
pharmaceuticals

Review

Descriptors of Cytochrome Inhibitors and Useful Machine
Learning Based Methods for the Design of Safer Drugs

Tyler C. Beck 1,2 , Kyle R. Beck 3, Jordan Morningstar 2, Menny M. Benjamin 1,2 and Russell A. Norris 2,*

����������
�������

Citation: Beck, T.C.; Beck, K.R.;

Morningstar, J.; Benjamin, M.M.;

Norris, R.A. Descriptors of

Cytochrome Inhibitors and Useful

Machine Learning Based Methods for

the Design of Safer Drugs.

Pharmaceuticals 2021, 14, 472. https://

doi.org/10.3390/ph14050472

Academic Editors: In-hwan Baek and

Jung-woo Chae

Received: 10 April 2021

Accepted: 13 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun Street, QF204,
Charleston, SC 29424-2303, USA; beckt@musc.edu (T.C.B.); benjamim@musc.edu (M.M.B.)

2 Regenerative Medicine & Cell Biology, Medical University of South Carolina, 171 Ashley Avenue, 604F CRI,
Charleston, SC 29424-2303, USA; morningj@musc.edu

3 College of Pharmacy, The Ohio State University, 217 Lloyd M Parks Hall, 500 West 12th Ave.,
Columbus, OH 43210, USA; beck.735@buckeyemail.osu.edu

* Correspondence: norrisra@musc.edu

Abstract: Roughly 2.8% of annual hospitalizations are a result of adverse drug interactions in the
United States, representing more than 245,000 hospitalizations. Drug–drug interactions commonly
arise from major cytochrome P450 (CYP) inhibition. Various approaches are routinely employed in
order to reduce the incidence of adverse interactions, such as altering drug dosing schemes and/or
minimizing the number of drugs prescribed; however, often, a reduction in the number of medications
cannot be achieved without impacting therapeutic outcomes. Nearly 80% of drugs fail in development
due to pharmacokinetic issues, outlining the importance of examining cytochrome interactions during
preclinical drug design. In this review, we examined the physiochemical and structural properties
of small molecule inhibitors of CYPs 3A4, 2D6, 2C19, 2C9, and 1A2. Although CYP inhibitors
tend to have distinct physiochemical properties and structural features, these descriptors alone are
insufficient to predict major cytochrome inhibition probability and affinity. Machine learning based in
silico approaches may be employed as a more robust and accurate way of predicting CYP inhibition.
These various approaches are highlighted in the review.
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1. Introduction

Roughly seventy-four percent (74%) of all physician office visits involve drug therapy,
with 2.9 billion drugs prescribed annually [1]. These prescriptions accounted for USD
335 billion in patient costs in 2020 [2]. Half of Americans take at least one prescription
drug and nearly a quarter of persons use three or more medications concomitantly [1].
An estimated 6.7% of hospitalized patients experience an adverse drug reaction with a
fatality rate of 0.32%, responsible for 106,000 deaths annually [3]. These data suggest
adverse drug reactions are the fourth leading cause of death in the United States [3–5].
Furthermore, these statistics exclude ambulatory adverse drug reactions and are therefore
likely an underrepresentation of the morbidity and mortality burden of adverse drug
reactions. Nearly 350,000 adverse drug reactions occur in nursing homes annually, where
polypharmacy is commonplace [6]. Many of these drug–drug interactions are avoidable
with proper patient medication management and by deprescribing. While efforts to reduce
drug–drug interactions are important, a reduction in the number of medications cannot
always be achieved without impacting therapeutic outcomes.

Adverse drug reactions commonly occur due to drug–drug interactions as a result of
major cytochrome P450 (CYP) inhibition [7]. CYPs are heme-containing membrane-bound
enzymes that predominantly reside in the smooth endoplasmic reticulum and mitochon-
dria of hepatocytes and in the intestines [8,9]. In mammals, 57 CYP isoforms have been
identified with the function of performing the oxidative metabolism of xenobiotics and
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endogenous compounds [8]. Of the 57 CYP isoforms, 5 CYPs (CYPs 3A4, 2D6, 2C19, 2C9,
and 1A2) are responsible for the metabolism of more than 80% of clinically used drugs [7]
(Figure 1). Enzyme inhibition occurs when two co-administered drugs share an identical
mechanism of biotransformation and compete for metabolism in the same enzyme receptor
site [9]. As such, the more potent inhibitor will prevail, interrupting biotranformation,
resulting in the diminished metabolism of the competing drug. This results in elevated
serum drug levels of the unmetabolized drug, increasing the probability of adverse toxico-
logical outcomes. This is especially important for drugs with a narrow therapeutic index,
such as chemotherapeutics. It is important to note that inhibitors of major cytochromes can
promote adverse drug reactions when administered as monotherapy. Inhibitors of major
cytochromes may alter their own metabolism at high doses, leading to toxic plasma drug
accumulation. These interactions pose a significant safety risk and should be examined
closer during the initial drug design process. The CYP system and drug biotransformation
has been reviewed extensively elsewhere [10].
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Figure 1. Cartoon depiction of cytochrome inhibition and pie chart. (A) Orally bioavailable drugs are absorbed from the
intestinal lumen into the mesenteric capillaries and transported to the liver via the portal vein. Many drugs undergo phase I
biotransformation by major cytochromes within hepatocytes. This process enzymatically converts lipid-soluble compounds
to more water-soluble compounds to facilitate the excretion. In the event of polypharmacy and/or the co-administration
of CYP inhibitors, serum accumulation of unmetabolized drugs may occur, leading to untoward toxicities. (B) Pie chart
demonstrating the breakdown of the five major cytochromes and their contributions to the oxidative metabolism of
xenobiotics and organic endogenous molecules.

Traditionally, pharmacokinetics has been neglected in preclinical drug design. Roughly
four in five investigational new drugs fail as a result of absorption, distribution, metabolism,
excretion and toxicity (ADMET) issues [11]. Tools that assist in ADMET prediction may
be advantageous in early drug design by reducing the drug attrition rate in advanced
preclinical- and early clinical-stage studies. In particular, the design of drugs devoid
of major cytochrome inhibition would reduce the burden of drug–drug interactions in
patients where polypharmacy is unavoidable. Several reviews exist that focus on plat-
forms that utilize a diverse range of prediction methods [12–20]. Many of these reviews
focus on outdated tools, as well as platforms that are exclusively available through a
fee-based licensing model. More recently, numerous machine learning-based platforms
have emerged that are user-friendly, are not as computationally expensive as pre-existing
methods, and demonstrate improved prediction accuracy. In this review, we will explore
the various physiochemical and structural descriptors of CYP inhibitors, as well as superior
machine learning prediction platforms freely available to investigators.
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2. Physiochemical Properties

Historically, physiochemical properties have been used as key descriptors to predict
CYP inhibition liability. Cytochrome P450 enzymes are inherently lipophilic and thus have
a predilection for lipophilic substrates [21–25]. It has been hypothesized that molecular
weight and lipophilicity represent key physiochemical characteristics useful in predicting
CYP binding affinity [21,26–28]. In further exploring this hypothesis, we examined CYP
inhibitors deposited in the ChEMBL database to further illustrate the relationship between
molecular weight, lipophilicity, and the IC50 of various major cytochromes (Figure 2).
ChEMBL hosts a database of over one million small molecules with reported bioactivities
and calculated physiochemical properties [29]. Data on the inhibitors of each individual
cytochrome were extracted for further analysis. Duplicates, as well as data points that
were flagged as potentially unreliable by ChEMBL, were withheld from the analysis. The
inhibitors of major cytochromes tend to be lipophilic in nature (Figure 2A). Inhibitors of
CYP3A4, CYP2C19, and CYP2C9 were especially lipophilic (ALogP = 4.21, 4.18, and 4.28,
respectively). Inhibitors of CYP3A4 and CYP2C9 tend to be larger structures, whereas
inhibitors of CYP1A2 tend to be small. These data make sense considering the shape
and size of the CYP 3A4, 2C9, and 1A2 enzyme receptor sites, which will be reviewed in
Section 3. It should be noted, however, that although inhibitors of CYP3A4 and CYP2D6
tend to be larger in size, many of their substrates are small-sized molecules, such as
furanocoumarin, diltiazem, mifepristone, buproprion, and fluoxetine.
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Figure 2. Summary of the physiochemical properties of major cytochrome inhibitors and their impact on half-maximal
inhibitor concentration (IC50). (A) Molecular weight and lipophilicity of validated inhibitors of each individual cytochrome.
(B–F) Graphs representing IC50 versus either molecular or ALogP for CYPs 3A4 (B), 2D6 (C), 2C19 (D), 2C9 (E), and 1A2 (F).
CYP3A4 and CYP2C9 inhibitors demonstrated a weak statistically significant negative relationship between molecule size,
lipophilicity, and IC50 (i.e., larger, more lipophilic molecules, tend to have lower IC50 values); however, the exact opposite
trend was observed for CYP1A2. No relationship was identified for CYPs 2D6 and 2C19.
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We then examined the relationship between molecular weight, lipophilicity (ALogP)
and IC50 by performing simple linear regression and Pearson’s correlation analyses. In do-
ing so, we identified several statistically significant correlations between physiochemical
properties and CYP half-maximal inhibitory concentration; however, these mild correla-
tions do not adequately explain the majority of the data (Figure 2B–F). Next, we performed
a multiple linear regression analysis for each major cytochrome to further assess how
multiple explanatory variables, such as molecular weight and lipophilicity, impact the half-
maximum inhibitory concentration (Supplemental Materials Tables S1–S5). A statistically
significant relationship (p < 0.05) between molecular weight, lipophilicity, and IC50 was
identified for CYPs 3A4 (R = 0.136), 2C19 (0.125), 2C9 (0.132), and 1A2(0.309). A statistically
significant relationship was not identified for CYP2D6 (R = 0.024, p = 0.510). As observed
with the simple linear regression data, exclusively weak relationships were observed that
poorly describe the data. Although CYP inhibitors tend to fit a distinct physiochemical
profile, these descriptors alone are insufficient to predict the probability of cytochrome
inhibition and CYP half-maximal inhibitory concentration.

3. Structural Properties

The individual CYP isoforms come in different shapes, sizes, and compositions,
contributing to unique substrate specificity profiles. The key structural features of a few im-
portant CYP inhibitors have been elucidated using X-ray crystallography, pharmacophore
modeling, and various other in silico approaches [30–38]. In particular, the structural
features of CYP3A4 inhibitors have been well studied [30,39–43]; however, data on the
specific structural features of inhibitors for the other four major cytochromes are limited
and warrant further investigation. In this section, we review the structural features of CYP
enzymes and highlight the structural features of well-known, potent CYP inhibitors. In par-
ticular, emphasis is placed on molecular weight, surface area, lipophilicity (LogP), rotatable
bonds, hydrogen bond acceptors, and hydrogen bond donors. The molecular weights and
surface areas of small molecules are key driving factors that dictate the strength of binding
interactions. In general, an enzyme or protein with a small binding cavity will be more
compatible with a smaller drug, etc. Lipophilicity is an important descriptor that is used to
predict CYP interactions. A majority of CYP inhibitors possess numerous aromatic rings
and hydrophobic moieties capable of interacting with lipophilic CYP-active sites. Rotatable
bonds determine the flexibility of a drug molecule and are important for inhibitor binding
interactions with certain CYPs (i.e., CYP3A4), and less important for other CYPs (i.e., CYPs
2D6 and 1A2). Lastly, hydrogen bond acceptor and donor moieties form specific binding
interactions with active site amino acids. These interactions were further explored using
molecular docking, which was performed using previously described methods [44–46].

3.1. CYP3A4

CYP3A4 is the most widely expressed and clinically significant cytochrome responsi-
ble for the biotransformation of 30.2% of xenobiotics that undergo hepatic clearance [47].
CYP3A4 is capable of oxidizing a wide array of bulky substrates with many different struc-
tural features. The versatile functionality of CYP3A4 is due to its large substrate-binding
cavity [47,48]. The active site cavity of CYP3A4 is open and flexible, capable of accom-
modating volumes ranging from 1173 to 2862 cubic angstroms (Å3) [39]. The CYP3A4–
ligand complexes formed upon substrate binding are incredibly flexible, explaining the
observed ligand promiscuity and diverse range of substrates capable of high-affinity bind-
ing interactions [49]. In further examining the 20 most frequently prescribed CYP3A4
inhibitors, we identified shared features in comparing the compounds (Figure 3). The most
frequently prescribed high-affinity CYP3A4 inhibitors have a very high molecular weight
(595.7 g/mol) and a large surface area (251.3 Å) (Figure 4). Additionally, these structures are
highly lipophilic (LogP = 4.0) and have many rotatable bonds and hydrogen bond acceptors
(9.7 and 8.6, respectively). These hydrogen bond acceptors are available to interact with key
amino acids within the CYP3A4 active site, including arginine 106 (R106), serine 119 (S119),
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threonine 309 (T309), and arginine 372 (R372). These data are consistent with previous
reports, suggesting that potent inhibitors of CYP3A4 are large, lipophilic molecules with
a significant degree of flexibility. It is important to note that while CYP3A4 inhibitors
are capable of diverse binding poses, there are a few high-energy binding interactions
that occur among all high-affinity binders. Molecules with a tertiary amine or imidazole
nitrogen frequently coordinate with heme-601 (HEM601) [12,50]. High-affinity CYP3A4
inhibitors are lipophilic, containing one or more aromatic rings capable of forming nu-
merous pi–pi stacking interactions with active phenylalanine (F) residues, including F108,
F213, F215, F304, and occasionally F57. A majority of high-affinity inhibitors make polar
interactions with D76, R106, S119, and R372. Additionally, CYP3A4 inhibitors typically
possess a nitrogen or allylic position as a site of oxidation [48]. Lastly, high-affinity CYP3A4
inhibitors have approximately two hydrogen bond acceptors. These moieties commonly
accept hydrogens from aspartate 76 (D76) and E374. Due to the highly flexible nature of
the enzyme-binding pocket and the diversity of ligand-binding interactions, predicting
drug–drug interactions involving CYP3A4 is difficult.
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In addition to hepatic metabolism, CYP3A4 drug metabolism also occurs in the
gastrointestinal (GI) tract. This is true for the oral chemotherapeutic ibrutinib, used to
treat chronic lymphocytic leukemia (CLL), which makes roughly equal contributions to
hepatic and intestinal CYP3A4 metabolism [51]. Moreover, some agents exclusively inhibit
CYP3A4 in the GI tract (minimally effective hepatic CYP3A4), resulting in increased drug
concentrations. One specific example is the co-administration of grapefruit juice with drugs
that are metabolized by CYP3A4. Grapefruit juice irreversibly inhibits intestinal, but not
hepatic, CYP3A4, increasing systemic drug exposure [52]. These examples highlight the
significance of CYP3A4 inhibition in tissues outside of the liver.
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lipophilic, and flexibility molecules capable of accepting numerous hydrogen bonds. Molecular weight is represented as
g/mol or Daltons (Da) and surface area is represented in angstroms (Å). Values were calculated using pkCSM ADMET [38].
(B) Heat map representing the frequency of ligand-to-amino acid binding interactions in the top ten most energetically
favorable binding poses in docking against CYP3A4 (PDB ID: 1W0E). (C) Docking image demonstrating ketoconazole,
a potent CYP3A4 inhibitor, making numerous pi–pi stacking interactions (blue dotted lines) with F108, F213, and F304,
as well as energetically favorable contacts (yellow dotted lines) with D76 and S119. (D) Moieties commonly associated with
high-affinity CYP inhibition in the literature, including the presence of a furan ring, tertiary amine, or acetylene group [39].
(E) 3D docking image of furanocoumarin, a CYP3A4 inhibitor found in the skin of grapefruit. Furanocoumarin makes
several pi–pi stacking interactions and energetically favorable contacts. The furan ring of furanocoumarin specifically lends
to pi–pi stacking interactions within the CYP3A4 receptor site. (F) 3D docking image of diltiazem, an antihypertensive
drug and calcium channel blocker known for inhibiting CYP3A4. Diltiazem forms many pi–pi stacking interactions and
energetically favorable contacts.

3.2. CYP2D6

CYP2D6 comprises 2% of hepatocyte CYP content and is responsible for the biotrans-
formation of 20% of drugs that undergo hepatic metabolism [53]. The active site cavity
of CYP2D6 has a more restricted volume of 510 cubic angstroms (Å3) [39,54]. The active
site of CYP2D6 is acidic in nature and contains several phenylalanine residues capable
of pi–pi stacking with substrates [55]. As such, it has been reported that CYP2D6 has a
predilection for basic substrates [56]. In examining six well-known high-affinity CYP2D6
inhibitors, the structural similarities include a primary or secondary amine, heterocycles,
and numerous aromatic moieties (Figure 5). These CYP2D6 inhibitors are relatively small
in composition and are moderately lipophilic. It should be noted that in examining 2296
CYP2D6 inhibitors, the average size was 400.61 Da, in comparison to 319.6 Da observed
in the six most frequently prescribed drugs. Regardless of the discrepancy, the typical
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CYP2D6 inhibitor is smaller than the average FDA-approved drug (480 Da) [57]. Addition-
ally, CYP2D6 inhibitors are typically flat, planar structures capable of procuring a positive
charge. The active site contains two carboxylic acid residues from Q216 and D301 that
are critical for substrate recognition and binding selectivity [12]. These acidic residues
frequently interact with the primary and/or secondary amine groups present on CYP2D6
inhibitors. The aromatic moieties make energetically favorable pi–pi stacking interactions
with F120, F483, and less commonly F112. Potent inhibitors commonly contain heterocycles,
primary amines, and carbonyl groups that coordinate with the iron of heme-601 (HEM601)
within the CYP2D6-active site. Additionally, the average inhibitor contained 4.2 rotatable
bonds and 3.3 hydrogen bond acceptors, most frequently interacting with glutamine 214
(Q214) and T309. CYP2D6 inhibitors contain approximately one hydrogen bond donor,
which occasionally interacts with aspartate 301 (D301). Lastly, valine 374 (V374) forms van
der Waals interactions with hydrophobic residues of inhibitors.
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Figure 5. Structural investigation of 6 well-known high-affinity CYP2D6 inhibitors. (A) CYP2D6 inhibitors commonly have
one or multiple aromatic moieties, heterocycles, and primary or secondary amines. Red and green moieties interact with
F112, F120, F247, F483, and/or heme-601; blue moieties interact with DD301 and/or heme-601, and orange interact with
D301. (B) CYP2D6 inhibitors are rigid, moderately sized structures with varying physiochemical properties. (C) CYP2D6
inhibitors are flat, planar structures capable of becoming positively charged. (D) Heat map representing the frequency of
ligand-to-amino acid binding interactions in the top ten most energetically favorable binding poses in docking against
CYP2D6 (PDB ID: 3QM4). Key amino acids include F120, Q214, D301, T309, V374, and F483. Frequent interactions are
observed with heme as well. (E) Two-dimensional ligand interaction map showing the secondary amine and carbonyl group
of buproprion coordinating with Heme-601. (F) Three-dimensional docking image depicting fluoxetine interaction with
F120, T309, V374, and F483. (G) Three-dimensional docking image showing paroxetine forming pi–pi stacking interactions
with F120, F247, and F83, as well as energetically favorable contacts with Q214 and T309. (H) Three-dimensional docking
image showing celecoxib interacting with F120, F112, A209, and D301.
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As described with CYP3A4, it is difficult to predict half-maximal inhibition con-
centration using physiochemical and structural features alone given the diverse binding
capabilities of CYP2D6. A study by Vandenbrink et al. demonstrated that CYP2D6’s inhibi-
tion potency is substrate-dependent [58]. In examining the binding kinetics of 20 known
inhibitors of CYP2D6 in the presence of four clinically relevant substrates, atypical inhibi-
tion kinetics were observed for each individual inhibitor–substrate pairing. The substrates
with constrained amine moieties impaired inhibitor binding affinity by more than 5-fold
when compared to other structurally unrelated substrates. These data add an additional
layer of difficulty in making reliable predictions for cytochromes such as CYP2D6 that
interact with a wide range of structurally diverse substrates. Lastly, CYP2D6 is highly
polymorphic, with the largest phenotypic variation among the human CYPs [59]. Approx-
imately 80 different allelic variants and 130 genetic variations have been characterized
in patients, with phenotypic consequences ranging from loss of function to ultra-rapid
metabolization. Therefore, it should be acknowledged that while CYP2D6 predictions may
be accurate in a majority of cases, the data will be subject to significant variability due to
the genetic heterogeneity present in the global population, which will be an unavoidable
roadblock in preclinical drug design.

3.3. CYP2C19

CYP2C19 metabolizes 6.8% of drugs that undergo hepatic biotransformation. Despite
being considered a minor hepatic cytochrome based on its relative contribution, CYP2C19
is responsible for metabolizing several clinically important drugs, including omeprazole
and phenytoin [60]. As such, many pharmacologists view CYP2C19 as a major cytochrome.
Inhibitors of CYP2C19 share frequently observed structural features (Figure 6). Struc-
tures contain numerous aromatic moieties, heterocycles, carbonyl groups, and aromatic
nitrogen atoms. Several well-characterized high-affinity CYP2C19 inhibitors are small-
sized molecules, but they tend to be less lipophilic than inhibitors of other cytochromes.
In general, however, CYP2C19 inhibitors tend to be medium-sized molecules with variable
lipophilicity. These results are consistent with previous reports, claiming that lipophilicity
does not impact CYP2C19 inhibitory potency [12,61]. On average, these molecules are less
flexible than typical CYP inhibitors (3.8 rotatable bonds) and have approximately three
hydrogen bond acceptors. The hydrogen bond acceptor moieties commonly interact with
asparagine 204 (N204). It is important to note that the location of the hydrogen bond
acceptors helps dictate binding affinity. CYP2C19 inhibitors should have a minimum of
two hydrogen bond acceptors within close proximity to a site of oxidation [12]. CYP2C19
inhibitors contain heterocycles and heterocyclic nitrogen atoms that frequently coordi-
nate with Heme-501 (HEM501). Numerous pi–pi stacking interactions occur between
small-molecule arylene groups and F114 and F476. Additionally, G296 forms frequent
interactions with hydroxyl and carbonyl groups present on CYP2C19 inhibitors. CYP2C19
inhibitors make numerous hydrophobic contacts with isoleucine 205 (I205), alanine 292
(A292), glycine 296 (G296), A297, and I362.

Similar to CYP2D6, a variety of genetic polymorphisms exist within the CYP2C19 iso-
form. Roughly 5% of Caucasians and 20% of Asian populations possess genetic variations
resulting in reduced or complete loss of enzyme function [61–64]. Although less common,
genetic variations may also result in enhanced metabolic activity, which also impacts drug
handling and excretion. These polymorphisms complicate predictions at the population
level and should be taken into consideration.
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Figure 6. Structural investigation of 9 well-known high-affinity CYP2C19 inhibitors. (A) Common structural features
seen in CYP2C19 inhibitors include aromatic moieties, heterocycles, carbonyl groups, and aromatic nitrogens. Green
moieties interact with F114, F476, and/or heme; blue and red moieties interact with heme; orange interact with G296,
and purple interact with water and I205. (B) The nine most frequently prescribed CYP2C19 inhibitors are small; however,
in examining 1144 CYP219 inhibitors, the average molecule is moderately sized. (C) Heat map representing the frequency
of ligand-to-amino acid binding interactions in the top ten most energetically favorable binding poses in docking against
CYP2C19 (PDB ID: 4GQS). Key amino acids include F114, G296, F476. Frequent interactions are observed with heme-501 as
well. (D) Three-dimensional ligand docking showing nootkatone interacting with I205, F746 and water molecules within
the active site. (E) Three-dimensional docking image depicting phenobarbital interacting with F114, G296, F476, and water
molecules within the active site. (F) Two-dimensional ligand interaction diagram showing the cyclic nitrogen and arylene
group of ticlopidine coordinating with heme-501. (G) Two-dimensional interaction map showing voriconazole coordinating
with heme, while simultaneously interacting with G296 and F476.

3.4. CYP2C9

CYP2C9 is responsible for the biotransformation of 12.8% of drugs that undergo
hepatic metabolism. In particular, CYP2C9 plays a key role in the metabolism of com-
monly used medications, such as non-steroidal anti-inflammatory drugs (NSAIDs) and
warfarin [12]. The active site of CYP2C9 is rather large and has a cavity volume ranging
from 978 to 1271 cubic angstroms (Å3) [39,65,66]. Inhibitors of CYP2C9 are typically aro-
matic compounds with heterocycles, aromatic nitrogens, primary amines, and halogens
(Figure 7). Heterocycles, aromatic nitrogens, and primary amines coordinate to the iron of
heme-501 (HEC501). Aromatic moieties form extensive pi–pi stacking interactions with
F114 and F476. Halogens commonly interact with T364. Additionally, carbonyl, hydroxyl,
and carboxylate groups interact with R108. These particular interactions lock the substrate
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into a position with close proximity to the iron allowing for oxidative metabolism to oc-
cur [67]. CYP2C9 inhibitors perform a large array of binding poses; however, binding
with R108, F114, and R476 is most commonly observed in the most energetically favorable
docking interactions. CYP2C9 inhibitors tend to be medium-sized semi-flexible molecules
that are moderately lipophilic and acidic, with a minimum of two to four hydrogen bond
acceptors. These hydrogen bond acceptors most commonly interact with R97, R108, N217,
T364, and S365. As seen with the other major cytochromes, CYP2C9 is highly polymorphic,
with more than 20 activity-altering genetic variants identified [67,68].
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Figure 7. Structural investigation of 8 well-known high-affinity CYP2C9 inhibitors. (A) The common structural features
seen in CYP2C9 inhibitors include aromatic rings, aromatic nitrogens, heterocycles, primary amines, and halogens. Purple
moieties interact with N217; magenta interact with T364; green interact with F114, F476, and/or heme; blue interact with
S365; red interact with Q214; and orange interact with heme. (B) Molecules tend to be moderately sized with varying
lipophicity. CYP2C9 inhibitors are moderately flexible and possess numerous H-bond acceptors. (C) Heat map representing
the frequency of ligand-to-amino acid binding interactions in the top ten most energetically favorable binding poses in
docking against CYP2C9 (PDB ID: 1OG5). Ligand interactions are highly diverse, with key interactions including R108, F114,
F476, and heme-501. (D) Three-dimensional docking image depicting sulfaphenazole forming pi–pi stacking interactions
between F114 and F476, as well as energetically favorable contacts with V113. (E) Three-dimensional docking image
portraying voriconazole interacting with F114, T364, and F476. (F) Two-dimensional ligand interaction map depicting
sulfaphenazole interacting with R97 and F114, while coordinating with the iron of heme-501.

3.5. CYP1A2

CYP1A2 is responsible for the biotransformation of 8.9% of drugs that undergo hepatic
metabolism, including antipsychotics and antibiotics [69]. Additional CYP1A2 substrates
include caffeine, paracetamol, and aflatoxin B1. Interestingly, CYP1A2 activity is commonly
induced by dietary constituents, including various vegetables and polyaromatic hydrocar-
bons, whereas ingredients such as cumin and turmeric can inhibit enzyme function [70,71].
The active site of CYP1A2 is small and planar with a volume of 375 to 390 cubic angstroms
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(Å3), and thus CYP1A2 substrates tend to be small, planar molecules [12,39]. In examining
eight well-known high-affinity CYP1A2 inhibitors, the shared structural features include
multiple aromatic moieties, heterocycles, secondary amines, and halogens (Figure 8). These
high-affinity CYP1A2 inhibitors are small, moderately lipophilic, aromatic structures with
5.6 rotatable bonds and 4.5 hydrogen bond acceptors. Molecular docking studies indicate a
diverse range of binding interactions. Key interactions include pi–pi stacking with F125,
F226, and F260, the coordination of secondary amines and aromatic moieties with heme-900
(HEM900), and halogen interactions with T124 and T321. Amino acids such as T124, T223,
and T321 can function as hydrogen donors to inhibitors. Lastly, I386 and L497 form Van
der Waals interactions with hydrophobic moieties.
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Figure 8. Structural investigation of the 8 most well-characterized high-affinity CYP1A2 inhibitors. (A) Common structural
features seen in CYP1A2 inhibitors include aromatic rings, heterocycles, primary amines, and halogens. Magenta moieties
interact with T124 or T321; green interact with F125, F226, F260, and/or heme; blue interact with G316; red interact with
F226, F260 and/or heme. (B) CYP1A2 inhibitors are small, planar structures and are moderately flexible with numerous
H-bond acceptors. (C) Heat map representing the frequency of ligand-to-amino acid binding interactions in the top ten most
energetically favorable binding poses in docking against CYP1A2 (PDB ID: 2HI4). Ligand interactions are highly diverse,
with key interactions including T124, T223, F226, F260, G316, T321, and heme-900. (D) Three-dimensional docking image
depicting Fluvoxamine interacting with F226, F260, G316, and T321. (E) Three-dimensional docking image portraying
ciprofloxacin interacting with T124, F125, F226, F260, G316, and L497. (F) Two-dimensional ligand interaction map depicting
ciprofloxacin interacting with F125 and F226, while coordinating with heme-900.

3.6. Summary

Understanding the ADMET properties of compounds early in pre-clinical drug design
is paramount to lead selection and clinical success. Although key physicochemical and
structural descriptors are shared among CYP inhibitors (Table 1), these features on their
own are insufficient for predicting CYP inhibition and binding affinity. The most effective
means of predicting CYP inhibition is through the use of computational approaches that
incorporate physiochemical and structural descriptors from large data sets, while using
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advanced algorithms to take into consideration molecule flexibility (number of rotatable
bonds), the number of hydrogen bond donors and acceptors, pharmacophores, molecule
charge, prospective metabolites, and other key descriptors. Machine learning-based in
silico approaches will be reviewed in Section 4.

Table 1. Key characteristics of major cytochrome p450 enzymes and their inhibitors.

Enzyme Inhibitors

CYP Cavity Size (Å3) Description Description Common Descriptors

3A4 1173–2862

Large, open, flexible,
aromatic, diverse range of
substrates, oxidation site is
commonly a nitrogen or
allylic position

Large, structurally diverse,
lipophilic, aromatic, highly
flexible, high hydrogen bond
accepting capacity

One of more aromatic moieties,
furan rings, tertiary amines,
acetylene groups

2D6 510

Flat, restricted volume,
acidic, aromatic, site of
oxidation proximal to a
primary or secondary amine

Flat, planar, aromatic
structures capable of
procuring a positive charge,
with 2–3 hydrogen
bond acceptors

One of more aromatic moieties,
heterocycles, primary or
secondary amines capable of
carrying a positive charge

2C19 Not reported Aromatic, moderately
flexible, similar to CYP2C9

Medium sized molecules,
variable lipophilicity,
aromatic, oxidation site close
to two hydrogen
bond acceptors

Several aromatic moieties,
heterocycles, carbonyl groups,
and aromatic nitrogen atoms

2C9 978–1271 Larger cavity volume,
moderately flexible

Aromatic, lipophilic,
moderately flexible, several
hydrogen bond acceptors

Aromatic, heterocycles, aromatic
nitrogens, primary amines,
and halogens

1A2 375–390 Small cavity volume,
planar, rigid

Small, planar, aromatic,
lipophilic, slightly acidic

Several aromatic moieties,
heterocycles, secondary amines,
and halogens

4. Machine Learning-Based Methods

Current in vitro and in vivo experimental approaches to investigate drug ADMET
properties are highly effective in assessing pharmacokinetics; however, such approaches
are extraordinarily expensive and are commonly performed late in drug development
during IND-enabling studies [13]. In silico investigation of CYP interactions early in drug
development allows investigators to select for compounds that are less likely to fail in
late-stage preclinical or early clinical trials due to undesirable pharmacokinetics (Figure 9).
Such tools exist and are effective at predicting CYP inhibitors, common sites of metabolism
(SoMs), and prospective drug metabolites. In this section, we highlight computational
approaches available for ADMET predictions, focusing primarily on CYP inhibition and
metabolism. The aim of this discussion will be to highlight emerging platforms that utilize
machine learning-based methods, with a special emphasis placed on applications that are
free to the user and available through a public webserver. A complete overview of platforms
available through a fee-based licensing model, as well as older free prediction methods
and methods for analyzing CYP molecular dynamics, are reviewed elsewhere [13–20].

Various platforms capable of making enzyme-inhibitor predictions exist. These tech-
niques use an array of methods, ranging from molecular docking with flexible multi-
dimensional QSAR to machine learning based approaches. It should be noted that flexible
docking-based methods, such as VirtualToxLab, are computationally expensive, take longer
to receive results, and commonly require a software license [13,72]. Machine learning-based
tools are capable of producing accurate results in a timely fashion and can be hosted via
a publicly available web server. These platforms tend to be more user-friendly, and are
commonly able to screen a large number of structures. These platforms each use unique
descriptors and utilize their own methods of data generation. As such, the accuracy of
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said platforms is subject to variability, contingent on the descriptors and molecular finger-
prints used, the number of input structures used to build and train the model, and how
the data are interpreted. In this section, we review the best publicly available machine
learning-based platforms free to the scientific community.
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Figure 9. Workflow for incorporating ADMET predictions into early-stage drug design and development. Drug candidates
can be readily screened using high-throughput computational approaches. Drugs with acceptable pharmacokinetic
parameters as defined by the investigator will proceed to in vitro screening. Drugs with unacceptable pharmacokinetic
properties will be triaged early in drug development. The following approach will result in a reduction in ADMET-related
drug failures, reducing the cost of drug discovery efforts.

4.1. pkCSM

pkCSM is a free, publicly available web service (http://structure.bioc.cam.ac.uk/
pkcsm; accessed on 8 February 2021) that offers a wide range of ADMET predictions [50,73].
pkCSM retains no chemical information submitted to the server and is capable of producing
results in five minutes or less. Structural information is input to the server as a SMILES
code and submitted for analysis. The platform is able to predict the results of key ADMET
experiments commonly performed in preclinical drug discovery. Absorption predictions
include caco-2 permeability, water solubility, human intestinal absorption, p-glycoprotein
substrate or inhibitor, and skin permeability. Distribution predictions include the volume of
distribution, the fraction unbound, and blood–brain barrier permeability. Metabolic predic-
tions include cytochrome P450 inhibitors (CYPs 3A4, 2D6, 2C19, 2C9, and 1A2), as well as
CYP2D6/3A4 substrates. The excretion predictions made include renal OCT2 substrate and
total clearance. Lastly, toxicity predictions include rat LD50, AMES toxicity, T. Pyriformis
toxicity, minnow toxicity, maximum tolerated dose, oral rat chronic toxicity, hepatotoxic-
ity, skin sensitization, and hERG I and II inhibitors. pkCSM predictions are made using
graph-based signatures to train, test, and predict central ADMET properties for drug devel-
opment. Exact details on the number of structures used to train each individual parameter
are available online (http://biosig.unimelb.edu.au/pkcsm/static/help/pkcsm_theory.pdf;
accessed on 8 February 2021). Input molecules are evaluated by the platform based on
key descriptors: (1) toxicophore fingerprint, (2) atomic pharmacophore frequency count
(hydrophobic, aromatic, hydrogen acceptor, hydrogen donor, positive ionizable, and nega-
tive ionizable), and (3) physiochemical and structural properties, including lipophilicity
(logP), molecular weight, surface area, number of rotatable bonds, and many more. pkCSM
is highly accurate, with Q/AUC values meeting or exceeding those of industry standard
ADMET prediction methods (CYP3A4: 0.780/0.847; CYP2D6: 0.853/0.843; CYP2C19:
0.808/0.879; CYP2C9: 0.807/0.868; CYP1A2: 0.802/0.876). Although platforms with compa-
rable or slightly superior CYP inhibitor predictive values exist, pkCSM is capable of making

http://structure.bioc.cam.ac.uk/pkcsm
http://structure.bioc.cam.ac.uk/pkcsm
http://biosig.unimelb.edu.au/pkcsm/static/help/pkcsm_theory.pdf
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highly accurate predictions on a wide range of relevant ADMET parameters, designating it
one the most well-rounded applications available.

4.2. DeepCyp

DeepCYP is a free, publicly available web service (http://repharma.pku.edu.cn/
deepcyp/home.php; accessed on 8 February 2021) that utilizes a multitask model for
concurrent inhibition prediction of the five most clinically relevant CYPs: 3A4, 2D6,
2C19, 2C9, and 1A2 [74]. Test item information is submitted as a mol.2 or comparable
file type with results achieved in minutes. Results appear as inhibition probabilities for
each individual cytochrome. DeepCYP was built and trained using a multitask autoen-
coder deep neural network (DNN) with chemical input from the PubChem and BioAssay
databases (>13,000 compounds). Descriptors and chemical fingerprints of inhibitors and
non-inhibitors were calculated using PaDEL-Descriptor software [74,75]. Totals of 1253
and 688 descriptors for PaDEL-1D&2D and PubChem datasets were used in model train-
ing, respectively. Examples of dataset descriptors and fingerprints include atom type
electrotopological state (Estate) descriptors, ClogP, molecular linear free energy, element
counts, ring counts, simple atom pairs, atom nearest neighbors, and SMARTS patterns.
Exact details on model development and training are available online [74]. The multi-
task DNN DeepCYP platform outperformed single-task models and traditional machine
learning methods, with average prediction accuracies of 0.864 for 10-fold cross-validation
and 0.887 for the external test datasets. Additionally, the method utilizes linear regression
models to determine how each task contributes to predictions, allowing the investigators
to identify conditions under which DeepCYP outperforms single task methods. These data
may be used to further optimize the model with time. The predictive power of DeepCYP
makes it one of the most accurate freely accessible methods available for concurrent CYP
inhibition predictions.

4.3. SuperCYPsPred

SuperCYPsPred is a free, user-friendly, publicly available web service (http://insilico-
cyp.charite.de/SuperCYPsPred/; accessed on 8 February 2021) that uses well-established
machine learning methods to predict inhibitor specificity for CYPs 3A4, 2D6, 2C19, 2C9, and
1A2 [7]. The webserver allows for the input of molecules in three different ways: (1) input
of a SMILES code, (2) PubChem structure search, or (3) drawing of custom structures in
ChemDoodle. The model was developed based on traditional machine learning random
forests methods, a commonly employed ensemble learning algorithm that is less prone
to class bias and overfitting [7,76]. Two chemical-based fingerprints were used in model
development: MACCS molecular fingerprints and Morgan circular fingerprints. The server
allows the user to select the preferred fingerprint, or both fingerprints, to be used in
prediction generation. Results are shown as active or inactive for each individual CYP with
assigned probabilities for the prediction. SuperCYPsPred is remarkably accurate; cross-
validation accuracy averaged 0.930 (CYP3A4: 0.92; CYP2D6: 0.84; CYP2C19: 0.97; CYP2C9:
0.97; CYP1A2: 0.95) and external validation averaged 0.882 (CYP3A4: 0.86; CYP2D6: 0.80;
CYP2C19: 0.95; CYP2C9: 0.90; CYP1A2: 0.90). Similar to DeepCYP, SuperCYPsPred is one
of the most accurate free resources for CYP specificity, making it an excellent screening tool
for pre-clinical drug design and development.

4.4. vNN-ADMET

vNN-ADMET is a free, publicly available web service (https://vnnadmet.bhsai.org/;
accessed on 8 February 2021) that offers a wide range of ADMET predictions, including
drug cytotoxicity, mutagenicity, cardiotoxicity, microsomal stability, hepatotoxicity, and cy-
tochrome specificity [77]. Additionally, the webserver allows for public use of the versatile
variable nearest neighbor (vNN) method for the custom design of novel models. The vNN
method is similar to the k-nearest neighbor (kNN) method: a non-parametric method that
uses pattern recognition of chemical features for classification and regression. One caveat

http://repharma.pku.edu.cn/deepcyp/home.php
http://repharma.pku.edu.cn/deepcyp/home.php
http://insilico-cyp.charite.de/SuperCYPsPred/
http://insilico-cyp.charite.de/SuperCYPsPred/
https://vnnadmet.bhsai.org/
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of the kNN method is that it always gives a prediction for a test compound regardless of
the degree of structural disagreement from the dataset. The vNN method is built using a
predetermined similarity criterion, which only considers the nearest neighbors that share
a defined degree of structural similarity (based on Tanimoto distance) to the input struc-
ture for prediction generation. A prediction is only made when valid nearest neighbors
are identified. The Accelrys extended-connectivity fingerprints with a diameter of four
chemical bonds (ECFP4) are used to identify structurally related compounds. Similar to
the aforementioned machine learning models, a 10-fold cross-validation procedure was
used to validate the model. The CYP inhibitor specificity results are portrayed as a cate-
gorical response (yes or no). vNN-ADMET is capable of making reliable CYP specificity
predictions, with cross-validation accuracy averaging 0.890 (CYP3A4: 0.88; CYP2D6: 0.89;
CYP2C19: 0.87; CYP2C9: 0.91; CYP1A2: 0.90), making the webserver an excellent resource
for medicinal chemists.

4.5. AdmetSAR 2.0

AdmetSAR is a free resource useful in the prediction of ADMET properties of novel
chemical entities (http://lmmd.ecust.edu.cn/admetsar2/; accessed on 8 February 2021) [78,79].
AdmetSAR 2.0 is an optimized version of AdmetSAR (1.0), now with 47 prediction models
(formerly contained 27 models). Training data were procured from DrugBank, ChEMBL,
CPDB, CYP450, and Tox21. Three chemical-based fingerprints were used in model devel-
opment: MACCS molecular fingerprints, Morgan circular fingerprints, and AtomParis;
all of which were implemented with RDKit. The scikit-learn package with python scripts
was used to implement various machine learning algorithms, including random forests,
support vector machines, and kNN. Supplementary details regarding method design and
development are available online [78]. Six descriptors were used to define the applicability
domain, including molecular weight, AlogP, number of atoms, number of rings, hydro-
gen bond acceptors, and hydrogen bond donors. The performance of binary models in
CYP specificity prediction via AdmetSAR averaged 0.784 (CYP3A4: 0.645; CYP2D6: 0.855;
CYP2C19: 0.806; CYP2C9: 0.802; CYP1A2: 0.815). Notably, CYP3A4 accuracy is lower
than that of the previously mentioned platforms (0.645). One exciting novel feature of
AdmetSAR 2.0 is ADMETopt—a module that allows users to perform molecule ADMET
optimization by scaffold hopping. Scaffold hopping is a procedure that replaces the query
molecule with a structurally similar scaffold that possess improved AMDET properties.
AdmetSAR, and more specifically ADMETopt, is an excellent free resource that can be used
in lead optimization.

4.6. SwissADME

SwissADME is a free, publicly available tool (http://www.swissadme.ch; accessed
on 8 February 2021) capable of predicting physicochemical properties, pharmacokinet-
ics, drug-likeness and medicinal chemistry friendliness [80]. Additionally, SwissADME
provides graphical representations of biological barrier permeation (BOILED-Egg) and a
Bioavailability Radar. Structures may be drawn directly into the webserver or submitted as
a SMILES code, with categorical cytochrome inhibition predictions made on CYPs 3A4, 2D6,
2C19, 2C9, and 1A2. SwissADME was built using the PubChem Bioassay dataset, which
contains 16,561 compounds with 50 chemical descriptors. SwissADME makes fast and
reliable predictions, with an average 10-fold cross-validation accuracy of 0.794 (CYP3A4:
0.77; CYP2D6: 0.79; CYP2C19: 0.80; CYP2C9: 0.78; CYP1A2: 0.72); a 10-fold cross-validation
AUROC (area under the receiver operating characteristic curve) average of 0.862 (CYP3A4:
0.85; CYP2D6: 0.85; CYP2C19: 0.86; CYP2C9: 0.85; CYP1A2: 0.90); an external validation
accuracy average of 0.788 (CYP3A4: 0.78; CYP2D6: 0.81; CYP2C19: 0.80; CYP2C9: 0.71;
CYP1A2: 0.84), and an external AUROC average of 0.864 (CYP3A4: 0.86; CYP2D6: 0.87;
CYP2C19: 0.87; CYP2C9: 0.81; CYP1A2: 0.91). SwissADME affords unique advantages,
allowing for the input of multiple molecules and for the user to export data in various
file formats. SwissADME analyzes small molecule composition to determine whether it

http://lmmd.ecust.edu.cn/admetsar2/
http://www.swissadme.ch
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violates or is in compliance with Lipinski’s Rule of Five and PAINS, two drug triage tools
used in industry to predict drug likeness.

4.7. CypRules

CypRules is a freely available webserver (http://cyprules.cmdm.tw/; accessed on
8 February 2021) that predicts inhibitors and non-inhibitors of the five major CYPs 3A4, 2D6,
2C19, 2C9, and 1A2 [81]. CypRules utilizes the same dataset as SwissADME for predictions;
however, CypRules utilizes decision trees in combination with the theory of information
entropy [13,81]. CypRules uses three descriptor tools: PubChem 2D Fingerprint, PaDEL-
Descriptor, and Mold2 [75,82]. Classification models utilize a C5.0 algorithm, which chooses
an attribute from the data that most effectively splits the initial dataset into enriched
subsets [81]. CypRules makes accurate predictions, with an average accuracy of 0.812
(CYP3A4: 0.73; CYP2D6: 0.90; CYP2C19: 0.86; CYP2C9: 0.77; CYP1A2: 0.80). An added
benefit of CypRules is the ability to perform virtual high-throughput screening of a large
set of testing compounds.

4.8. CypReact

CypReact is a freely available tool (https://bitbucket.org/Leon_Ti/cypreact; accessed
on 8 February 2021) capable of predicting reactants of the nine most important CYP en-
zymes: CYPs 3A4, 2E1, 2D6, 2C19, 2C9, 2C8, 2B6, 2A6, and 1A2 [83]. In addition to
predicting whether a test item will serve as a reactant of a given cytochrome, CypReact
is also capable of predicting sites of metabolism (SoMs), as well as the end result of the
interaction (“endpoint prediction”). This allows for the user to generate predictions on the
query molecule, as well as prospective metabolites. CypReact generates binary data on all
parameters (1 = true; 0 = false). The CypReact dataset was built using 1632 compounds ex-
tracted from Zaretzki et al. [84]. An additional 1053 non-reactant compounds were gathered
in order to improve the quality and predictive capacity of the dataset. Three chemical-based
fingerprints were used in model development: MACCS molecular fingerprints, PubChem
fingerprints, and ClassyFire27 fingerprint. CypReact employs an LBM learning algorithm
that considers a set of 2279 features of dataset compounds, including 36 physiochemical
properties. Additional information on model training and dataset selection is available
online [83]. CypReact makes reliable predictions, with AUROC values ranging from 0.83
to 0.92. Furthermore, CypReact outperforms other reactant prediction tools such as AD-
MET Predictor (AUROC = 0.75) and SMARTCyp (AUROC = 0.53). ADMET Predictor and
SMARTCyp are reviewed elsewhere [13,85,86]. The resulting metabolites may be screened
for CYP inhibition specificity and toxicity risk using the previously described platforms.
One criticism of CypReact is the user interface. The platform utilizes bitbucket, requiring
the use of rudimentary coding skills, making the model less user-friendly than the previ-
ously described methods. However, the inclusion of SoM prediction(s) makes CypReact a
gold standard prediction model.

5. Conclusions

More than half of drug failures are a result of poor ADMET. More specifically, drug–
drug interactions as a result of major cytochrome inhibition are commonplace and can lead
to life-threatening adverse drug reactions. A majority of pre-clinical-stage drug discovery
programs focus solely on binding affinity and selectivity [50]. Although binding affinity
is of utmost importance, ADMET properties ensure that a drug is properly absorbed,
distributed, and cleared; features that equally contribute to the success of a drug in the
clinic. As such, in silico approaches have been developed to be introduced during early
drug screening, with the goal of reducing the rate of drug attrition (Table 2).

http://cyprules.cmdm.tw/
https://bitbucket.org/Leon_Ti/cypreact
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Table 2. Summary of publicly available machine learning-based methods for cytochrome inhibition and metabolism.

Name CYPs Prediction Type ML Method No. Structures Avg. Accuracy 1 Additional Features

pkCSM
3A4, 2D6,
2C19, 2C9,

1A2
Inhibition Graph-based

signatures 18,000 0.810
(0.780–0.853)

Comprehensive
ADMET predictions

(23 total)

DeepCYP
3A4, 2D6,
2C19, 2C9,

1A2
Inhibition

Multitask
autoencoder
deep neural

network

13,000 0.864
(0.809–0.968)

Assigns
probabilities for
CYP inhibition

SuperCYPs-
Pred

3A4, 2D6,
2C19, 2C9,

1A2
Inhibition Random forests 41,963 2 0.930

(0.840–0.970)

Assigns
probabilities for
CYP inhibition

vNN-ADMET
3A4, 2D6,
2C19, 2C9,

1A2
Inhibition Variable nearest

neighbors 6261 0.890
(0.870–0.910)

AdmetSAR 2.0
3A4, 2D6,
2C19, 2C9,

1A2
Inhibition

Random forests,
support vector

machines,
k-nearest
neighbors

96,000 3 0.784
(0.645–0.855)

Comprehensive
ADMET predictions

(47 total);
ADMETopt for lead

optimization

SwissADME
3A4, 2D6l
2C19, 2C9,

1A2
Inhibition Support vector

machines 16,561 4 0.794
(0.720–0.800)

Predictions of
physicochemical

properties,
pharmacokinetics,
and drug likeness;
high throughput

CypRules
3A4, 2D6,
2C19, 2C9,

1A2
Inhibition Decision trees 16,561 0.812

(0.730–0.900) High throughput

CypReact

3A4, 2E1,
2D6,2C19,
2C9, 2C8,
2B6, 2A6,

1A2

Sites of
metabolism

LBM learning
algorithm 2685 Unavailable

Metabolite
predictions;

Additional CYPs

1 Cross-validation accuracy. 2 Sum of the number of compounds used for all five major cytochromes. The dataset includes inhibitors
and non-inhibitors and may include duplicates. 3 Includes compounds used to build ADMET models in addition to CYP inhibition
models. 4 Includes compounds used to establish physicochemical properties, pharmacokinetics, drug likeness and medicinal chemistry
friendliness models.

In silico approaches utilize a wide range of molecular descriptors to build and train
the models. Physiochemical descriptors are considered to be highly predictive of CYP
specificity and binding affinity. Thus, we explored the ChEMBL database, which contains
over 10,000 CYP inhibitors with individual items of data on molecular weight, lipophilicity
(ALogP), and half-maximal inhibitory concentration (IC50). Although CYP inhibitors share
common physiochemical features, molecular weight and lipophilicity alone are unable
to predict CYP half-maximal inhibitory concentration. CYP3A4 and CYP2C9 inhibitors
demonstrated a weak statistically significant negative relationship between molecule size,
lipophilicity, and IC50 (i.e., larger, more lipophilic molecules tend to have lower IC50
values); however, the exact opposite trend was observed for CYP1A2. No relationship
was identified for CYPs 2D6 and 2C19. We then explored the common structural features
of major cytochrome inhibitors, which are summarized above (Table 1). These features
are critically important in making predictions; however, these data alone have limited
predictive value without the help of machine learning-based methods. In this review,
we highlight eight machine learning-based approaches for the prediction of cytochrome
inhibition. These eight platforms are publicly available and free to the user. Based on
the average accuracies provided in the literature, SuperCYPsPred (0.930) appears to be
the most accurate tool for predicting CYP inhibition, followed by vNN-ADMET (0.890)
and DeepCYP (0.864). It should be noted, however, that each of the mentioned platforms
are capable of making reliable predictions on CYP inhibitor specificity and possess their
own unique features. pkCSM and AdmetSAR 2.0 are capable of predicting a suite of
ADMET properties. More specifically, pkCSM is capable of predicting the outcomes of
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commonly used in vitro ADMET assays, as well as human gastrointestinal absorption and
toxicity. Additionally, pkCSM provides the data on human volume of distribution and
clearance, which can be used to estimate drug half-life. Although pkCSM may not be the
most accurate machine learning-based platform discussed in this review, it is capable of
making rapid predictions on a broad range of parameters and is user-friendly. In addition
to predicting ADMET parameters, AdmetSar 2.0 hosts ADMETopt, a platform that assists
the user with lead optimization. All of the platforms described assign binary “yes” or
“no” predictions for CYP inhibition, with the exception of DeepCyp and SuperCypsPred;
these tools assign probabilities to their predictions. Probability assignment is useful, as it
allows the user to gauge the relative accuracy and utility of the prediction. SwissADME
makes predictions on physicochemical properties, pharmacokinetics, and drug likeness.
Physiochemical properties such as solubility are important for drug formulation and
in vivo exposure. Additionally, SwissADME assesses whether a test molecule violates
industry standard rules such as Lipinski’s Rule of Five. These predictions are important for
predicting the future success of drug candidates and should be considered during the early
stages of drug development. SwissADME and CypRules are capable of performing high-
throughput screening of large drug libraries. Lastly, CypReact features site of metabolism
and metabolite predictions. These predictions can be used to assess CYP reactivity and
prospective metabolite-driven toxicities. The goal of this article is to promote the use of
ADMET prediction software early in the drug design process in order to improve drug
discovery outcomes.
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