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Abstract
The retinoblastoma protein, Rb, was one of the first tumor suppressor genes identified as a result
of the familial syndrome retinoblastoma. In the period since its identification and cloning a large
number of studies have described its role in various cellular processes. The application of
conditional somatic mutation with lineage and temporally controlled gene deletion strategies, thus
circumventing the lethality associated with germ-line deletion of Rb, have allowed for a reanalysis
of the in vivo role of Rb. In the hematopoietic system, such approaches have led to new insights into
stem cell biology and the role of the microenvironment in regulating hematopoietic stem cell fate.
They have also clarified the role that Rb plays during erythropoiesis and defined a novel mechanism
linking mitochondrial function to terminal cell cycle withdrawal. These studies have shed light on
the in vivo role of Rb in the regulation of hematopoiesis and also prompt further analysis of the role
that Rb plays in both the regulation of hematopoietic stem cells and the terminal differentiation of
their progeny.

Introduction
Decisions to enter the cell cycle are regulated by the G1-S
phase restriction point [1]. One of the major molecular
circuits involved in this restriction point is centered on the
retinoblastoma protein (Rb) and is termed the "Rb path-
way" [2]. Through a series of sequential inhibitory phos-
phorylation events by cyclin dependent kinases (Cdk), Rb
family members are inactivated and release E2F proteins
which drive the cell through the G1 phase into S phase
where cell division will occur independent of extracellular
signals [3,4]. Mutations of Rb itself and other components
of the "Rb pathway" occur universally in human cancer,
where differentiation is perturbed, and cancer initiating
cells are thought to reacquire the capacity to self-renew
[5,6]. Rb has also been linked to the cell cycle arrest that
accompanies terminal differentiation. As such the study of

the role of these pathways in self-renewal will improve
our understanding not only of the normal regulation of
self-renewal but will also be applicable to understanding
the initiation and maintenance of cancer.

Hematopoiesis represents an attractive system in which to
study the role of the cell cycle in the regulation of cell fate.
Hematopoiesis is hierachically structured, defined cell
populations can be prospectively isolated and manipu-
lated using flow cytometry and rigorous analysis of stem
cell and lineage restricted progenitor function can be per-
formed using transplantation assays. Coupling of the
advances in in vivo genetic manipulation techniques, such
as Cre-lox technologies, with the study of hematopoiesis
and HSCs has led to rapid advances in our understanding
of the programs involved in the maintenance of HSC self-
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renewal and differentiation and in the identification of
transcription factors critical for lineage choice and identity
[7-13]. Recent studies have sought to define the role that
the cell cycle control machinery plays in the regulation of
HSC fate and in the differentiation of specific hematopoi-
etic lineages such as neutrophils and erythroid cells [14-
17]. These studies, particularly those focused on the retin-
oblastoma protein (Rb), have revealed new roles for the
cell cycle in the regulation of hematopoietic stem cells and
in the coupling of cell cycle arrest to cellular differentia-
tion. This review will focus on the role of Rb in HSC biol-
ogy and in the terminal differentiation of the erythroid
lineage.

A historical perspective on the role of Rb in hematopoiesis
Beginning with the initial descriptions of the germline
knockout mice for the Rb gene in 1992, a role for Rb in
hematopoiesis, and in particular erythropoiesis, was sus-
pected. Rb deficient embyros had a profound anemia,
proposed to lead to embryonic lethality, along with
marked neurodevelopmental defects [18-20]. However
upon further examination of chimeric mice it was noted
that Rb-null cells could contribute to hematopoiesis and
generate erythroid cells [21,22]. Hematopoietic contribu-
tion in the chimeric animals was largely normal. These
observations raised the possibility that the anemia in the
Rb-null embryos resulted from non-cell autonomous
defects.

The nature of the influence of other cell types, hematopoi-
etic or otherwise, to the described phenotypes remained
unclear and furthermore it was uncertain whether Rb had
any intrinsic role in erythropoiesis. The former question
was explored using several different approaches. One
group found that the presence of a wild-type placenta in
Rb-null embryos allowed their survival through the time
of birth, although these animals did not appear to have
completely normal development [23,24]. Using in vitro
culture approaches conflicting results regarding the
requirement for Rb became apparent. Rb was found to be
an intrinsic role in limiting the proliferative capacity of
erythroid progenitors during terminal erythroid differen-
tiation [25], or, alternatively, to be necessary in macro-
phages to properly support erythroid cells that develop in
a niche interaction involving these two cell types, termed
the "erythroid island" [26,27]. More recent chimeric anal-
ysis suggested that Rb was necessary for in vivo stress
responses and found a variety of variable phenotypes over
time in hematopoiesis of chimeric animals [28]. Unfortu-
nately, this work was limited because of the inability to
distinguish cell-autonomous defects from a role in other
cell types (such as macrophages) [28]. Additionally, some
of this phenotypic variation may represent the presence of
concomitant deletion of Rb in myeloid and niche cells

causing a myeloproliferative-type disorder, as has been
described [29].

The recent generation of conditional alleles of Rb and the
application of Cre-lox technology has allow the develop-
ment of complex in vivo models and a reanalysis of the
role of Rb in a variety of biological processes. Utilizing
conditional strategies, we and others have investigated the
role that Rb plays in the regulation of hematopoietic stem
cell biology and more recently sought to clarify the
requirement for Rb during erythropoiesis. These models
have revealed new insight not only into the biology of Rb
and its role in hematopoiesis but also more broadly into
the fundamental underlying processes that regulate
hematopoietic stem cells and into the coupling of cell
cycle exit to terminal differentiation.

Cell cycle regulation and hematopoietic stem cells
The continual production of blood cells is maintained by
a small number of stem cells (HSCs), which reside in a
specialized microenvironment in the adult BM, termed
the niche [30-32]. The niche is a complex three dimen-
sional system comprising cellular, extracellular and min-
eral components [33]. It is within the niche that HSCs
divide and undertake cell fate decisions to constantly
replenish hematopoiesis through the processes of differ-
entiation, ultimately producing mature blood cells, and
self-renewal which results in the production of more
HSCs to replenish and maintain the HSC pool throughout
life. The fine regulation of HSCs involves cell division
coupled with appropriate intrinsic and extrinsic cues, the
latter principally derived from the niche environment.

In steady state conditions HSCs are in a slowly dividing
state, termed relative quiescence, with a cell division cycle
in the mouse in the range of 2–4 wks [34,35]. This is in
contrast to the rapidly cycling hematopoietic progenitor
cells, which are more committed to differentiation than
HSCs. Engraftment of transplanted HSCs has been shown
to be dependent on cell cycle status, with only cells in the
non-cycling G0/G1 phase efficiently engrafting following
transplantation and contributing to stable long-term
hematopoiesis [36-39]. The slow cycling of HSCs acts to
spare them from acute toxicity (such as chemotherapy),
but may also prevent eradication of neoplastic cells
[40,41]. In part, the dramatic contrast in cell cycle status
between stem and progenitor cells has led to the hypoth-
esis that cell cycle regulation plays a fundamentally
important role in stem cell fate determination. This
hypothesis is supported by recent data demonstrating a
slower rate of division in Hoxb4hiPbx1lo cells, which
extensively self-renewal in vitro, compared to control cells
[42]. It is essential for an HSC to undergo cell division if
it is to self-renew, but how the cell division cycle is inte-
grated into the process of self-renewal is unclear. It is also
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unknown as to whether cell cycle regulation represents an
intrinsic or extrinsic modifier of HSC fate.

Negative regulators of both Cdk2 and Cdk4/6 activity,
and therefore Rb function, have been demonstrated to
have roles in regulating HSCs [43-47]. For the most part
however these phenotypes have been relatively subtle,
particularly when compared to hematopoietic pheno-
types apparent after disruption of transcription factors
such as C/EBPα [10] and Tel [9] amongst others, and are
often apparent only after serial transplantation. The "Rb
pathway" has also been implicated in phenotypes
observed in both the Bmi1-/- and ATM-/- HSCs [48-50]. Rb
was also described as being an important regulator of
stem cell maintenance in the plant species Arabidopsis
[51]. The interaction of cell cycle regulators with other fac-
tors such as Hoxb4 or telomerase deficiency has produced
much more striking phenotypes than that observed for the
cell cycle mutants in isolation [52,53]. While clearly dem-
onstrating that cell cycle modifiers have roles in regulating
stem cells, particularly HSCs, the aforementioned studies
have not been able to clearly discriminate between intrin-
sic or extrinsic contributions to HSC fate as all studies to
date had utilized non-hematopoietic restricted mutant
alleles. A recent study demonstrating that the p27Kip1-/-

microenvironment mediates the myelo-lymphoid expan-
sion observed in the p27Kip1-/- animals raises the possibility
that the HSC expansion observed in p27Kip1-/- BM is extrin-
sic in nature [47,54]. This result suggested that cell cycle
regulators may play a role in regulating the competence of
the hematopoietic niche, in addition to having potential
intrinsic roles in HSC fate determination.

The hematopoietic stem cell niche
Recent studies have begun to characterize the nature of the
adult BM niche [30-32,55-57]. Two major cell types have
been identified as being important components of the
HSC niche, the bone-forming osteoblast and the blood
vessel lining endothelial cell, although there is still debate
as to the extent of the contribution of each of these cell
types to the HSC niche. Studies have shown that extrinsic
regulation of hematopoiesis and HSCs can occur via mod-
ulation of osteoblast number and function [56-58].
Endothelial cells have also recently been suggested to play
a critical role as part of the HSC niche [55,59]. A recent
study suggested a common anatomical location for both
osteoblast and endothelial cell types with respect to the
niche, raising the possibility that they may collectively
contribute to the function of the HSC niche [60]. Irrespec-
tive of the exact cellular composition of the niche, prod-
ucts of each of these cell types have been shown to have
the potential to modulate HSC function. Additionally
studies have shown that extrinsic regulation of homeo-
static HSC numbers can be dominant to even very pro-
found intrinsic cues in vivo [61,62]. It is therefore of major

importance to further understand the roles of the different
cell types comprising the HSC niche (osteoblast, endothe-
lial cell) and delineate their effects on HSC fate decisions.
This includes defining the molecular regulators of the
niche cells and exploring regulatory interactions between
the hematopoietic cells and the non-hematopoietic
derived microenvironment. Despite the recent advances,
little is known about the molecular regulators of hemat-
opoietic niche competence or the involvement of the
niche in the initiation and maintenance of hematopoietic
diseases.

A role for Rb in hematopoietic stem cell fate regulation
As a result of the embryonic lethality of Rb-deficient ani-
mals, somatic conditional inactivation or lineage
restricted deletion of Rb is necessary to define its role in
HSC fate. To enable analysis of the role of Rb specifically
in HSCs, Rbfl/fl animals [63,64] were crossed to the inter-
feron inducible Mx1-Cre transgene [65]. Inducible
somatic deletion in the adult has many advantages over
non-inducible systems in the context of the analysis of
HSCs, in particular the ability to transplant HSCs prior to
gene inactivation which will restrict deletion to only the
hematopoietic system. Using this approach we observed
that HSC contribution to hematopoiesis was largely nor-
mal in the absence of Rb when the HSCs were supported
by a wild-type microenvironment [66]. This result is con-
sistent with that observed in chimeric Rb animals where
hematopoietic development is essentially normal and Rb-
deficient cells are capable of widespread contribution
[21].

Whilst hematopoiesis was largely normal when Rb defi-
cient cells were supported by a wild-type microenviron-
ment a distinctly different phenotype was observed when
Mx1-Cre Rbfl/fl animals were induced to delete Rb [29].
This experimental design does not restrict gene deletion to
the hematopoietic cells, but also results in gene deletion
in the hematopoietic microenvironment [56] and other
organs of the animal [65]. These animals rapidly devel-
oped myeloproliferation, with a dramatic expansion of
the numbers of neutrophils in the bone marrow and
extramedullary erythro- and myelopoiesis in the spleen.
Stem and primitive progenitor cells were also mobilized
to the periphery and were found in the spleen and periph-
eral blood. This myeloproliferation was stable and present
for the lifespan of the animals, which in our care was
approximately 8 months. At this time the animals present
with a phenotype consistent with hematopoietic failure
with a hypocellular bone marrow filled with mature neu-
trophils and a drastic reduction in splenic hematopoiesis,
however the animals also developed pituitary tumors.
This striking and profound phenotype was not present in
a wild-type microenvironment.
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When bone marrow HSC frequency was determined in
these animals it was found to be reduced 5 fold with a
concomitant increase at extramedullary sites, suggesting
an overall redistribution of cells away from the bone mar-
row environment. The HSCs obtained from the bone mar-
row were able to reconstitute hematopoiesis in wild-type
recipients and could be serially transplanted suggesting
that when supported by a wild-type microenvironment
the HSC itself was able to self-renew and differentiate rel-
atively normally. Whilst the HSCs were functionally nor-
mal they were failing to be retained in the bone marrow
microenvironment, placing Rb as an extrinsic regulator of
HSC fate. These studies were supportive of the interpreta-
tion that stem cell self-renewal can occur independently
of Rb, consistent with that reported from the analysis of
embryonic stem cell self-renewal and differentiative cell
cycles [67,68]. This observation is intriguing in light of the
reacquisition of self-renewal potential during tumorigen-
esis. Human tumors are thought to near universally inac-
tivate the "Rb pathway", and whilst it can not be assumed
that the consequences of the mutations of various compo-
nents of this pathway are equivalent, it does raise the pos-
sibility that inactivation of this pathway may facilitate
reacquisition of the self-renewal program [5].

The failure to recapitulate myeloproliferation from Rb-
deficient hematopoietic cells in a wild-type microenviron-
ment implied a role for the microenvironment in its
development. An Rb-deficient microenvironment did not
cause myeloproliferation of wild-type hematopoietic
cells, contrasting with that observed in the case of an
RARγ-deficient microenvironment which was the sole
cause of myeloproliferation in this model [69]. In Rb-defi-
cient myeloproliferative animals a significant increase in
ostecoclast number could be observed which correlated
with a rapid loss of bone architecture and trabecular vol-
ume, both factors that have been implicated in the regula-
tion of HSCs [56,57,70]. Based on these findings, we
sought to determine if myeloid cells were required for the
development of the myeloproliferation. Deletion of Rb
from myeloid cells using Lysozyme-M-Cre did not result in
myeloproliferation, but when combined with an Rb-defi-
cient microenvironment a fatal myeloproliferation rap-
idly ensued [29]. This result demonstrated that
interactions between hematopoietic cells and non-hemat-
opoietic stromal elements could result in the develop-
ment of myeloproliferation and additionally modulate
HSC fate within the bone marrow microenvironment. The
nature of the non-hematopoietic cell or cells responsible
for this interaction are currently under investigation.
Interestingly, studies using Vav-Cre to delete Rb reported
a similar phenotype, although not as severe, to that we
had observed with the Mx1-Cre based deletion of Rb [71].
Vav-Cre is known excise in both hematopoietic and vascu-
lar lineages, which directs attention to the role of the vas-

culature in the myeloproliferative phenotypes that were
observed [72-74].

Several differences are observed between the data derived
from Vav-Cre and Mx1-Cre mediated deletion of Rb in
hematopoietic cells and HSCs. Daria et al observed a
requirement for Rb in the stress response of HSCs and this
has also previously been suggested in the context of the
role of Rb in erythropoiesis [28,75]. The timing of gene
deletion is also relevant for interpreting the phenotypes
observed in these two models. Whilst with Mx1-Cre, gene
deletion is largely temporally controlled and can be
restricted to the adult HSC, Vav-Cre is active from the gen-
esis of HSCs. Mx1-Cre could also be restricted to the HSC
and subsequent hematopoiesis through transplantation
prior to deletion of Rb where as deletion of Rb with Vav
occurs in utero in both HSCs and vasculature potentially
disturbing the microenvironment in which the HSCs
reside and expand during development prior to the shift
in hematopoiesis to the intramedullary sites of bone
[76,77]. Also of note is that the cell division dynamics of
HSCs change during development, from rapidly cycling
and dividing cells during the fetal liver and early stages of
life to relatively quiescent and more slowly cycling in the
adult context [34,35,38,78,79]. Thus the role for Rb may
be context dependent, both in terms of stress response
and developmentally in the regulation of HSC fate.

Red blood cells, anemia and Rb
Cell cycle regulation in erythropoiesis
Each day an average adult human produces nearly 200 bil-
lion RBCs. To maintain the effective production of RBCs,
a rapid proliferative expansion of early progenitors needs
to occur. This expansion is followed by termination of
proliferation and commencement of the complex bio-
genic program allowing production of the hemoglobin
necessary for the oxygen-carrying capability of the RBCs.
If any step in this process is disrupted, as occurs in numer-
ous human diseases, then anemia results [80]. Modula-
tion of erythroid cell cycle regulation has been exploited
therapeutically, particularly in patients with diseases due
to defects in hemoglobin structure or production, but
more efficacious therapies will depend on an increased
understanding of this process [81-83].

The variation in cellular proliferation during erythropoie-
sis has been well-studied at a descriptive level over many
decades and the stages at which alterations in this process
occur have been characterized [80,84-86]. However, an
in-depth understanding of the molecular control of this
process is largely lacking. It is known that early bipotential
megakaryocyte-erythroid progenitors (MEPs) and early
erythroid progenitors (BFU-Es) proliferate at a relatively
slow rate, but that this level of cell cycle progression is nec-
essary to maintain the pool of more differentiated precur-
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sors. This has been demonstrated through the study of
mutations that disrupt the activity of the c-Myb gene, sug-
gesting a critical role for cell cycle regulation at these early
stages of differentiation [87-89].

Following these early stages, a rapid rise in proliferation is
observed at the colony-forming unit erythroid (CFU-E)
stage of differentiation. After the CFU-E stage, the eryth-
roid progenitors undergo three to five additional cell divi-
sions whilst maturing into erythroblasts that then need to
undergo terminal cell cycle exit at the G1 phase to facili-
tate complete differentiation. Ultimately the post-mitotic
cells undergo further maturation and eventually enucleate
to give rise to the functional RBCs that can enter the circu-
lation and play a critical role in oxygen transport. Our
understanding of how cell cycle exit is carried out during
erythroblast maturation and how this is coupled to differ-
entiation is limited. Studies in erythroid cell lines have
suggested some molecular players involved in this process
[90], but our understanding of the control of this process
in vivo is incomplete. Since it is known that G1 exit fre-
quently requires the activity of Rb to occur in other cell
types [63,91], it is important to understand the role that
this gene plays in the process of erythropoiesis.

The role of Rb in erythropoiesis
In order to directly examine whether Rb had any intrinsic
or potentially extrinsic role in erythropoiesis, we utilized
conditional deletion of the gene in a variety of hemat-
opoietic lineages [92]. We were able to delete Rb specifi-
cally within the erythroid lineage using the erythropoietin
receptor knock-in GFPcre mouse line (EpoR-GFPcre)
[93,94]. We could also delete Rb within the macrophage
and granulocyte lineage using Lysozyme-M-Cre [95] and
somatically within the entire adult hematopoietic system
using Mx1-Cre [65]. The results of this analysis indicated
that Rb was necessary within the erythroid cells for nor-
mal erythropoiesis, but was dispensible in macrophages.
This finding suggests that the use of in vitro reconstituted
erythroid islands may not faithfully mimic physiological
situations with the culture conditions used in these exper-
iments [27]. Alternatively, it is possible that there may be
compensation for the loss of Rb in macrophages in vivo.

Mice harboring an Rb deletion within the erythroid com-
partment showed a moderate anemia that remained sta-
ble throughout the life of the animals. After examining the
etiology of this anemia, we found that it was caused by an
impaired maturation of precursors within the bone mar-
row and spleen. There was an expansion of early erythrob-
lasts, but these cells failed to efficiently mature. It was
apparent that a failure to differentiate, termed ineffective
erythropoiesis, occurred at the stage where cell cycle exit
normally occurs. Using phenotypically stage-matched
erythroid precursors from mutant animals and controls,

we examined pathways that were either globally up- or
downregulated to gain a better understanding of how this
block in differentiation may occur and what the contribu-
tion of Rb was to the coupling of cell cycle exit to differen-
tiation during erythropoiesis [96,97].

Consistent with the role of Rb in cell cycle exit, there was
a failure to repress S-phase genes and particularly E2F
transcription factor targets in the Rb-null erythrocytes.
Surprisingly the most downregulated gene sets were all
components of the mitochondrial electron transport
chain and oxidative phosphorylation (OXPHOS) path-
ways. This result suggested a link between cell cycle regu-
lation and mitochondrial biogenesis in erythroid cells. In
agreement with the gene expression data there was both a
reduced mitochondrial mass and mitochondrial DNA
content in the Rb-null erythroid cells. There are numerous
examples demonstrating how primary defects in mito-
chondrial function or biogenesis can lead to ineffective
erythropoiesis in both humans [98-100] and experimen-
tal animals [101-103]. Our studies using lineage restricted
gene deletion to allow in vivo studies allowed us to find a
previously unappreciated link between cell cycle regula-
tion and modulation of mitochondrial function during
cellular differentiation, which appears critical at the mid-
maturation erythroblast stage. Our initial work suggested
that this phenomenon was likely to be mediated by mod-
ulation of the PPARγ-coactivator (PGC) transcriptional
axis. In particular, we obtained some evidence to suggest
that reduced expression of PGC-1β may play a role in this
phenotype. Much work still remains to be done to further
characterize the link that was observed between cell cycle
regulation and mitochondrial biogenesis. Similar obser-
vations have been made in the context of proliferating
fibroblasts, where it was suggested that the molecular con-
trol of this process occurs through modulation of tran-
scription factors known to interact with the PGC family of
coactivators [104].

The phenotype observed in the erythroid Rb-null mice
closely resembled the ineffective erythropoiesis that is
seen in human myelodysplastic syndrome (MDS). It is
interesting to note that defects in mitochondrial structure
and function have frequently been seen in the erythroid
cells in MDS [98,99]. Concomitantly, cell cycle deregula-
tion is thought to underlie the pathophysiology of MDS
and the most frequently identified molecular defect in
human MDS involves epigenetic silencing of the cell cycle
inhibitory protein CDKN2B/p15INK4B [105,106]. Addi-
tionally, the anemia present in the Rb-null mice cannot be
corrected even in the presence of high-level wild-type
hematopoietic chimerism, suggesting that this may be the
type of lesion that could allow a clonal disease like MDS
to result in an anemia [105]. Our findings suggest a poten-
tial link between these observations that may lead to more
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effectively targeted therapies. If these features of MDS are
linked together, then it may be useful to target both of
these lesions simultaneously to strike at the "Achilles'
heel" of MDS. The insights gained from this work may
also suggest candidate genes that could be involved in the
pathogenesis of MDS.

Outstanding questions regarding Rb and erythropoiesis
We have been able to uncover an interesting nexus
between cell cycle exit during erythropoiesis and the regu-
lation of mitochondrial biogenesis, which is mediated by
Rb. This insight allows us to gain a greater understanding
of normal erythropoiesis. Additionally, it is likely that this
work will allow us to gain insight into the pathogenesis of
MDS and possibly other disease states where ineffective
erythropoiesis occurs. Importantly, while cell cycle exit is
impaired in the Rb-null erythroid cells, cell cycle exit con-
tinues to occur to some extent in these cells and a signifi-
cant proportion of the erythrocytes mature and are
functional in the peripheral blood. It will be important to
delineate the factors that are responsible for this contin-
ued ability to exit the cell cycle in the absence of Rb. More-
over, while the aforementioned studies have largely
focused on homeostatic adult erythropoiesis, it will be
important to delineate whether the "Rb pathway" func-
tions differently during the extensive expansion in red cell
mass that occurs in the course of ontogeny [107]. It will
also be interesting to examine how the genes that play a
role in promoting the increased proliferation during the
early stages of erythropoiesis are coupled to differentia-
tion. For example, it is likely that cyclins D2 and D3 are
coupled to the differentiation of these progenitors to
allow coordinated proliferation and maturation of these
cells [15]. It is clear that alterations in the differentiation
kinetics of RBC progenitors can impact how differentia-
tion occurs, as exemplified by alterations in globin gene
expression resulting from treatment with S-phase inhibi-
tors ([81]. We only have a descriptive understanding of
these phenomena currently, but it is likely that further
molecular links similar to those we have described are
playing a critical role here. Recent evidence from human
genetic studies indicates that genes like c-Myb may have
an important impact on the differentiation characteristics
of these cells [108-110]. The further study of cell cycle reg-
ulation in the seemingly "well understood" differentia-
tion model of erythropoiesis is likely to yield many new
and fruitful insights into the general molecular networks
that coordinate differentiation and proliferation.

Conclusion
The use of lineage and temporally controlled somatic
deletion strategies has allowed the development of com-
plex in vivo models with which to study the roles of genes
in both development and organ homeostasis. Questions
previously unable to be studied regarding the role of Rb in

the context of the adult HSCs and hematopoiesis can now
begin to be addressed. Whilst helping to clarify previous
ambiguity regarding the phenotype of loss of Rb, these
studies have also revealed previously unrecognized roles
for Rb in the regulation of HSCs and their microenviron-
ment and in the regulation of mitochondrial function
during terminal erythropoiesis.
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