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ABSTRACT

Recent genomic studies suggest that novel long
non-coding RNAs (lncRNAs) are specifically ex-
pressed and far outnumber annotated lncRNA se-
quences. To identify and characterize novel lncR-
NAs in RNA sequencing data from new samples, we
have developed COME, a coding potential calculation
tool based on multiple features. It integrates mul-
tiple sequence-derived and experiment-based fea-
tures using a decompose–compose method, which
makes it more accurate and robust than other well-
known tools. We also showed that COME was able
to substantially improve the consistency of predi-
cation results from other coding potential calcula-
tors. Moreover, COME annotates and characterizes
each predicted lncRNA transcript with multiple lines
of supporting evidence, which are not provided by
other tools. Remarkably, we found that one subgroup
of lncRNAs classified by such supporting features
(i.e. conserved local RNA secondary structure) was
highly enriched in a well-validated database (lncR-
NAdb). We further found that the conserved struc-
tural domains on lncRNAs had better chance than
other RNA regions to interact with RNA binding pro-
teins, based on the recent eCLIP-seq data in human,
indicating their potential regulatory roles. Overall, we
present COME as an accurate, robust and multiple-
feature supported method for the identification and
characterization of novel lncRNAs. The software im-
plementation is available at https://github.com/lulab/
COME.

INTRODUCTION

Many long non-coding RNAs (lncRNAs) are expressed at
specific stages during development or in response to specific

stimuli (1–3). Recent studies suggest that there are far more
potential lncRNAs than annotated RNA sequences (4–6).
For instance, more than 15 000 lncRNA genes (∼27 000
loci/transcripts) were annotated by GENCODE (6) in Oc-
tober 2014. Within the first few months of 2015, a study ex-
amining TCGA data reported ∼58 000 lncRNA genes, with
79% of them described as novel (5). Thus, to discover novel
lncRNAs associated with specific biological purposes, more
RNA sequencing (RNA-seq) data are generally included in
the study samples. One common approach to identify novel
lncRNAs from new RNA-seq data involves the assembly of
de novo transcripts from short reads and then application
of a filter, i.e. a coding potential score, to remove potential
coding transcripts (1).

Many coding potential calculation tools have been devel-
oped (7–16), and most use features curated from sequence
information alone. These features include but are not lim-
ited to: open reading frame (ORF) features such as ORF
length and coverage (7,8,10,13,15), nucleotide composition
features such as k-mer sequence motif and codon usage
(7,8,11,13–15), conservation scores such as pair-wise align-
ment score against nucleotide or protein sequence database
(7–10), evolutionary features such as substitution rate and
phylogenic score (12,16) and other in silico features such as
predicted RNA secondary structure and ribosome release
score (RRS)(7,8,13). These sequence-derived features are
associated with several limitations though. First, some fea-
tures, such as the predicted ORF length, require assembly of
the full-length transcript. Calculation of the RRS also relies
on a well-defined ORF and 3′ untranslated region (UTR).
Moreover, determination of the precise 5′ and 3′ ends of a
novel transcript requires very deep sequencing reads (15)
or substantial experiments, such as rapid amplification of
cDNA ends (17) and cap analysis gene expression (18,19).
These requirements limit the application of current coding
potential calculators on transcripts newly assembled from
sequencing reads. Secondly, some features, such as the con-
servation scores calculated from blastx or tblastx, can be bi-
ased according to the length of transcript, in that a longer
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transcript provides a larger search space. In addition, a k-
mer sequence is better sampled and estimated in a longer
transcript. Lastly, some features, such as the substitution
rate and phylogenic score, require multi-species alignments.
However, the lncRNA transcripts are often not conserved,
and therefore, are not located in the aligned regions.

Therefore, experimental features were used and inte-
grated to separate non-coding RNAs (ncRNAs) from
protein-coding RNAs (mRNAs) (4,20–23). For instance,
many canonical ncRNAs (e.g. tRNAs) are not enriched
in a poly(A)+ RNA-seq library, whereas most mRNAs
are enriched (4,23,24). In addition, many lncRNAs show
greater expression specificity than mRNAs in different tis-
sues or during different developmental stages (3,25). More-
over, ribosome profiling data suggest that ribosomes may
have different binding patterns on mRNAs and lncRNAs
(26). Our previous study demonstrated that integration of
experiment-based and sequence-derived features could en-
able classification of ncRNAs from coding sequences with
high accuracy (27). However, the model focused only on
canonical ncRNAs, and thus, can only predict the local re-
gions of ∼70% of human lncRNAs.

Here, we have developed a coding potential calcula-
tor, COME (coding potential calculator based on multiple
evidences), using a supervised machine learning model
trained on mRNAs and lncRNAs. We introduced a
decompose–compose method in COME and avoided us-
ing features (e.g. ORF length) that rely heavily on a full-
length RNA transcript. Next, we showed that COME’s per-
formance is more robust than that of many well-known
tools. In addition to the calculation of a single coding po-
tential score, COME also characterized the predicted lncR-
NAs with multiple supporting feature scores. From these
supporting features, we found that lncRNAs containing
conserved local structures were significantly enriched in a
database well validated by the function experiments. These
lncRNAs contained local RNA structures that were con-
served with various secondary structure families in Rfam,
such as lncRNA families and canonical ncRNA fami-
lies (signal recognition particle (SRP), snoRNA and pre-
miRNA, etc). Remarkably, we associated these structural
domains with RNA binding proteins (RBPs) suggesting
their potential regulatory roles. Overall, we present COME
as a robust and multiple-feature supported tool for the pre-
diction and characterization of novel lncRNAs.

MATERIALS AND METHODS

Framework of COME, a coding potential calculator using
multiple features

COME used machine learning models to calculate a tran-
script’s coding potential score by integrating multiple fea-
tures derived from both sequence information and experi-
mental data. It was designed specifically for identifying and
characterizing novel lncRNA transcripts assembled from
RNA-seq data. Because the newly assembled transcripts
could be incomplete, we developed a decompose–compose
feature in the calculation procedure (Figure 1). In the de-
compose step, we first constructed an index for the whole
genome, splitting the whole genome sequences into 100-
nucleotide (nt) bins. We then calculated the input features

on the indexed bins (see details in Supplementary Method).
In this way, the feature values of a transcript were decom-
posed into multiple vectors. Subsequently, in the compose
step, we used only three values (maximum, mean and vari-
ance) for each feature vector of a transcript. Thus, we com-
posed a feature score matrix with multiple features and tran-
scripts.

Based on the composed matrix, we applied a balanced
random forest (BRF) algorithm (7,27) to train on the anno-
tated coding (mRNAs) and non-coding transcripts (lncR-
NAs). The predicted probability of being a coding tran-
script was defined as COME’s coding potential score for
each given transcript.

Genome index

We first indexed the human genome [Homo sapiens (hg19)]
into small bins. It was first segmented into 48 segments
naturally according to its chromosomes (chromosome 1–
22, X and Y) and strands (forward and reverse). Each
segment was then divided into 100-nt bins, with a 50-
nt step size (Figure 1). We also used the same procedure
to index the genomes of four other species: Mus mus-
culus (mm10), Caenorhabditis elegans (ce10), Drosophila
melanogaster (dm3) and Arabidopsis thaliana (TAIR10).

Composition of input features at the transcript level

For most features, we used the indexed bins that overlapped
(>50%) with a transcript’s exon(s) and assigned the fea-
ture vectors to the transcript (Supplementary Figure S1).
Then, for each feature vector, we calculated three statistic
scores: mean, maximum and variance. The three scores of
the whole transcriptome were used to compose an input
data matrix for a further machine learning procedure.

For the promoter marker (28) H3K4me3, we used the in-
dexed bins that overlapped (>50%) with a transcript’s up-
stream context [upstream 5000 nt for human and mouse
genome, and upstream 2000 nt for fly, worm and plant
genome (27)) and assigned the upstream feature vector to
the transcript. When calculating the mean for H3K4me3,
we calculated a CIS (context influence score) (29) to repre-
sent a weighted-mean.

Performance criteria

To quantify the classification performance, as many other
methods did in the previous publications (7), we used the
lncRNA transcripts as positives and mRNA transcripts
as negatives to calculate the following metrics: sensitivity,
specificity, accuracy, false positive rate, positive predictive
value (PPV) and F-score.

Training and test sets

Training and test sets for human. The model for human
data was trained and tested in two different ways. We first
sampled two-thirds of Gencode annotations (v19) (6), in-
cluding 15 638 lncRNA transcripts and 47 490 mRNA tran-
scripts, as a training set. Then, we used the remaining 7819
lncRNA transcripts and 23 745 mRNA transcripts as test
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Figure 1. COME workflow: a coding potential calculator based on multiple features. COME integrates multiple features with a supervised model to
classify protein coding transcripts (mRNAs) and non-coding transcripts (lncRNAs). Multiple features (GC content, sequence conservation score, etc.) are
processed by a decompose–compose procedure: feature values are initially calculated and indexed at the bin level (B). They are first indexed at the whole
genome level, then mapped to each transcript (A). (C) The feature vectors of each transcript are composed at the transcript level by the maximum, mean
and variance scores of the overlapping bins. (D) The probability of being mRNA predicted by the supervised model is the coding potential score for a given
transcript.

set 1 (T1). Test set 2 contained 2327 lncRNA transcripts
selected from a human lincRNA catalog (25) and 12 327
mRNA transcripts chosen from Refseq (30). For the follow-
ing performance comparisons, we used the original sets of
T1 and T2 in the main figures. In addition, we also repeated
the comparisons on two balanced sets, T1′ and T2′, which
were up-sampled from T1 and T2 to make numbers of mR-
NAs and lncRNAs equal.

Independence of training and test sets. To ensure the inde-
pendence of the training set and test set T1, we sampled the
transcripts using a ‘block sampling’ method (27). Overlap-
ping transcripts (≥1 nt) were assigned to the same block,

and thus, transcripts sampled from any two blocks would
have no overlap. In test set T2, we removed any transcripts
overlapping (≥1 nt) with the training set.

Training and test sets of other four species. We also evalu-
ated COME’s performance for other four species: M. mus-
culus, C. elegans, D. melanogaster and Arabidopsis thaliana.
Their annotations were downloaded from Gencode (Ver-
sion M4), Wormbase (version ws220), Flybase (version
r5.45) and TAIR (version 10), respectively. The lncRNA
transcripts and mRNA transcripts were divided into train-
ing and test sets using the same approach described for hu-
man data.
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Optimization of the supervised machine-learning models in
COME

To optimize the models in COME, we used 5-fold cross-
validation on the training set (i.e. 15 638 lncRNA tran-
scripts and 47 490 protein coding transcripts annotated by
Gencode human (v19) (6)). In this imbalanced training set,
we applied a BRF algorithm (7,27) that used multiple sub-
training sets, each of which contained the same number of
lncRNAs and mRNAs. We down-sampled the coding tran-
scripts several times until all of them occurred in at least
one sub-training set. Multiple models from multiple sub-
training sets were averaged as the final model of the BRF.

Optimization of sampling methods for test. An imbalanced
set would introduce bias into the test processes as well (27).
By default, to make full use of all instances, we up-sampled
the minority class (lncRNAs) to the number of the majority
class (mRNAs) in the tests. We also tried another sampling
method: down-sampling the majority class (mRNAs) to the
number of minority class (lncRNAs), based on the minor-
ity class’s expression level (Supplementary Figure S2a–d).
We found no performance difference for the two sampling
methods (Supplementary Figure S2e–h), indicating the ro-
bustness of our method.

Optimization of the bin size. In the decompose step, we
indexed the genome into small bins. The smaller bin size
provided more detailed descriptions but at higher compu-
tational cost. We tested four different bin sizes: 50 nt (25-nt
step), 100 nt (50-nt step), 150 nt (75-nt step) and 200 nt (100-
nt step). To balance the performance and computational
cost (Supplementary Figure S3), we used an optimized bin
size of 100 nt (50-nt step) as the default.

Optimization of the representative statistic. In the compose
step, we represented a transcript’s feature vector by a statis-
tic value: mean, maximum or variance. We found that the
combination of all three values achieved better performance
than any individual value (Supplementary Figure S4).

Optimization of the input feature set. We used the nine
features as the basic features of COME’s input: GC con-
tent, DNA sequence conservation, protein sequence con-
servation, RNA secondary structure conservation, expres-
sion abundance calculated from various RNA-seq data (i.e.
small, poly(A)+ and poly(A)- RNA-seq), and chromatin
signature calculated from ChIP-seq data (i.e. H3K36me3
and H3K4me3). We adapted our previous feature process
protocol (3,25,26), and listed the calculation details in Sup-
plementary Methods as well. We used these features in our
basic feature set for COME, because they were reported to
be conserved for various types of ncRNAs in five species
(human, mouse, worm, fly and Arabidopsis) (3,25,26). This
feature set was proved to be non-redundant and better than
including additional features (e.g.H3K4me1, H3K4me2,
H3K4me3, H3K27ac, etc.) (27).

In addition, we further tested if adding some recently
published experimental features (i.e. ribosome profiling
data and expression specificity) would help to improve the
performance of COME. We first tried three different scores,
translation efficiency (TE) (26,31,32), RRS (26) and 3 nt

periodicity score (ORFscore) (33) for ribosome profiling
data. We found poor performance on distinguishing mR-
NAs and lncRNAs when using TE and RRS only (Supple-
mentary Figure S5). The performance was substantially im-
proved when the 3 nt periodicity score was included (Sup-
plementary Figure S6). This result is consistent with previ-
ous studies showing that: (i) the TE score had little distin-
guish power for lncRNAs and mRNAs (26); (ii) most lncR-
NAs’ RRS scores were unavailable because the calculation
of RRS score required high expression level of RNA-seq
and Ribo-seq (26); and (iii) 3 nt periodicity better distin-
guished lncRNAs and mRNAs (33,34). In addition, the ex-
pression specificity score could also distinguish lncRNAs
from mRNAs (Supplementary Figure S7), which was also
consistent with previous studies (3,25).

However, although distinguishable between mRNAs and
lncRNAs, we found trivial improvement for the final perfor-
mance, by adding the new features (e.g. ribosome profiling
scores and expression specificity score) to the basic feature
set (including nine features) (Supplementary Figures S5–7).
The performance may have already been saturated by the
current feature set. Adding more features could have intro-
duced redundancy. Moreover, the new features were usually
not widely available in species other than human. Therefore,
we did not use them by default. We provide the scripts of
calculating them (e.g. 3 nt periodicity score with Ribo-seq
data) as extra utilities in our COME software.

Evaluation of the input features. We divided the input fea-
tures into three subsets: (i) sequence-derived features in-
cluding GC content, DNA sequence conservation, pro-
tein conservation and RNA secondary structure conser-
vation; (ii) expression features including expression abun-
dance from poly(A)+, poly(A)- and small RNA sequenc-
ing; and (iii) histone features including H3K36me3 and
H3K4me3 modification. The subset of sequence-derived
features had the best performance among the three sub-
sets. Still, use of all three sub-sets in combination (nine
features in total) achieved the best performance (Supple-
mentary Figure S8), and thus, we used the nine features
from these three sub-sets as the default input feature set of
COME.

The performance of each single feature was further eval-
uated (Figure 2). We showed the performance with differ-
ent criteria, such as PPV, sensitivity, AUC, etc. In addi-
tion, we also showed the feature importance using the de-
creased accuracy calculated by Random Forest. We found
that, among the sequence-derived features, the protein con-
servation is the most powerful feature with the highest AUC
score. The RNA secondary structure conservation features
showed the highest specificity score, which meant most of
the mRNAs had no conserved structures. We can also see
this pattern later in Figure 5B.

Evaluation of the experimental features’ robustness. Since
COME used experimental features, including expression
and histone modification profiles, which were subject to
variation under different biological contexts; we evaluated
the performance by replacing experimental data with differ-
ent resources.
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Figure 2. Performance of individual features of COME. We evaluate nine individual features using 5-fold cross-validation on the human training set. (A)
Four criteria showing the prediction performance using individual features: area under the receiver operating characteristic curve (AUC), positive predictive
value (PPV), sensitivity (SEN) and specificity (SPE). (B) Feature importance: mean decrease accuracy calculated by Random Forest.

For histone modification features (i.e. H3K4me3 and
H3K36me3), we recalculated the coding potential using two
different datasets derived from various cell lines (35): (i)
GM12878, K562, H1-hESC, HeLa-S3 and HepG21; (ii)
HMEC, HSMM, HUVEC, NH-A and NHEK (Supple-
mentary File 1). While the two histone datasets were dif-
ferent, the final prediction scores of COME were correlated
well: the correlation of two sets varied a lot (correlation co-
efficient: 0.28–0.93) (Supplementary Figure S9a and b); if
we only used these histone features to predict the coding
potential, the results of the two datasets were also quite dif-
ferent (correlation coefficient: 0.36–0.51) (Supplementary
Figure S9c, e and f); when combined with other features in
COME, the final prediction turned out to be very robust
no matter which dataset was used (correlation coefficient:
0.97–0.98) (Supplementary Figure S9d–g).

In addition to H3K36me3 and H3K4me3, we tested
three extra histone makers, i.e. H3K27ac, H3K27me3 and
H3K4me1, derived from same cell lines (35): GM12878,
K562, H1-hESC, HeLa-S3 and HepG21 (Supplementary
File 1). Compared to other three markers, H3K36me3 and
H3K4me3 (the ones we used by default) showed top two
AUC scores (Supplementary Figure S10). H3K36me3 and
H3K4me3’s combination also ranks the top one AUC score
among the ten combinations. Furthermore, when combined
with other features in COME, all histone combinations
showed robust performance (Supplementary Figure S10).

For expression features, we also recalculated the coding
potential using two different datasets derived from vari-
ous cell lines (35): (i) GM12878, K562, H1-hESC, HeLa-S3
and HepG21; (ii) A549, AG04450, BJ, MCF-7 and NHEK
(Supplementary File 1). The conclusion was the same as
the one we got from different histone datasets: while the
two expression datasets were different, the final prediction
scores of COME were correlated well (correlation coeffi-
cient: 0.92–0.95) (Supplementary Figure S11).

We tested COME’s performance on tissue specific lncR-
NAs (i.e. brain specific and testis specific lncRNAs). First of
all, using seven human tissues’ expression data (36), we cal-
culated the specificity score (3,25) for each lncRNA (at gene
level). Then, top 10% specifically expressed lncRNAs were
chosen, among which 2235 lncRNAs were testis specific and
204 lncRNAs were brain specific. As expected, these tissue
specific lncRNAs were lowly expressed in the cell lines we
used (Supplementary Figure S12a–d). Meanwhile, we sam-
pled some coding genes that were also lowly expressed. Al-
though the expression and histone features were not distin-
guishable between these lncRNAs and coding genes, the se-
quence features (e.g. conservation scores) showed very dif-
ferent patterns (Supplementary Figure S12c and d). There-
fore, COME could still separate them well (AUCs: 0.993 for
testis and 0.967 for brain).

In addition, since the subset of sequence features showed
good performance (Supplementary Figure S8), we also pro-
vide an option in the COME software to calculate coding
potential score without including experimental features, for
users who do not need such supporting features.

RESULTS

COME is accurate and robust for different lncRNA annota-
tion sets

We first tested the ability of the predicted coding potential
score to classify lncRNA and mRNA transcripts annotated
by human Gencode (v19) (6) (described as T1 in ‘Materials
and Methods’ section). We used the area under the receiver
operating characteristic curve (AUC) to compare COME
with five well-known coding potential calculators: CNCI
(14), RNAcode (16), HMMER (37), CPAT (15) and Phy-
loCSF (12) (Figure 3A). Because more mRNA transcripts
were annotated in Gencode, this test set (T1) was unbal-
anced, which would introduce bias in the performance eval-
uation. Therefore, we also sampled a balanced test set of T1,
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Figure 3. Performance comparison of COME and other coding poten-
tial calculators. We used the coding potential scores predicted by COME,
CNCI, RNAcode, HMMER, CPAT or PhyloCSF to classify lncRNAs
from protein coding transcripts in human data. (A) Receiver operating
characteristic (ROC) curves of the six coding potential calculators for the
T1 test set (mRNA annotation: Gencode; lncRNA annotation: Gencode).
(B) AUC values for two test sets, T1 and T2 (mRNA annotation: Refseq;
lncRNA annotation: human lincRNA catalog). (C) For the T1 test set, we
also show the AUC values for transcripts of differing length.

T1′, for the performance evaluation (Supplementary Figure
S13). We found that COME performed better than the other
five methods (CNCI, RNAcode, HMMER, CPAT and Phy-
loCSF) in both test sets.

Moreover, we used another test set (T2) annotated by
a human lincRNA catalog (25) and Refseq (30), which
were widely used by CNCI (14), CPAT (15) and PLEK
(11). In total, 32% of the transcripts in T2 are 100% over-
lapped with T1’s transcripts (Supplementary Figure S14).
Please note that a transcript with 100% overlapping ra-
tio does not have to be identical to the other one. One
could be part of the other transcript that is longer. Actually,
only 1999 transcripts are identical in both T1 (6.3%) and
T2 (13.6%). Again, COME demonstrated the best perfor-
mance (Figure 3B and Supplementary Figure S15). Com-
paring the performances between T1 and T2 sets, COME

were more stable and robust than the other models. For in-
stance, the AUC values for COME varied from 0.973 to
0.994, whereas those of the other tools showed larger per-
formance variation (CNCI: 0.865–0.932, RNAcode: 0.936–
0.986, HMMER: 0.914–0.981, CPAT: 0.891–0.926 and Phy-
loCSF: 0.930–0.955).

COME is accurate and robust for transcripts with different
lengths

As mentioned earlier, some features (e.g. ORF length, k-mer
features and blastx) used by various tools can be affected
by transcript length. Therefore, we compared the perfor-
mances on different sub-groups of transcripts with various
lengths: 0.2–0.5 kilobases (kb), 0.5–1.0 kb, 1.0–1.5 kb, 1.5–
2.0 kb and >2.0 kb (Figure 3C and Supplementary Figure
S16). For RNAs of different lengths, the AUC values for
CNCI, RNAcode, HMMER, CPAT and PhyloCSF varied
from 0.607–0.934, 0.875–0.943, 0.796–0.925, 0.799–0.913
and 0.816–0.951, respectively. All the coding potential cal-
culators showed better performance for RNAs with 1–2 kb
bases. COME achieved the best robustness for transcripts
of various lengths, with AUC values ranging from 0.950–
0.974. In addition to the five methods we have compared
with, we also compared COME with more tools (i.e. CPC
and PLEK) using a smaller test set (Supplementary Fig-
ure S17), and still, COME showed the best accuracy (over-
all AUC: 0.965) as well as robustness (AUC range: 0.936–
0.975).

COME improves the consistency of different coding potential
calculators’ prediction results

One practical issue of filtering novel lncRNA transcripts
from RNA-seq data is that the filtered lncRNA sets were not
consistent when using different coding potential calcula-
tors. We tested the overlapping results predicted by COME,
CNCI, RNAcode and HMMER on the first test set (T1).
A transcript was predicted to be a lncRNA if the coding
potential score was lower than a certain cutoff, which was
defined as the coding potential score that had the highest
F-score in the test set. For each coding potential tool, we
counted the number of predicted lncRNAs that were pre-
dicted by 1–4 tools (Figure 4A). Remarkably, COME and
RNAcode had greater overlap with the other three tools
(71.4 and 72.3%, respectively) and predicted relatively fewer
lncRNAs (7867 and 7767 transcripts, respectively).

Because COME is able to include multiple features as in-
put, we tried to add the coding potential score of another
calculator (i.e. CNCI, RNAcode, HMMER) to COME’s
input features. Using the same training set as above (i.e.
15 638 lncRNA transcripts and 47 490 mRNA tran-
scripts) and the same test set T1, we trained models for
the enhanced coding potential calculators: COME+CNCI,
COME+RNAcode and COME+HMMER. We calculated
and tested three enhanced coding potential scores using
combinations of COME+CNCI, COME+RNAcode and
COME+HMMER, respectively (Figure 4B and Supple-
mentary Figure S18). A transcript was predicted to be a
lncRNA if the enhanced coding potential score was lower
than a certain cutoff, which was defined as the score that
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Figure 4. COME enhances the consistency of other coding potential calculators. We compared the prediction overlap of four coding potential calculators:
COME, CNCI, RNAcode and HMMER. (A) For T1 test set, we defined a transcript as a predicted lncRNA if its coding potential was lower than a cutoff.
The cutoff was determined by the highest F-score for each method. Then, we counted the predicted lncRNA numbers according to the cutoff (shown on
top of the bar). For each calculator, we also calculated the percentage of lncRNAs that were predicted by only one calculator (P1), by two calculators
(P2), by three calculators (P3) and by four calculators (P4). The annotated protein coding transcripts (mRNAs) were used as negatives in this plot. (B)
Receiver operating characteristic (ROC) curves of three coding potential calculators after enhancement by COME (COME+CNCI, COME+RNAcode
and COME+HMMER). We also show the numbers of lncRNAs consistently predicted by multiple methods among the three coding potential calculators,
before and after enhancement with COME, based on the cutoffs determined by the highest F-scores (C) and different percentiles (D).

had the highest F-score in the test set. After the enhance-
ment, all three enhanced coding potential scores showed
higher AUC values compared to the original values: 0.936–
0.978, 0.915–0.981 and 0.865–0.980 for RNAcode, HM-
MER and CNCI, respectively. In addition, the ROC curves
and AUC values for the three enhanced coding potential
scores were comparable to those of COME (0.973).

Moreover, using test set T1, we compared the prediction
overlap of CNCI, RNAcode and HMMER before and af-
ter enhancement with COME. Similarly, we predicted that
a transcript was a lncRNA if the coding potential score was
lower than a certain cutoff, which was defined as the cod-
ing potential score that had the highest F1-score in the test
set. We showed that after enhancement, all three tested cod-
ing potential scores showed greater overlap with other tools
(Figure 4C). The consistency improvement remained when
we used different cutoffs (i.e. top 10–50 percentile ascend-
ing ordered coding potential score; Figure 4D). Therefore,

COME could not only predict coding potential with high
accuracy and robustness, but also could enhance the pre-
diction consistency of other calculators.

COME can be extended to multiple organisms

In addition to human data, we also applied COME
to four other model species: M. musculus, C. elegans,
D. melanogaster and Arabidopsis thaliana. We compared
COME’s performance for the five species on the original
test set (Figure 5A) and balanced test set (Supplementary
Figure S19). COME performed very well for all five species,
with AUC values ranging from 0.928 (for Arabidopsis) to
0.973 (for human). We also built the enhanced models of
COME+HMMER and tested them on the same test sets
(Figure 5B). In summary, COME+HMMER performed
even better for all five species, with AUC values ranging
from 0.979 (for worm) to 0.986 (for fly). We summarized the
performances of COME and COME+HMMER in the five
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Figure 5. COME’s performances in multiple species. The performances of COME, as well as COME+HMMER, in five species: human, mouse, fly, worm
and the model plant Arabidopsis. All the annotated lncRNA transcripts and mRNA transcripts from test set T1 were used for testing. We show (A and B)
ROC curves and (C) six criteria: area under the receiver operating characteristic curve (AUC), PPV, sensitivity (SEN), specificity (SPE), accuracy (ACC)
and F-score (FSC).

species in Figure 5C. All of the above results demonstrate
that COME can be useful for novel lncRNA identification
and characterization in new samples of five model organ-
isms.

COME characterizes lncRNAs with multiple supporting fea-
tures

In addition to a single coding potential score for a given
transcript, another advantage of COME is that it can also
output multiple supporting feature scores to characterize
each predicted lncRNA transcript. As an example, we clus-
tered the human lncRNA transcripts (Gencode v19) based
on COME’s nine supporting features (GC content, DNA
sequence conservation, protein conservation and RNA sec-
ondary structures, expression abundance from poly(A)+,
poly(A)- and small RNA sequencing, H3K36me3 and
H3K4me3), using a K-means algorithm (Figure 6A). The
peak signal of each lncRNA transcript for each feature
(maximum value of the extracted feature vector) was scaled
into [0, 1]. The optimal cluster number was determined by
the silhouette score (Supplementary Figure S20). Finally,
we defined three lncRNA subclasses. We further used a box-
plot to illustrate the feature difference among the three clus-
ters (Figure 6B): subclass 1 showed relatively more con-
served pattern in sequence features, i.e. GC content, DNA
sequence conservation, protein sequence conservation and
RNA secondary structures. The lncRNAs in it were also
relatively highly expressed (i.e. higher values of poly(A)+,
poly(A)- and small RNA sequencing data); and had rela-
tively higher signals of H3K36me3 and H3K4me3. Subclass
2 was neither conserved in sequence features nor highly
expressed. Subclass 3 is similar to subclass 1, except that
the lncRNAs in it contained no conserved RNA secondary
structures. As expected, when compared with mRNAs, all

the three subclasses of lncRNAs showed lower values for
GC content, DNA conservation, protein conservation, ex-
pression level and histone modification level (Figure 6B). As
we expected, tissue specific lncRNAs were significantly en-
riched in subclass2 (chi-square test, P-value < 0.01), which
were lowly expressed and unconserved (Supplementary Fig-
ure S12e).

Remarkably, we found that the subclasses had very dif-
ferent chances of being validated (Figure 6C). Among
the above clustered Gencode lncRNAs, 515 transcripts
(108 genes) were annotated in lncRNAdb (38), which in-
cluded many lncRNAs that were supported by better func-
tion experiments. Remarkably, we found that the lncR-
NAs from subclass 1 were significantly enriched (chi-square
test, P-value < 0.01) in the validated set of lncRNAdb.
These lncRNAs were highly expressed and conserved.
More importantly, almost all of them contained conserved
RNA secondary structures. Because Rfam also includes
many lncRNA structure families, we further excluded these
lncRNA families and counted those lncRNAs only contain-
ing canonical RNA structures, such as tRNA, SRP, pre-
miRNA, etc. Interestingly, lncRNAs containing local struc-
tures that were conserved with canonical ncRNA structure
families were still significantly enriched in lncRNAdb (Sup-
plementary Figure S21). These conclusions remained when
evaluating the result at gene level (Supplementary Figure
S21).

Overall, the supporting features of COME can improve
the chances of finding functional lncRNAs. However, this
enrichment could also be biased by the pre-selection crite-
ria. For instance, some lncRNAs were selected as validation
candidates by previous studies simply due to their abundant
expression. Still, some interesting features, such as RNA
secondary structure, can be used to inspire hypotheses for
further mechanism studies.
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Figure 6. COME annotates lncRNAs with multiple supporting features.
(A) We used the normalized features (x-axis) to cluster (k-means) the an-
notated human lncRNA transcripts (Gencode V19). Three subclasses were
clustered according to different feature patterns. The RNA structure con-
servation feature was presented by the––log(E-value of Rfam hit). (B) Box-
plot of feature difference among three subclasses. For better visualization,
the values were normalized from 0 to 1. We included mRNAs (blue) as con-
trol. (C) Transcript numbers are shown for lncRNAs from Gencode and
lncRNAdb. The small set of lncRNAs in lncRNAdb was mostly curated
from experiment literatures. Star beside the subclass label indicates that the
subclass is significantly enriched in lncRNAdb (chi-square test, P-value <

0.01).

Conserved structural domains of lncRNAs were associated
with RNA binding proteins

We further associated the conserved structural domains of
lncRNAs with RBPs. We first collected the binding sites of
151 RBPs from ENCODE’s eCLIP-seq data (39) (Supple-
mentary File 1). Next, we overlapped the binding sites with
all lncRNAs and compared the RBP binding between struc-
tured domains (bins) of lncRNAs in subclass 1 and unstruc-
tured lncRNA domains. Since the RBP binding could be bi-
ased by the expression level of investigated RNAs, we used
two negative controls, (i) unstructured lncRNA domains
(bins) of lncRNAs in subclass 3, which had similar expres-
sion levels to subclass 1 (Figure 6B) (P-value of Wilcox rank
sum test > 0.05 using poly(A)+ RNA-seq data); (ii) unstruc-
tured domains from the same lncRNA transcripts in sub-
class 1. We defined a lncRNA domain as being bound by
RBP if at least two binding sites were found on it. We found
the percentage of being bound were significant higher for
the structured lncRNA domains than controls (Figure 7A)
(chi-square test, P-value < 0.01). The difference remained
significant when we investigate the lncRNA domains hav-
ing at least 4 and 8 RBP binding sites. Furthermore, we

C 

B 

structured regions from subclass1 
unstructured regions from subclass1 
unstructured regions from subclass3 

* * * 
* * 

* 

pe
rc

en
ta

ge
 o

f  
re

gi
on

s 
be

in
g 

bo
un

d 

0% 

10% 

20% 

30% 

# of RBP binding sites 
≥2 ≥8 ≥ 4 

A 

0% 

100% 

25% 
50% 
75% * 

* 

* 
* 

# of RBP binding sites 
≥2 ≥8 ≥4 pe

rc
en

ta
ge

 o
f  

re
gi

on
s 

be
in

g 
bo

un
d 

* * * * 

SRP families 
Other canonical ncRNA families 

lncRNA families 

snoRNA 
40% 

pre-miRNA 
45% 

tRNA 
7% 

others 

12% 

4% 

84% 

RNA structure families 

Figure 7. Conserved structural domains of lncRNAs were associated with
RBP binding sites. (A) The percentages of being bound by RBPs for the
structured regions of lncRNAs in subclass 1, the unstructured regions of
the same lncRNA transcripts in subclass 1 and the unstructured regions
of lncRNAs in subclass 3. A region was counted as being bound by RBP
when there are at least 2, 4 or 8 RBP binding sites on it. (B) Structure
families (matched in Rfam) of the local RNA secondary structures on the
lncRNAs in subclass 1. (C) RBP binding preferences of three structure
families, compared with all the structured regions of lncRNAs in subclass
1.

still observed significant enrichment when we counting RBP
types (Supplementary Figure S22), instead of RBP bind-
ing sites. The association of lncRNAs’ local structures and
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RBPs’ binding suggested the potential regulatory roles of
these RNA regions.

Next, we investigated the RBP binding with different
RNA structure families. By matching with Rfam families
(40), we found that the conserved local structures of lncR-
NAs in subclass 3 mainly belonged to three structure fami-
lies: SRP, other canonical ncRNA structures (e.g. snoRNA,
tRNA, pre-miRNA, etc) and lncRNA family (Figure 7B).
Interestingly, we found most (84%) of the local structures
were SRPs. However, the RBP binding was highly enriched
in the other canonical ncRNA structures (Figure 7C and
Supplementary Figure S23) (chi-square test, P-value <
0.01). This enrichment might be biased by the RBP types
we collected: the 151 RBPs were mainly splicing factors
and UTR processing factors. This small set did not repre-
sent various regulatory roles of over 1500 RBPs in human
(41), which might be associated with SRP-like structures on
lncRNAs.

Finally, we used a well-known lncRNA, NEAT1 (nuclear
enriched abundant transcript 1, i.e. MEN beta) (42–44), to
illustrate the conserved local structures on a lncRNA (Fig-
ure 8A). The 5′ end of NEAT1 contains three structural
domains belonged to lncRNA families (named as NEAT1
in Rfam). The 3′ end contains many conserved canoni-
cal ncRNA structures, such as SRPs, pre-miRNAs and a
mascRNA. For instance, mascRNA is a conserved tRNA-
like RNA (Figure 8B) processed from NEAT1 transcript,
which also exists in MALAT1 (44). What’s more, we ob-
served a SRP-like structure on NEAT1 (Figure 8C). Al-
though conserved in RNA secondary structure, the SRP-
like region was less conserved at sequence level. Remark-
ably, we found the SRP-like structure had a G to A mu-
tation, which was identified in melanoma (45). The G was
originally paired with C in a conserved stem-loop. More-
over, based on the eCLIP-seq data, we also found this stem-
loop was bound by many RBPs, such as SLBP, PTARDBP,
CPSF7, CSTF2T, EIF4A3, HNRNPA1, HNRNPM, HN-
RNPU, NUDT21, PTBP and U2AF2. All the above evi-
dence suggested potential regulatory roles of the structural
domains of lncRNA, NEAT1.

DISCUSSION

COME is a coding potential tool to utilize features derived
from multiple sources and levels: it not only includes the se-
quence features (e.g. GC content and RNA structure con-
servation), but also supports the use of other experimen-
tal data. Based on multiple features and the decompose–
compose method, COME is able to calculate coding poten-
tial with high accuracy, robustness and consistency. In addi-
tion, COME can annotate known and novel lncRNAs with
various supporting features, which could help researchers to
generate hypotheses for further functional and mechanistic
studies (21).

A more practical application of a coding potential cal-
culator is to evaluate the newly assembled transcriptome.
Many of the assembled transcripts were actually transcribed
fragments (transfrags), because the full-length version is
difficult to assemble from RNA-seq’s short reads. How-
ever, some features (e.g. ORF length) that could be af-
fected by the transcript’s assembly quality have been used

by many coding potential calculators. The decompose–
compose strategy and the multiple complimentary features
would help COME to avoid some influences of transcript
length and assembly quality. Therefore, COME has the po-
tential to be a more practical tool. To test the performances
of the various calculators for transfrags assembled de novo
from RNA-seq data, we only used the re-assembled trans-
frags with matching levels of 50–100%, according to the
reference transcripts. Transcripts with high matching lev-
els were more likely to be known transcripts poorly assem-
bled, rather than new isoforms. A total of 147 512 assem-
bled transfrags were more than 50% matched in length with
known transcripts [Gencode v19 (6)], and these were used as
the test set (T3). The ones below 50% were more likely to be
novel transcripts, and thus, we did not use them for testing.
In the comparisons, we grouped the transfrags by various
degrees of matching: 50–90% matched, 90–95% matched,
95–100% matched and 100% matched (Supplementary Fig-
ure S24). COME showed the best accuracy and robustness
for transcripts of differing assembly quality, with AUC val-
ues varying from 0.968–0.993. However, please note that
many unmatched transfrags (e.g. those had <90% similar-
ity to the known ones) were potential novel isoforms, while
others were probably poorly assembled known transcripts
(e.g. those had >99% similarity to the known ones). Cur-
rently, there is no gold-standard set helping us distinguish
these two cases.

We further compared the coding potential calculators’
predictive power for the intergenic and genic lncRNAs. The
AUC scores of all calculators were decreased to ∼80% for
the genic lncRNAs, where COME still performed the best
(Supplementary Figure S25).

COME’s calculation is based on indexed genome and
feature vectors, and therefore, it runs fast for large
sets of transcripts (Supplementary Table S1). We pro-
vide downloadable data matrix and pre-trained models,
along with the software implementation (https://github.
com/lulab/COME).

Because COME and many other coding potential calcu-
lators require a training set for the supervised models (Sup-
plementary Table S2), and the test set we used could be pre-
dicted by some previous coding potential calculators, the
performance comparison may be unfair to other calculators
and COME.

In addition, the variability in annotation quality would
affect the test performance. For instance, many lncRNAs
from Gencode are lacking correct transcription start site
annotation. This would affect many prediction tools that
require full-length transcripts. COME would be affected as
well if the training set were not correctly annotated. On the
other hand, as demonstrated above (Supplementary Fig-
ure S24), the decompose-compose strategy and the multiple
complimentary features would help COME to avoid some
influences of incorrect transcription start site annotation.

Because the current annotations are not perfect, some-
times the discrepancy between the annotation and compu-
tational prediction would provide hint to novel findings. For
example, Anderson et al reported a functional small pep-
tide encoded by an annotated lncRNA, which is conserved
in both human and mouse (46). We tested this specific case
and found that COME, as well as some other tools, was able

https://github.com/lulab/COME
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Figure 8. Examples of structural domains on a lncRNA, NEAT1. (A) Conserved structural domains on NEAT1. DNA conservation score is the phastCons
score. RNA conservation score is the––log(E-value of Rfam hit). RNA secondary structures and sequence alignments of mascRNA (B) and a SRP-like
RNA (C) are shown in detail. In the alignments, the co-variant nucleotides are shown in blue; and the structure-disrupting variances are shown in orange.
The RBP binding sites are labeled as in yellow; and a SNP (G to A) site is labeled in red.

to predict the ‘annotated lncRNA’ as a coding transcript
(Supplementary Table S3).

Moreover, the models underlying COME include many
features derived from various resources that require some
pre-processing efforts. Although COME should be useful
for novel lncRNA identification and characterization in
new samples (e.g. cancer samples) of five model organisms,
its extension to more species will require additional work.
Therefore, we plan to continually update COME as anno-
tation improves, curate more features and add more model
organisms in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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