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Abstract: Astrocytes are non-excitable cells in the CNS that can cause life-threatening astrocytoma
tumors when they transform to cancerous cells. Perturbed homeostasis of the neurotransmitter
glutamate is associated with astrocytoma tumor onset and progression, but the factors that govern
this phenomenon are less known. Herein, we review possible mechanisms by which glutamate may
act in facilitating the growth of projections in astrocytic cells. This review discusses the similarities
and differences between the morphology of astrocytes and astrocytoma cells, and the role that
dysregulation in glutamate and calcium signaling plays in the aberrant morphology of astrocytoma
cells. Converging reports suggest that ionotropic glutamate receptors and voltage-gated calcium
channels expressed in astrocytes may be responsible for the abnormal filopodiagenesis or process
extension leading to astrocytoma cells’ infiltration throughout the brain.
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1. Introduction

Tumor progression in the brain is different and more aggressive than that in other
tissues [1,2]. Indeed, the average life expectancy for patients suffering from high-grade
gliomas is only 12–16 months. This short timeline is due to aggressive diffusion, adaptive
resistance against chemotherapy, and a high probability of local recurrence after surgery [3].
Cancerous cells arising from glia, astrocytes in particular, are naturally prone to extending
cell projections and can infiltrate tissue and spread to distant brain regions. This infiltrative
property of transformed astrocytes is thought to be one mechanism by which astrocytoma
cells resist chemo- and radiotherapy treatments, or reoccur after ablative surgery [4–7].
Identifying the stimuli and receptors that contribute to the aberrant morphology of as-
trocytoma cells might offer means to intervene, slow, or prevent brain tumor infiltration,
thereby decreasing the odds of tumor recurrence post-treatment. While several research
efforts aim to shed light on how undesired filopodiagenesis occurs, no consensus has been
reached yet.

This review discusses possible mechanisms that govern astrocytoma cell tissue in-
filtration. It outlines how glutamate dysregulation in the brain may be responsible for
the aberrant morphology of transformed astrocytes (Figure 1). The effect of glutamate
signaling on the morphology of normal astrocytes versus astrocytoma cells is presented
first. This is followed by the discussion of glutamate receptors as candidate initiators of un-
desired glutamate-dependent morphology such as filopodiagenesis, and the involvement
of voltage-gated calcium channels via their associated glutamate-sensitive α2δ subunit.
Each section presents the context for current hypotheses, along with knowledge gaps or
open questions remaining to be addressed.
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Figure 1. Transformation of astrocytes leading to astrocytoma cells. In grade II astrocytoma, the 
mutated astrocytes extend cellular projections that can infiltrate tissue distant from their soma loca-
tion. Aberrant, excessive glutamate release at synapses is neurotoxic and could allow a tumor cell 
to spread in the interstitial space liberated by the retracting neurons. An associated glutamate-in-
duced intracellular Ca2+ rise in astrocytoma could also accelerate filopodiagenesis and cancer cell 
migration. 

1.1. Tumors, Glioma and Astrocytoma 
Gliomas are the most prevalent primary tumors in the central nervous system [7,8]. 

The innate ability of glioma cells to use their long processes for invasion, proliferation, 
and replication, and to enable long-range communication within a network of cancer cells 
is emerging [4–6]. Gliomas are classified according to their parent normal glia: astrocytic 
tumors, oligodendroglial tumors, oligoastrocytoma tumors, ependymal tumors, and neu-
ronal and mixed neuronal–glial tumors (e.g., ganglioglioma and glioblastoma multi-
forme) [9,10]. Gliomas are also classified according to their invasiveness as the major de-
terminant of malignancy, starting with grade I tumors that have low proliferative poten-
tial and are usually circumscribed to a single region. More infiltrating malignant glioma 
tumors are classified as grade II (astrocytoma and oligodendroglioma), grade III (anaplas-
tic oligodendroglioma, anaplastic astrocytoma, anaplastic oligoastrocytoma, and anaplas-
tic ependymoma), and grade IV (glioblastoma). [3,7,8]. Grade II astrocytoma cancers are 
useful models for gaining important biochemical insight, as they arise from transformed 
astrocytes [11]. 

1.2. Dynamic Morphology of Astrocytes 
Astrocytes extend and retract their fine processes at synaptic contacts [12–15]. Such 

dynamic reshaping is influenced by their neighboring cells and the architecture of each 
brain region [3–6]. For instance, live confocal imaging of the hippocampus, brainstem, and 
cortex has demonstrated that astrocytes frequently probe at glutamatergic synapses to 
eventually enwrap them tightly [16–18]. Peripheral astrocytic processes (PAPs) in healthy 
cells show a clear directional motility preference toward glutamatergic synapses [19–22]. 
This suggests that they respond to chemical signals released externally at the synaptic 
cleft, specifically the neurotransmitter glutamate [23–25]. While the malignancy and ther-
apy resistance of astrocytoma tumors correlate strongly with the abnormal morphology 
of astrocytoma cells, e.g., extra-long processes and excessive network elaboration, the ex-
act cause is still unclear. Dysregulation of glutamate homeostasis has been suggested as a 
plausible mechanism for the overactive elongation of processes in astrocytoma cells [4–
6,26]. 

  

Figure 1. Transformation of astrocytes leading to astrocytoma cells. In grade II astrocytoma, the
mutated astrocytes extend cellular projections that can infiltrate tissue distant from their soma
location. Aberrant, excessive glutamate release at synapses is neurotoxic and could allow a tumor
cell to spread in the interstitial space liberated by the retracting neurons. An associated glutamate-
induced intracellular Ca2+ rise in astrocytoma could also accelerate filopodiagenesis and cancer
cell migration.

1.1. Tumors, Glioma and Astrocytoma

Gliomas are the most prevalent primary tumors in the central nervous system [7,8].
The innate ability of glioma cells to use their long processes for invasion, proliferation, and
replication, and to enable long-range communication within a network of cancer cells is
emerging [4–6]. Gliomas are classified according to their parent normal glia: astrocytic tu-
mors, oligodendroglial tumors, oligoastrocytoma tumors, ependymal tumors, and neuronal
and mixed neuronal–glial tumors (e.g., ganglioglioma and glioblastoma multiforme) [9,10].
Gliomas are also classified according to their invasiveness as the major determinant of ma-
lignancy, starting with grade I tumors that have low proliferative potential and are usually
circumscribed to a single region. More infiltrating malignant glioma tumors are classified
as grade II (astrocytoma and oligodendroglioma), grade III (anaplastic oligodendroglioma,
anaplastic astrocytoma, anaplastic oligoastrocytoma, and anaplastic ependymoma), and
grade IV (glioblastoma). [3,7,8]. Grade II astrocytoma cancers are useful models for gaining
important biochemical insight, as they arise from transformed astrocytes [11].

1.2. Dynamic Morphology of Astrocytes

Astrocytes extend and retract their fine processes at synaptic contacts [12–15]. Such
dynamic reshaping is influenced by their neighboring cells and the architecture of each
brain region [3–6]. For instance, live confocal imaging of the hippocampus, brainstem,
and cortex has demonstrated that astrocytes frequently probe at glutamatergic synapses to
eventually enwrap them tightly [16–18]. Peripheral astrocytic processes (PAPs) in healthy
cells show a clear directional motility preference toward glutamatergic synapses [19–22].
This suggests that they respond to chemical signals released externally at the synaptic cleft,
specifically the neurotransmitter glutamate [23–25]. While the malignancy and therapy
resistance of astrocytoma tumors correlate strongly with the abnormal morphology of
astrocytoma cells, e.g., extra-long processes and excessive network elaboration, the ex-
act cause is still unclear. Dysregulation of glutamate homeostasis has been suggested as
a plausible mechanism for the overactive elongation of processes in astrocytoma
cells [4–6,26].

1.3. Morphology of Astrocytoma Cells

In contrast to normal astrocytes, astrocytoma cells develop longer, more dynamic
and highly elaborated processes [4,5,27,28]. The extension and retraction of their pro-
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cesses are not restricted to synaptic sites; they can infiltrate tissue and create networks
that extend beyond their initial location [29,30]. In a tumor, these spreading cells create
a fibrillary background that can keep their microenvironment shielded from interventions
or treatments such as chemo- and radiotherapy. This infiltration of long filopodia within
tissue is what allows a malignant glioma tumor to expand throughout the brain more
rapidly than other cancer types [26,31,32].

Understanding how to prevent uncontrolled filopodiagenesis in astrocytoma is
an attractive, logical step toward stopping tumor progression. These cells most likely
use the same molecular mechanisms as their parent astrocytes, but dysregulation in chem-
ical signaling seems to cause their filopodia to extend abnormally. Filopodia are long,
cylindrical cell projections filled with bundles of parallel actin filaments [30]. They occur in
several cell types and often act as pathfinders in response to guiding chemical cues [31–34].
Filopodiagenesis depends on the intracellular release of Ca2+ ions, and it arises from the
reorganization of sheet-like actin arrays. The molecular details that underpin the initiation
and maintenance of filopodia are just beginning to emerge [33–36]. The proteins involved
in the guided chemical responses of the and/or their structural reorganization have at-
tracted attention. In astrocytoma cells, such promising candidates are glutamate-sensitive
ion channels.

2. Glutamate Signaling

Glutamate is the primary mediator of excitatory signals in the CNS; it can be released
and sensed by both neurons and astrocytes [37–39]. More specifically, astrocytes express
several receptors and enzymes that are essential for maintaining glutamate homeostasis
at a synaptic cleft [40–45]. In healthy synaptic communication, each neuronal synapse is
usually enveloped by an astrocytic projection to form a tripartite synapse (Figure 2) [37,43].
The morphology of these ensheathing astrocytic projections is known to be sensitive to
glutamate [23,43,46]. In glioma, the infiltrative activity of cancer cells is associated with
filopodium extension and elevated glutamate levels. How the phenomenon takes place is
still unclear, but several hypotheses point to calcium-dependent events.
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in response to long-term potentiation. The growth of post-synaptic dendritic spines is associated 
with enhanced motility of PAPs, which increases their coverage of synapses and strengthens the 
synaptic connection [38]. 

When astrocytes sense a glutamate signal, it is followed by a rapid rise in the intra-
cellular Ca2+ ion concentration, which is required for filopodiagenesis (Figure 3) 
[40,41,47,48]. Thus, the glutamate receptors that act as Ca2+ ion channels or release Ca2+ 

Figure 2. The tripartite synapse model. A tripartite synapse consists of a pre-synapse (gray), a post-
synapse (red), and a perisynaptic astrocyte process (PAP, green). PAPs undergo structural changes in
response to long-term potentiation. The growth of post-synaptic dendritic spines is associated with
enhanced motility of PAPs, which increases their coverage of synapses and strengthens the synaptic
connection [38].

When astrocytes sense a glutamate signal, it is followed by a rapid rise in the intracel-
lular Ca2+ ion concentration, which is required for filopodiagenesis (Figure 3) [40,41,47,48].
Thus, the glutamate receptors that act as Ca2+ ion channels or release Ca2+ from internal
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sources are prime suspects as potential contributors to the aberrant morphology of astro-
cytoma cells. The following sections discuss ion channels that may be responsible for the
uncontrolled process extension of astrocytoma cells.
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Figure 3. Scheme outlining glutamate and calcium signaling in astrocytes at a glutamatergic synapse.
Astrocytes respond to glutamate stimulation with a strong calcium influx, followed by process
extension. Such transient increases in Ca2+ concentration in astrocytes can also cause gliotransmitter
release. To prevent excitotoxicity, astrocytes also take up glutamate to recycle it into non-toxic
glutamine [49]. Ionotropic (AMPA, KA, and NMDA) and metabotropic glutamate receptors contribute
to the intracellular Ca2+ rise in neurons and astrocytes. Voltage-gated calcium channels are also
expressed at synapses in astrocytes and play a role in cellular calcium events.

Glutamate Receptors in Astrocytes and Astrocytoma Cells

In astrocytes, the receptors that contribute to Ca2+ events following glutamate stimula-
tion are heterogeneous; their expression profiles vary according to the regions of the brain
and stages of development [16,17,48,50]. The two main families of glutamate-sensitive
receptors are the ionotropic and metabotropic glutamate receptors (iGluR and mGluR,
respectively). iGluRs are ligand-gated ion channels that mediate excitatory neurotransmis-
sion upon the binding of glutamate [50,51]. They are well-studied in neurons but not in
astrocytes. Three iGluR subfamilies have been found in astrocytes: α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPARs), kainic acid receptors (KARs), and
N-methyl-D-aspartate receptors (NMDARs) [52–54]. AMPA and KA receptors are usually
considered together as non-NMDA receptors due to their structural similarity and their
lack of selective antagonists that would allow unequivocal distinction [55–57].
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Calcium-permeable AMPARs have been identified in glioma cells as well as in as-
trocytes from the forebrain, the neocortex, and Bergmann glial cells of the cerebellar
cortex [43,46]. They have been shown to be involved in glutamate-mediated proliferative
signals in glioma cells [11,58]. It is still unknown whether they also contribute to the
morphological response of astrocytoma cells upon exposure to glutamate.

Astrocytes and astrocytoma cells also express kainic acid receptors (KARs), but their
function remains largely unexplored [23,58,59]. Since astrocytoma progression is known
to be affected by perturbed glutamate homeostasis [60–63], our lab investigated the re-
lationship between the glutamate stimulation of astrocytoma cells and their aberrant
morphology [64,65]. Glutamate was found to trigger the rapid extension of processes
in astrocytoma cells (as observed in their parent astrocytes). We also found that gluta-
mate receptors sensitive to kainic acid (GluK) are involved in filopodiagenesis [23,24,43].
This selective activation of KARs was sufficient to cause filopodium extension in astro-
cytoma cells, suggesting for the first time that KARs play a direct role in glutamate-
induced filopodiagenesis.

Some astrocytoma cells have been reported to express subunits of NMDARs; however,
the absence of the NR1 subunit makes these proteins unfunctional [58]. Despite having been
identified in normal astrocytes from a few regions of the brain, NMDAR’s activity is barely
detectable due to the high polarization of the astrocytes’ membranes (resting potential:
–80 mV) [16,17,44,63,66]. Only in cultured cortical astrocytes have active NMDARs been
observed [67].

Astrocytes stimulated with glutamate show a sharp rise in intracellular Ca2+ concen-
tration rise that depends on metabotropic glutamate receptor 5 (mGluR5) [68,69]. These G
protein-coupled receptors release calcium from internal stores via an IP3-mediated pathway
by activating Gq and phospholipase C [42,45,68,69]. However, whether mGluR5 is essential
for astrocytic glutamate signaling is still an unanswered question, as literature reports vary.
For instance, glutamate-dependent calcium signaling was found to involve mGluR5 in
juvenile hippocampal astrocytes, but mGluR5 agonists failed to induce the same calcium
cascade in astrocyte soma from the adult brain [43,48]. Similarly, glutamate released by
mossy fibers of the mature hippocampus was shown to induce only partial calcium signals
via mGluR5 in astrocytes [70,71].

Thus far, ionotropic glutamate receptors sensitive to AMPA and KA have shown the
most direct correlation with triggering filopodiagenesis in astrocytoma cells. It should be
noted that astrocytomas also express mGluRs whose function remains unidentified [58].

3. Calcium Influx in Astrocytoma

The presence and role of calcium influx in astrocytes have often been debated over
the past decades, but the phenomenon is now generally accepted [72,73]. Consequently,
modifying the calcium influx in glioma and astrocytoma is viewed as a potential therapeutic
avenue for treating brain cancers [74]. The proteins that govern the calcium influx in
astrocytoma have not been unambiguously established. However, the repeated observation
of glutamate-dependent calcium signaling events presents a possible means by which to
stifle astrocytoma progression.

3.1. Glutamate Signaling vs. Intracellular Calcium

Instead of sequestering and recycling excess glutamate like normal astrocytes, as-
trocytoma cells increase the glutamate concentration at synaptic contacts [3,60–63,75,76].
This glutamate accumulation can be caused by the lack of Na+-dependent glutamate up-
take [75,77] or by the hyperactive release of glutamate [37,43,61]. Such a local excess of
neurotransmitters leads to a Ca2+ rise in astrocytoma that creates a positive feedback
loop and amplifies glutamate release [3,75]. The resulting overstimulation of neurons is
excitotoxic—the associated uncontrolled intracellular Ca2+ can cause their apoptosis [75,78–80].

The glutamate receptors responsible for the large Ca2+ rise in astrocytoma cells have
not yet been identified. As described above, we recently reported that glutamate receptors
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sensitive to kainic acid are involved in filopodiagenesis. Intriguingly, we also found that
CaV1.2 voltage-gated calcium ion channels may also participate in filopodiagenesis in
astrocytoma cells [64,65,81,82].

3.2. Glutamate Signaling and Votage-Gated Calcium Channels

The possibility that external glutamate stimulation can lead to the activation of CaV
channels in astrocytoma raises several mechanistic questions that are only starting to be
investigated. In the CNS, high-voltage CaVs were thought to be exclusive to excitable cells
such as neurons (i.e., the CaV1 calcium channel family) [83], but they are now known to
also be expressed in non-excitable cells such as astrocytes and astrocytoma cells [84,85].
Functional CaVs are composed of a pore-forming α1 subunit that conducts Ca2+ ions,
an internal β subunit, and an extracellular α2δ subunit [76].

The function of CaV1s is not limited to excitability in neurons: they help to regulate
ion homeostasis [86–88], and in non-excitable cells, CaV1s were shown to contribute to
non-electrical events that require a high volume of Ca2+ input, such as actin cytoskeleton
reorganization [33,34,89]. For instance, calcium “hotspots” arising from CaV1 clusters
promote morphological changes in neuronal growth cones [90–92].

The greater frequency of opening CaV channels observed during filopodiagenesis
suggests their involvement in filopodium formation [33]. Indeed, calcium signaling has
been shown to regulate filopodiagenesis via a network of signaling proteins such as
Ca2+-activated K+ channels (BK) coupled to voltage-gated calcium channels (CaVs) [33,93].
Moreover, pharmacological CaV blockers have been shown to reduce glioma cell prolifera-
tion and infiltration in the brain [94]. Paradoxically, CaV agonists did not enhance tumor
growth and did not increase intracellular Ca2+ concentrations [95–98].

While studying glutamate signaling, our team observed a CaV-channel-dependent
morphological response in astrocytoma cells [82]. The stimulation of U118 astrocytoma
cells with glutamate caused rapid filopodiagenesis. Selectively blocking the pore-forming
α1 subunit of CaVs only reduced the extension of processes. In contrast, using antagonists
selective for the extracellular α2δ subunit of CaVs completely inhibited filopodiagenesis [65,82].
Moreover, we observed a rapid translocation and redistribution of high-voltage CaVs at the
membrane when astrocytoma cells were exposed to glutamate [81]. These observations
suggest that the morphological response to glutamate may involve the extracellular α2δ
subunit of CaVs in astrocytoma cells. Whether α2δ exerts its effect by modulating Ca2+ or
other pathways remains to be elucidated. It should be noted that, while the α2δ protein
was first discovered with CaVs, reports are emerging of its association with other proteins
such as NMDA or BK channels as well [99,100].

The complex interplay between glutamate exposure and CaV activation has been
reported in neurons but not in astrocytes [101]. However, the expression of functional
voltage-gated Ca2+ channels as well as glutamate receptors in astrocytes and astrocy-
toma cells has been established [43,82,84,102,103]. Hypotheses are starting to converge
to involve undesired filopodiagenesis triggered by the possible binding of excess gluta-
mate to CaV’s α2δ subunit. However, much more work is needed to control for other
Ca2+-mediated pathways.

4. Concluding Remarks

Studies on tumor progression have shown that the abnormal accumulation of extra-
cellular glutamate at the synaptic cleft leads to disrupted Ca2+ homeostasis. Most reports
studying filopodiagenesis caused by cellular calcium signaling in astrocytoma have focused
on glutamate receptors. In contrast, voltage-gated calcium channels have been much less
investigated [11,48,62,104]. Empirical data now suggest that the rapid process extension of
astrocytoma cells associated with glutamate signaling may involve kainic acid receptors
(KARs) and/or CaV1 voltage-gated calcium channels. This arguably simplistic view will
likely gain complexity as more data become available.
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Several questions remain to be answered on what governs the astrocytic morphological
changes induced by glutamate signaling. For instance, what is the function of kainic acid
receptors (KARs) expressed in astrocytes and astrocytoma cells? Are there cases where
AMPA receptors initiate filopodiagenesis? What is the role of other mGluRs expressed
in astrocytoma cells? How do CaVs influence glioma tumor growth? How does the
extracellular α2δ subunit of CaVs contribute to the morphological response in astrocytoma?
Does α2δ exert its effect by modulating Ca2+ directly, or by other pathways? Are there
more glutamate receptors responsible for the uncontrolled Ca2+ rise in astrocytoma cells?

Taken together, the accumulating evidence for a glutamate-dependent morphological
response of astrocytoma cells points to new research avenues for the role of glutamate
signaling in the progression and malignancy of astrocytoma tumors. This review aimed
to gather, in one place, the open questions that arise when one surveys the latest develop-
ments. We hope that the discussion will stimulate more investigations toward promising
approaches to overcoming therapy resistance and the infiltration of astrocytoma tumors
within the brain.
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