues within 7 Å of the target residue, and sums that
both included and excluded the target residue were used as
features. In addition to the sums, the average values were
also used as features. Finally, values for each target
residue electrostatic feature (described in the previous
paragraph) were ordered from lowest to highest and
normalized by the sequence length within each protein,
which defines a relative electrostatics feature with values
between 0 and 1. The same calculation was applied to the
average value at neighboring residues (excluding the target
residue) as described earlier in the text, to define a relative
electrostatics feature in the local environment surrounding
the residue. Thus, each residue-level electrostatic feature
generates six additional features that are derived from it
based on local sum/average and normalization.

Surface curvature (Features 42–48). We used the
residue-level curvature values as reported by the
program SURFCV (47) as features. We also derived
local sums and averages, both including and excluding
the target residue, using calculations similar to those
described for the electrostatic potentials. We also derived
the normalized ranked values for the residue curvature
and the neighbor average curvature feature, again follow-
ing the calculations described in the previous section.

Local atomic density (Features 49–98). Local atomic
density has been used as a feature to predict hot spots in
our previous works (48–50). In this study, we tested
features related to local atomic density to determine
their effect on prediction of DNA-binding sites. Using
Fast Atomic Density Evaluator (FADE) (51), a 3D grid
of points surrounding the protein was generated. Grid
points whose distance to the molecule is <3 Å is a
FADE point. At each FADE point, a shape score is also
generated. These calculations can detect knobs and holes

at the residue-scale, whereas the previously described
curvature calculations can identify larger scale features,
such as the saddle shapes of protein–DNA interfaces.
A 10 Å sphere, divided into nested 1 Å shells, is placed

at the (geometric) center of each target residue. Within
each shell, a feature is defined by adding all the shape
values for FADE points within that shell. This produces
10 features. A second group of 10 features normalizes the
shape features values by the volumes of their respective
shells. The number of FADE points within each shell com-
prises another group of 10 features. This group of features
is also normalized by the shell volume to produce an add-
itional set of 10 features. Finally, Z-scores for these
normalized features produced an additional 10 features.
Residue microenvironments (Features 99–164). In

addition to the locally averaged shape and electrostatic
features defined previously, several groups of features
based on local microenvironments were defined. In the
first case, a distance cutoff equal to 5 Å using all
residues was applied, and the second definition used a
distance cutoff equal to 7.0 Å applied only to surface
residues. The following residue microenvironment
features were calculated: the total number neighboring
residues, the total number of individual amino acid neigh-
bors, the total charge, the total hydrophobicity, the total
number of rotatable single bonds and the total number of
weighted rotatable single bonds. Several of these features
were used in our KFC2 hot spot model (50).
We also calculated the total secondary structure values

and the total secondary structure similarity values of the
neighbor residues. First, scores of �1.0, 1.0 and 0.0 were
assigned to residues with ‘H’, ‘E’ and all other secondary
structure types, respectively (Feature 2). Combined second-
ary structure values of neighbor residues were calculated
according to the microenvironment definitions. A second-
ary structure similarity score between the target residue and
neighbor residues was also derived. For example, if the
secondary structure value of the target residue was the
same as one of the neighbor residues, their similarity
score was set to 1.0; otherwise, the similarity score was
0.0. Using this definition, we calculated the total similarity
score between the target residue and neighbor residues.
Finally, normalized values for several of these features,

obtained by dividing the features by the number of neigh-
boring residues, were used as additional features.
Non-local polar and electrostatic microenvironments

(Features 165–180). In addition to the local microenvir-
onments defined by neighboring residues, we examined the
use of features defined within two distance bands that are
relevant to DNA binding. In the canonical DNA B-con-
formation, the two neighboring phosphates and base pairs
are separated by specific distances. If a DNA-binding
residue is involved in a hydrogen bond with DNA, there
is greater likelihood in finding another H-bond donor at
an appropriate spacing able to facilitate a second
hydrogen bond. Based on this hypothesis, we created
two features by counting residues whose H-bond donors
are within a certain distance of a H-bond donor in the
target residue, using distance bands of 5–8 Å and 11–
14 Å. The latter distance is comparable in scale with the
width of the B-DNA minor groove.
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We performed a similar calculation for electrostatic
features in the same distance bands, starting from the
basic residue-level electrostatic feature (Feature 14), to
derive additional non-local electrostatic microenviron-
ment features. As with the other electrostatic features,
sums, averages and normalized rank features were
generated. Features were generated both by including
and excluding the target residue when performing the
calculation.
PSSM (Features 181–480). Our PSSM features were

derived from multiple sequence alignments generated by
PSI-BLAST (52), using the NCBI non-redundant
database (53), dated October 16 16:36:39 2011. The
search was limited to three iterations with e-value thresh-
old 10�3, which is the same calculation used by DISPLAR
(13). These are the only sequence-based features used in
our model, accounting for 300 of 480 features. These
features cannot be added independently of one another
but must be added in groups.
Each group of features is a subset of the PSSM matrix

for a short window of residues, containing log likelihood
scores for each of the 20 amino acids at each position of

the window. Thus, if we have a target residue and are
looking at 3 residues on either side of this target residue,
the window has length 7, and the total number of features
(corresponding to the entries of the PSSM matrix) is 140.
We generated the feature groups using various window
sizes having 2–7 flanking residues on each side of the
target residue, based on the multiple sequence alignments
as described earlier in the text. The values of the PSSM
features do not change as we change the window size. The
PSSM values are entirely determined from the multiple
sequence alignment, and only the number of PSSM
features changes with the window size.

RESULTS

Feature selection and predictive ability

As described in the ‘Introduction’ section, other works
have explored the use of features based on electrostatics,
PSSM and the distribution of specific amino acids as im-
portant predictive features. For this reason, we paid
special attention to these categories of features, first

Figure 1. The figure illustrates calculation of the atom-level electrostatic feature within a shell offset 0.5 Å from the van der Waals surface. The grid
on which the electrostatic potential is calculated is shown relative to the molecule, shown in dark gray, and the atom at which the feature is
calculated is marked using a black dot. Electrostatic potential values at grid points within the light gray annular region are those averaged to
generate the feature for this atom. Grid points inside the 0.5 Å offset surface are excluded from the calculation. The light gray annular region is 1.4 Å
in width, regardless of the offset used to define the shell.
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doing individual feature analysis on these categories of
features, from which we began our iterative feature selec-
tion process. We note that the PSSM features are standard
calculations that have been used in other works, and the
amino acid microenvironments are based on simple calcu-
lations. The electrostatic features, on the other hand, are
our own novel constructs that have not appeared in prior
work. They exhibit interesting behavior near the protein
surface, and they factor strongly into the predictive
accuracy of our model.

Predictive accuracy of electrostatic features. We
calculated features based on the electrostatic potential
within different shells near the protein surface, as
described in the ‘Materials and Methods’ section.
Because these features had not been used in our own or
previous works, we were interested to determine the
quality of models that could be obtained by using them
as individual features. The models were trained on the
1000 random subset used for feature selection, and the
results reported represent the statistics for training param-
eters resulting in the best F1 Score using leave-one-out

cross-validation, which may be different according to the
specific feature. Also, these are not intended as highly pre-
dictive models, and thus they have much lower accuracy
than DBSI; instead, this analysis is meant to suggest
relative differences between the individual features on
small subsets of the training data, which helps guide our
feature selection process.
Table 1 shows results for single feature analysis for four

of the electrostatic features in each shell. The pattern of
behavior is interesting as the shells move away from the
protein surface. For the features calculated using electro-
static potentials within the first shell, between the van der
Waals and solvent accessible surface, the Sensitivity is low
(0.06–0.16), but the Specificity is high (0.96–0.99). Thus,
although the false-positive rate is remarkably low, these
features result in few true-positive predictions. Predictions
in the next shell, which is 1.4 Å in width but 0.1 Å outside
the van der Waals surface, exhibit similar ranges for
Sensitivity (0.08–0.18) and Specificity (0.97–0.99).
As the bands move outward from the surface of the

protein, the behavior transitions sharply. When the shell
is offset 0.3 Å beyond the van der Waals surface, the
Sensitivity jumps (0.22–0.30), whereas the Specificity
drops somewhat (0.87–0.93). At the farthest shell, with
offset 0.5 Å, Sensitivity continues to improve (0.23–0.33),
and the Specificity increases relative to its previous drop
(0.88–0.97).
The best F1 scores of models obtained for individual

electrostatic features in various shells were 0.26, 0.27, 0.32
and 0.40, moving outward. This implies that features

Figure 2. The basic residue-level electrostatics feature is mapped onto
the surface of the Nucleosome Core Particle (PDB 1KX5). The feature
calculated in the shell between the van der Waals and solvent accessible
surface (top) shows patches where this feature takes on negative values.
When this feature is calculated for the shell that is shifted 0.5 Å
outward, some patches flip from negative to positive. Thus, a region
that might otherwise seem unfavorable to DNA binding is now seen to
have the correct biophysical characteristics for recognition.

Table 1. The best model for each electrostatic feature on a subset

with 1000 data points

Electrostatic feature Sensitivity Specificity Precision F1

ESP_T (Feature 14) 0.06 0.99 0.63 0.10
AVE_ESP (Feature 17) 0.10 0.98 0.63 0.26
AVE_ESP1 (Feature 18) 0.10 0.98 0.53 0.17
RANK_AVEESP1 (Feature 20) 0.16 0.96 0.44 0.23

ESP_T_0.1 (Feature 21) 0.08 0.98 0.54 0.14
AVE_ESP_0.1 (Feature 24) 0.13 0.98 0.55 0.21
AVE_ESP1_0.1 (Feature 25) 0.09 0.99 0.59 0.16
RANK_AVEESP1_0.1 (Feature 27) 0.18 0.97 0.53 0.27

ESP_T_0.3 (Feature 28) 0.25 0.87 0.31 0.28
AVE_ESP_0.3 (Feature 31) 0.25 0.88 0.31 0.28
AVE_ESP1_0.3 (Feature 32) 0.30 0.88 0.35 0.32
RANK_AVEESP1_0.3 (Feature 34) 0.22 0.93 0.42 0.29

ESP_T_0.5 (Feature 35) 0.33 0.88 0.38 0.35
AVE_ESP_0.5 (Feature 38) 0.23 0.97 0.60 0.33
AVE_ESP1_0.5 (Feature 39) 0.31 0.94 0.54 0.40
RANK_AVEESP1_0.5 (Feature 41) 0.26 0.94 0.47 0.33

The number of the feature, as listed in Supplementary Table S3, is
given in parentheses. Models were trained on the individual features
related to electrostatics, in search of individual features with high pre-
dictive value. Predictive value in this case was measured using the F1
Score, which favored models having high Specificity but low to
moderate Sensitivity. The best results were obtained for features
calculated using the shell between the surfaces offset 0.5 Å from the
van der Waals and solvent accessible surfaces. Based on this observa-
tion, we later checked whether use of more distant surfaces improved
our final model, but this was not the case. The predictive value of the
models trained on these individual features has F1 Scores that are fairly
low, but in combination with other features, we will derive significantly
better models.
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calculated in the more distant shells have higher predictive
value, at least as individual features. We tested slightly
more distant shells in training the final DBSI model to
ensure additional improvements were not possible, and
there was no improvement over those obtained using
shells with offset 0.5 Å.
Predictive accuracy of PSSM features. PSSM matrices

for window sizes 5, 7, 9, 11, 13 and 15 were assessed as
feature groups, again using 1000 random training
examples and leave-one-out cross-validation. It is not
possible to assess PSSM features individually, as the size
of the feature group is 20 times the window size. Table 2
suggests that the best predictive accuracy is obtained using
a window size of 11. Unlike the electrostatic features, in
which there was a significant difference among the
features, the PSSM feature groups generated fairly
similar results for the various window sizes. The lowest
F1 Score occurs for PSSM[i� 2, i+2], which has a
window size of 5 and returns Sensitivity=0.29,
Specificity=0.89 and F1=0.32. The highest F1 Score
is for PSSM[i� 5, i+5] with Sensitivity=0.32,
Specificity=0.93 and F1=0.40. The performance of
this model is roughly comparable with that of the best
single feature electrostatic model. However, in combining
these distinct predictive features, we expect to train a
model that achieves a better predictive accuracy.
Predictive accuracy of residue microenvironment

features. To assess the overall value of features related
to local distribution of specific amino acids, we trained a
model using these as a feature group, again using the 1000
data points used for the electrostatics and PSSM features.
Table 3 shows a comparison of the best electrostatic,
PSSM and microenvironment models. Remarkably, our
best single electrostatic feature performs significantly
better than the best model created with the 20 different
microenvironment features, as does the PSSM[i� 5, i+5]
feature group. The microenvironment model achieves
Sensitivity=0.24, Specificity=0.85 and F1=0.26,
whereas both the electrostatics and PSSM models have
F1=0.40 and higher Sensitivity and Specificity values.

Feature selection and SVM parameter optimization.
Using the iterative procedure described in the ‘Materials
and Methods’ section, based on 1000 random training
examples, we first looked for the best model that used
only a single electrostatic feature and PSSM group.
From this, we arrived at our starting model with a
feature combination consisting of PSSM[i� 3, i+3] and
NEAR_ESP1_0.5 (Table 4). The first feature is the PSSM
matrix with window size 7, and the latter is the total elec-
trostatic potential at grid points near the target residue in
the shell at offset 0.5 Å, including the target residue.

Next, we applied the iterative procedure, as described in
‘Materials and Methods’ section, until the F1 Score
converged. From all converged models, we identified the
best feature combination in this study, which contains the
following 164 features: NEAR_ESP_0.3, NEAR_ESP1_
0.5, Polar Atom Availability (PAA), nRN1-nRN20,
PSSM[i� 3, i+3] and nnear_PTN. In Supplementary

Table 4. Progressive feature combinations used to develop DBSI

Iteration Feature
combination

Sensitivity Specificity Precision F1

1 NEAR_ESP1_0.5 0.41 0.92 0.53 0.47
PSSM[i� 3, i+3]
(Features 37,

261–400)
2 NEAR_ESP1_0.5 0.41 0.94 0.60 0.49

PAA
PSSM[i� 3, i+3]
(Features 13,37,

261–400)
3 NEAR_ESP1_0.5 0.41 0.95 0.63 0.50

NEAR_ESP_0.3
PAA
PSSM[i� 3, i+3]
(Features 13,29,37,

261–400)
4 NEAR_ESP1_0.5 0.43 0.95 0.63 0.51

NEAR_ESP_0.3
PAA
nnear_PTN
PSSM[i� 3, i+3]
(Features 13,29,37,

175,261–400)

Based on the best combination of NEAR_ESP1_0.5 and the PSSM
features, we successively introduced additional features. Descriptions
of all features are in Supplementary Table S3.

Table 2. The best models for PSSM-based features based on a subset

with 1000 training data points

PSSM features Sensitivity Specificity Precision F1

PSSM[i� 2, i+2] 0.29 0.89 0.37 0.32
(Features 281–380)
PSSM[i� 3, i+3] 0.28 0.93 0.48 0.35
(Features 261–400)
PSSM[i� 4, i+4] 0.30 0.94 0.54 0.38
(Features 241–420)
PSSM[i� 5, i+5] 0.32 0.93 0.52 0.40
(Features 221–440)

The feature numbers, as listed in Supplementary Table S3, are given in
parentheses. These groups are nested so that the second group contains
the first, and so on, up to the last group, which consists of all PSSM-
based features. The predictive performance was comparable among the
different groups, and although the inclusion of larger scoring windows
improved performance somewhat, the improvement was statistically
insignificant.

Table 3. Feature comparison and selection based on a subset with

1000 data points

Feature Sensitivity Specificity Precision F1

AVE_ESP1_0.5 0.31 0.94 0.54 0.40
(Feature 39)
Local Amino Acid 0.24 0.85 0.27 0.26
Microenvironment
(Features 133–152)
PSSM[i� 5, i+5] 0.32 0.93 0.52 0.40
(Features 221–440)

Training results for best electrostatic-based feature (Table 1), best
PSSM-based feature group (Table 2), and best residue microenviron-
ment feature group are compared.
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Table S3 and Table 4, these are given, respectively, as
Features 13, 29, 37, 133–152, 175 and 261–400. The itera-
tive process selected the single feature nRN11, corres-
ponding to local LEU microenvironment, but we added
the other 19 amino acids as a feature group. In the
‘Discussion’ section, we revisit the definition of these par-
ameters and the possible biological reasons why they have
predictive value toward prediction of DNA-binding sites.

After identifying the best feature combination, we
wanted to determine the best C parameter, G parameter
and J parameter for the final model. Because our training
data set was so large, we randomly selected 6000 examples
on which to optimize these parameters. We used leave-
one-out cross-validation using different values of the C
parameter (0.0–64.0), G parameter (0.0–2.0) and J param-
eter (0.0–6.0). The cross-validation produced the best
results using parameter values C=0.4, G=0.0008 and
J=4.0 on this subset of 6000 training examples. These
parameters were then used to train the final DBSI model
on the entire training set of >50 000 training examples, on
which a 10-fold cross-validation was performed to assess
predictive performance.

Validation on training and independent data. Having es-
tablished the best feature combination and the best kernel
parameters, we applied 10-fold cross-validation to test the
final DBSI model (although parameters were optimized
using leave-one-out cross-validation on a small random
subset of the training data, the validation of the model
on the full training set is based on using 10-fold cross-
validation. This is because there can be interdependencies
within a protein interface, and removing only one residue
from the full training data in cross-validation increases
the likelihood that there is a highly related example
that will bias the prediction, such as in the case of a
protein dimer). DBSI achieved Sensitivity=0.70,
Specificity=0.85, Precision=0.50, Accuracy=0.82,
F1=0.58, Strength=0.77 and MCC=0.48 from
applying this validation procedure to the TRAIN-263
data set. Performance on the TEST-206 independent
data set was similar, returning Sensitivity=0.74,
Specificity=0.85, Precision=0.49, Accuracy=0.83,
F1=0.59, Strength=0.80 and MCC=0.51.

On the independent HOLO-30 data set of bound protein
structures, DBSI achieved Sensitivity=0.60, Specificity=
0.89, Precision=0.45, Accuracy=0.85, F1=0.52,
Strength=0.75 and MCC=0.44. On the APO-29 data
set of unbound protein structures, it achieved Sensiti-
vity=0.58, Specificity=0.89, Precision=0.42,
Accuracy=0.86, F1=0.48, Strength=0.73 and
MCC=0.41. Significantly, this demonstrates a similar per-
formance on unbound and bound protein structures, which
need not be true for all methods incorporating structure-
based features. The Sensitivity was lower for these data sets
in comparison with the TRAIN-263 and TEST-206 data
sets. However, these data sets are considerably smaller
than the others and do not represent an exhaustive test;
instead, the point of using these data sets was to compare
performance on bound and unbound protein structures.

Figure 3 shows the ROC curve for TRAIN-263, TEST-
206, APO-29 and HOLO-30. The AUCs for DBSI on
these data sets were 0.86, 0.88, 0.83 and 0.85, respectively.

These validation results are also summarized in Table 5.
The next section will give comparisons between our results
and those of established methods, and the ‘Discussion’
section will review features of the final model in greater
detail.
Comparisons with other methods. We have been careful

in making comparisons between models, and we have
provided exhaustive information to facilitate future com-
parisons with the DBSI model. All cross-validated and
independent validation results presented in this work are
available in Supplementary Tables S4–S8.
Our TRAIN-263 data set is nearly identical to the

training data of DISPLAR (13), except for one excluded
example, as previously noted. In addition, our definition
of DNA-binding residues is the same as that used in
creating the DISPLAR model. Thus, it was simple to
create a comparison of cross-validated results on the
TRAIN-263 data set using information from their pub-
lished data. Table 6 shows that the Sensitivity and
Specificity of DBSI were 0.70 and 0.85, whereas the
Sensitivity and Specificity of DISPLAR were 0.60 and
0.79, respectively. This results in significant improvements
in Accuracy (0.82 versus 0.76) and F1 Score (0.58 versus
0.47) when comparing DBSI with DISPLAR. Table 6
summarizes the comparison between these methods on
the TRAIN-263 data set. We also checked the result of
removing the one protein–RNA example from our 10-fold
cross-validation, finding no change in the Sensitivity or
Specificity (Supplementary Tables S9 and S10).
We performed comparisons with other methods using

the TEST-206 data set, which are summarized in Table 7.
Two methods, DBSI and DISPLAR, are structure-based
methods, whereas the others are all sequence-based
methods. We have only assessed the performance of the

Figure 3. The ROC curves of the TRAIN-263, cross-validation results,
along with the TEST-206, HOLO-30 and APO-29 predictions. In each
case, the AUC is greater than 0.8, which indicates that DBSI is a highly
predictive model.
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sequence-based methods on surface residues, to create a
more fair comparison with structure-based methods that
can easily rule out buried residues. This reduces the false-
positive rates for the sequence-based methods but does not
impact their true-positive rates. Results for the sequence-
based methods were compiled using metaDBSite (12). The
Sensitivity of the sequence-based methods ranged from
0.46 to 0.64, with DP-Bind achieving the best result. The
sequence-based methods had lower Specificity (0.72–0.80)
than either DBSI (0.85) or DISPLAR (0.89). There is no
accepted metric for deciding the ‘best’ model, but looking
at the composite scores for Accuracy, F1 and Strength
suggests that DP-Bind (0.77, 0.47, 0.72), BindN-rf (0.79,
0.46, 0.70) and DISPLAR (0.83, 0.51, 0.72) are most
highly predictive on this data set. The results also show
that DBSI offers a notable improvement over these excel-
lent prior works. The most direct comparison can be made
with DISPLAR, which also performs best relative to other
models in our assessment. What is interesting to note in
comparing DBSI with DISPLAR is that they have an
identical Accuracy (0.83) and yet DBSI has a considerably

higher Sensitivity (0.74 versus 0.54) on this data set. This
very much reflects the imbalance between positive and
negative examples in our classification problem, as only
15% or so of surface residues in the training data bind
DNA, and thus a relatively small difference in Specificity
(0.85 versus 0.89) accounts for this effect. In this context,
we feel that a few extra false positives (which might be
scattered randomly across the protein surface) are a
small before pay in exchange for such a dramatic
increase in the true-positive rate. As we were finalizing
revisions for this article, we also became aware of a rela-
tively new structure-based method DR_bind (54) using
electrostatics, shape and evolutionary data. Benchmark
results on their test data suggest a much lower
Sensitivity (0.35–0.40) for DR_bind in comparison with
typical results obtained for DBSI, although their
reported Specificity values are notable (0.86–0.97).

In addition to the composite data for the TEST-206
data set, it is interesting to see how DBSI performs
when given a test case unrelated to its training data and
how it performs on more highly related examples. We

Table 7. Comparison between DBSI and several other DNA-binding site prediction methods on the TEST-206 data set

Method Sensitivity Specificity Precision Accuracy F1 Strength MCC

DBSI 0.74 0.85 0.49 0.84 0.59 0.80 0.51
DISPLAR 0.55 0.89 0.48 0.83 0.51 0.72 0.42
BindN 0.46 0.76 0.27 0.72 0.34 0.61 0.18
BindN-rf 0.56 0.83 0.38 0.79 0.45 0.69 0.34
DBS-PRED 0.46 0.73 0.25 0.69 0.32 0.60 0.16
DNABindR 0.60 0.72 0.29 0.70 0.39 0.66 0.25
DP-Bind 0.63 0.80 0.37 0.77 0.47 0.71 0.35
metaDBsite 0.54 0.80 0.34 0.76 0.42 0.67 0.29

DBSI 0–30% 0.68 0.84 0.43 0.82 0.53 0.76 0.44
DBSI 30–60% 0.81 0.87 0.58 0.86 0.68 0.84 0.61
DBSI 60–100% 0.76 0.86 0.51 0.85 0.61 0.81 0.54

DISPLAR 0–30% 0.50 0.89 0.45 0.83 0.47 0.70 0.38
DISPLAR 30–60% 0.65 0.88 0.55 0.84 0.59 0.76 0.50
DISPLAR 60–100% 0.56 0.89 0.49 0.84 0.52 0.73 0.43

DP-Bind 0–30% 0.62 0.79 0.33 0.76 0.43 0.70 0.32
DP-Bind 30–60% 0.69 0.79 0.41 0.77 0.51 0.74 0.40
DP-Bind 60–100% 0.62 0.82 0.39 0.79 0.48 0.72 0.37

In addition, we compare DBSI, DISPLAR and DP-Bind on three subsets of the TEST-206 data. Proteins in these subsets have homology in the
ranges 0–30, 30–60 and 60–100% to examples the TRAIN-263 data set.

Table 5. Predictive performance of DBSI on the training and independent data sets relative to a variety of performance metrics

Data Set Sensitivity Specificity Precision Accuracy F1 Strength MCC AUC

TRAIN-263 0.70 0.85 0.50 0.82 0.58 0.77 0.48 0.86
TEST-206 0.74 0.85 0.49 0.84 0.59 0.80 0.51 0.88
APO-29 0.58 0.89 0.42 0.86 0.48 0.73 0.44 0.83
HOLO-30 0.60 0.89 0.45 0.85 0.52 0.75 0.41 0.85

Table 6. Comparison of cross-validated results for DBSI and DISPLAR on the TRAIN-263 data set

Method Sensitivity Specificity Precision Accuracy F1 Strength MCC

DBSI 0.70 0.85 0.50 0.82 0.58 0.77 0.48
DISPLAR 0.60 0.79 0.39 0.76 0.47 0.70 0.34
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compared DBSI with the top-performing sequence-based
method (DP-Bind) and structure-based method
(DISPLAR) on three subsets of the TEST-206 data. One
subset, comprising about half the data, contains examples
having <30% sequence identity to any example in the
TRAIN-263 data set; a second subset contains examples
with 30–60% sequence identity; the third subset contains
examples with greater than 60% sequence identity. The
Specificity of each method was fairly consistent across
each three subsets of the data, whereas the Sensitivity
was more varied. In each case, DBSI is the method with
the best Sensitivity while maintaining a comparable
Specificity to other methods. Interestingly, performance
was best for examples in the 30–60% similarity range for
all three methods. DBSI’s performance for the 0–30% and
60–100% subgroups was consistent with variations
observed for the 10-fold cross-validation (Supplementary
Table S5).

Finally, we performed a direct comparison of DBSI,
DISPLAR and DP-Bind on the HOLO-30 and APO-29
data sets (Table 8). The predictive performance achieved
for DBSI on unbound proteins is nearly as good as that
obtained for bound proteins. DBSI predicted the surface
residues of APO-29 with a F1 Score of 0.48, better than
those of DISPLAR (0.35) and DPBIND (0.41). It is worth
noting that the statistical performance of both DBSI and
DISPLAR, particularly Sensitivity, is lower for these data
sets than for the TRAIN-263 and TEST-206 sets, whereas
for DP-Bind, the statistical results appear comparable.
The benefit of structure-based analysis over sequence-
based prediction is less dramatic on these examples but
still evident in the results. Moreover, these examples
show that DBSI is not overly sensitive to protein conform-
ational changes observed on binding DNA.

DISCUSSION

To build the DBSI model, we generated 480 different
features and created a large training data set with >50 000
surface residues. It was important to reduce the number of
features in the final model because too many features may
result in over-fitting. Our strategy consisted of several stages
of model refinement. By selecting 1000 examples for the
feature selection, it was possible to check a wide range of
feature combinations and SVM training parameters in
search of good predictive combinations. Using too many
training examples at this stage would have been prohibi-
tively slow. To refine the SVM training parameters, it was
beneficial to include more training data, as the final

parameters can have a significant effect on the quality of
the predictive model. Thus, we used 6000 examples from the
training data for purposes of tuning the SVM parameters.
The final cross-validation and trained model were built

using TRAIN-263 set, which contains >50 000 data
points. The process we followed, in addition to being ef-
ficient, also ensures that we have not over-fitted our
features and model parameters to the training data. Our
process also returned superior results to a simple proced-
ure implemented using Random Forest (36). However, it
is possible that our approach to feature selection and
model training can be improved, and in the ‘Software
and Data Availability’ section, we describe how to
obtain a table of our calculated feature values for those
interested to apply their own techniques to the full collec-
tion of features described in this work. This offers the
opportunity for machine learning specialists to improve
on models for protein–DNA binding without needing to
implement their own feature collections.
Given the many important past studies of protein–DNA

recognition in relation to electrostatic forces (3,8,26–30), it
is important to highlight how our use of electrostatics is
novel in this context. To our knowledge, the annular
averages and banded features we define in this work have
not been defined in any prior publication related to molecu-
lar electrostatics. The electrostatic potential is much
smoother along the solvent accessible surface than along
the solvent excluded surface, with the former often exhibit-
ing much larger patches of positive and negative potential.
By exploring the potential at points somewhat outside the
molecular surface, we take advantage of this fact to remove
noise in the calculation of electrostatic features. In addition,
our feature calculations involve averages within surface
shells, which provide additional smoothing. The feature se-
lection process demonstrated a stronger signal for calcula-
tions offset from the molecular surface, demonstrating the
value of this smoothing approach. In addition, features that
average electrostatics in bands distant from the target
residue allow us to capture coupling between electrostatic
environments at distances that exceed the Debye length.
Our starting point was a model based on the best com-

bination of a single electrostatics feature and PSSM
group. The next feature chosen by the iterative process
was Polar Atom Availability (Feature 13), which indicates
the number of polar atoms not involved in internal
hydrogen bonds. Hydrogen bonding is of known import-
ance to protein–DNA interactions (25), and hydrogen
bond donors in particular can signal a site for recognition
owing to the negative charge of DNA. The next two

Table 8. Comparison between DBSI, DISPLAR and DP-Bind on the HOLO-30 and APO-29 data sets

Method Sensitivity Specificity Precision Accuracy F1 Strength MCC

DBSI 0.60 (0.58) 0.89 (0.89) 0.45 (0.42) 0.85 (0.86) 0.52 (0.48) 0.75 (0.73) 0.44 (0.41)
DISPLAR 0.38 (0.35) 0.91 (0.92) 0.40 (0.35) 0.85 (0.85) 0.39 (0.35) 0.65 (0.63) 0.30 (0.26)
DP-Binda 0.61 (0.60) 0.79 (0.79) 0.34 (0.30) 0.77 (0.76) 0.44 (0.41) 0.70 (0.69) 0.32 (0.30)

aThere are two HOLO-30 examples, 3c46_A and 3ei2_A, and two APO-29 examples, 2po4_A and 3ei3_A, that could not be included in the DP-Bind
results because their sequence lengths are larger than 1000. Also, the difference in results between the two data sets for DP-Bind is due to the
inclusion of one additional example in the HOLO-30 data set, as sequence-based predictions are unaltered by protein conformation.
Results in parentheses are for the APO-29 data, whereas other numbers are for the HOLO-30 data.
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stages added additional electrostatics features, one local
(Feature 29) and one in a banded microenvironment
(Feature 175). The banded microenvironment feature
averaged electrostatic feature values at residues at dis-
tances between 11 and 14 Å from the target residue, not
inclusive of the target residue. This feature is highly
unique to our model and examines the electrostatic envir-
onment at a distance that is near that to the width of the
B-DNA minor groove. Examined in conjunction with the
local electrostatic environment, this feature indicates a
banded electrostatic pattern that may be present on
some DNA-binding surfaces. The final feature selected
by the model was the number of leucine residues within
5 Å of the target residue. We added the entire 5 Å amino
acid microenvironment group (20 features) when training
the final DBSI model.
We performed a detailed analysis of the banded electro-

statics and leucine features, the final two features used in
improving the model. For these two features, we tested the
effect of removing the feature and retraining the model.
The model was retrained on a small subset (1000
examples) of the TRAIN-263 data previously used for
feature selection and applied to remaining examples.
Within the predictions, we are interested to examine
changes in classification. For the banded electrostatics
feature, the classification changed for �5% of the data
set. The banded electrostatics feature resulted in a net
increase of both true-positive and true-negative predic-
tions. This feature likely helps to classify true negatives
in isolated, positively charged regions having some of
the local characteristics of a DNA-binding site but
lacking the global characteristics involving cooperative
effects over longer distances. The biggest net gains in
true positive prediction were seen for ARG, SER and
ASN, which are all hydrogen bond donors.
For the leucine feature, changes to the predictive

patterns were less dramatic, altering the prediction in
�0.25% of cases. The biggest net gains in true-positive
predictions were seen for ARG and ASN sidechains.
This feature may reflect cooperative effects between
hydrophobic and polar sidechains, but the data are too
few to be conclusive.
Finally, it is worth noting that DBSI is not specifically

trained to distinguish DNA-binding sites from sites that
use similar biophysical principles to recognize other
targets, such as double-stranded RNA or negatively
charged membranes. In the recent Critical Assessment of
PRedicted Interactions Target 57 (55), DBSI predicted the
binding site of heparin to a hypothetical protein BT4661,
on noting that heparin binds to the DNA interaction site
of proteins such as RNA polymerase (56). DBSI’s predic-
tions identified the correct binding site, which was distinct
from that predicted for heparinase, a structural (and likely
functional) homolog of BT4661 (57).

SOFTWARE AND DATA AVAILABILITY

A simple resource for applying the DBSI model is avail-
able at http://dbsi.mitchell-lab.org. An Excel spreadsheet
with all NAR Online Supplementary Data is available by

request. As a practical note, please do not use our final
model to generate results for comparisons with your own
models if you are running examples from our training data
set. The results of these calculations will be biased in our
favor; therefore, report our cross-validated results for
these examples. Finally, a complete table of calculated
values for all 480 features on the training and independent
test data sets can also be provided as a resource to those
interested in applying new feature selection and training
methods to our raw feature data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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