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Abstract. Preeclampsia (PE) is a pregnancy-specific syndrome 
with complex pathogenesis. The present study aimed to 
explore the role of heat shock protein B8 (HSPB8) and c-Myc 
in trophoblast cell dysfunction using a hypoxia/reoxygenation 
(H/R)-treated HTR8/SVneo cell model. HSPB8 expres-
sion in tissues of patients with PE was analyzed using the 
Gene Expression Omnibus database. Following detection 
of HSPB8 expression in H/R-stimulated HTR8/SVneo cells, 
HSPB8 was overexpressed by transfection of the gene with 
a HSPB8-specific plasmid. Cell Counting Kit-8, wound 
healing and Transwell assays were used to evaluate the 
proliferation, migration and invasion of HTR8/SVneo cells 
exposed to H/R conditions. Reactive oxygen species (ROS) 
were determined by 2,7-dichlorodihydrofluorescein diacetate 
staining. 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazo-
locarbo-cyanine iodide (JC-1) staining was applied to assess 
mitochondrial membrane potential. Malondialdehyde (MDA) 
and superoxide dismutase (SOD) levels were detected using 
the corresponding commercial kits. In addition, the induction 
of apoptosis was assessed by terminal deoxynucleotidyl trans-
ferase dUTP nick end labeling (TUNEL) staining. Moreover, 
the Biogrid database predicted that HSPB8 was bound to 
c-Myc, and a co-immunoprecipitation (Co-IP) assay was used 
to verify this interaction. Subsequently, c-Myc expression was 
silenced to conduct rescue experiments in HTR8/SVneo cells 
exposed to H/R conditions and upregulated HSPB8 expression. 
Notably, reduced HSPB8 expression was noted in PE tissues 
and H/R-stimulated HTR8/SVneo cells. HSPB8 enforced 
expression promoted the proliferation, migration and invasion 
of HTR8/SVneo cells. Moreover, H/R caused an increase in 
ROS and MDA levels as well as in TUNEL staining and a 
decrease in aggregated JC-1 fluorescence and SOD activity 
levels, which were restored following HSPB8 overexpression. 

Co-IP confirmed the interaction between HSPB8 and c-Myc. 
Moreover, knockdown of c-Myc expression compromised the 
effects of HSPB8 upregulation on trophoblast cell dysfunction 
following induction of H/R. Collectively, the data indicated 
that HSPB8 could improve mitochondrial oxidative stress by 
binding to c-Myc to alleviate trophoblast cell dysfunction. The 
findings may provide new insights into the pathogenesis of PE 
and highlight the role of HSPB8/c-Myc in the prevention and 
treatment of PE in the future.

Introduction

Preeclampsia (PE) is a complex pregnancy-associated disorder 
that occurs after 20 weeks of gestation (1). This condition is 
characterized by the presence of new-onset hypertension, 
proteinuria and edema (2). As a complex medical disorder, 
the incidence of PE ranges from 2-8% in pregnancies world-
wide, eventually leading to maternal and perinatal deaths (3). 
Significant scientific efforts have been made to elucidate this 
complex multifactorial disease; however, the pathogenesis 
of PE is still not fully understood. Therefore, an in-depth 
understanding of the molecular mechanism involved in the 
occurrence of PE is of crucial importance to the development 
of novel therapeutic strategies.

The invasion of fetal-derived extravillous trophoblasts 
(EVTs) into the myometrium of the uterine wall is consid-
ered to be a key step in placental development (4). Invading 
trophoblast perform multiple essential functions including 
the anchoring of the placenta to the uterus, regulating 
maternofetal immune tolerance and conversion of the 
maternal spiral arterioles, ensuring adequate blood supply 
to the intervillous space (5,6). The inadequate invasion will 
cause the anchoring villi to break down, forming a globular-
shaped placenta, resulting in damage to the villi structure 
and impaired placental function (7,8). Inadequate invasion 
has been associated with a number of obstetric syndromes, 
including PE (9). Previous studies have shown that trophoblast 
cell proliferation, invasion and migration ensure the normal 
development of placental metabolites, nutrient supply and 
excretion, and are key processes that successfully establish 
the maternal-fetal circulation and allow the continuation of 
pregnancy (10,11). During PE in pregnancy, alterations in 
the physiological transformation of the spiral arteries lead 
to placental hypoperfusion and hypoxia, eventually leading 
to placental insufficiency (12). An important feature of PE is 

HSPB8 binding to c-Myc alleviates hypoxia/reoxygenation-
induced trophoblast cell dysfunction

LING CHEN,  MEITING WU  and  YU ZHOU

Department of Gynecology and Obstetrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China

Received August 9, 2023;  Accepted December 1, 2023

DOI: 10.3892/etm.2024.12402

Correspondence to: Dr Ling Chen, Department of Gynecology and 
Obstetrics, Fujian Medical University Union Hospital, 29 Xinquan 
Road, Fuzhou, Fujian 350001, P.R. China
E-mail: chenlin830526@163.com

Key words: HSPB8, trophoblast cells, oxidative stress, apoptosis, 
preeclampsia



CHEN et al:  ROLES OF HSPB8/c-Myc IN PREECLAMPSIA2

oxidative stress in the trophoblast, which may be the result of 
placental ischemia and hypoxia due to poor spiral artery inva-
sion (13,14). In this process, the increased levels of ROS induces 
apoptosis through the mitochondrial pathway and affects the 
functions of cell proliferation, invasion and migration (15-17).

Heat shock protein B8 (HSPB8), a ubiquitous member of 
small heat shock proteins family, has been demonstrated to 
be involved in the regulation of multiple cellular functions, 
such as growth, aging, oxidative stress, migration and apop-
tosis (18-20). As a stress-related protein, HSPB8 accelerates 
the migration and invasion of hepatocellular carcinoma, 
breast cancer and cholangiocarcinoma (21-23). A previous 
study performed by Li et al suggests that HSPB8 overexpres-
sion protects against brain ischemia/reperfusion (I/R) injury 
by improving oxidative stress and apoptosis (24). It is worth 
noting that HSPB8 plays a significant role in the progression 
of human BeWo cytotrophoblasts to syncytiotrophoblasts (25). 
However, to the best of our knowledge, the role of HSPB8 in 
trophoblast cell dysfunction during PE has not been reported. 
In addition, the Biogrid database predicts that c-Myc, a well-
known oncogene that has been shown to regulate tumor cell 
invasion and migration, can interact with HSPB8 (26). A 
previous study that examined PE revealed that upregulation 
of c-Myc expression enhances trophoblast cell migration and 
invasion (27). Therefore, the present study aimed to elucidate 
whether HSPB8 could affect trophoblast cell dysfunction by 
regulating c-Myc expression.

In the present study, HTR-8/SVneo, a human first-trimester 
trophoblast cell line that has a similar function to EVTs, was 
stimulated by hypoxia/reoxygenation (H/R), to simulate a PE 
model in vitro. Additional experiments were conducted to 
explore the association between HSPB8 and c-Myc expression 
and their regulatory effects on trophoblast cell dysfunction.

Materials and methods

Bioinformatical analysis. The expression levels of HSPB8 
in placental tissues of patients with preterm PE and normal 
preterm pregnant women were analyzed using Gene Expression 
Omnibus (GEO) datasets (GSE102897 and GSE147776) down-
loaded from the national center of biotechnology information 
website (https://www.ncbi.nlm.nih.gov/) (28-30). GSE102897 
dataset included the placenta tissues from normal human 
(n=3) and patients with severe preeclampsia (n=3). GSE147776 
dataset included placenta tissues from normal human (n=8) 
and patients with severe preeclampsia (n=7). The analysis 
platform for GSE102897 and GSE147776 datasets were 
GPL22120 and GPL20844, respectively. The Biogrid database 
(https://thebiogrid.org) was used to predict the proteins that 
could interact with HSPB.

Cell culture and H/R induction. The human trophoblast cell 
line HTR-8/SVneo was acquired from American Type Culture 
Collection. The cells were routinely maintained in RPMI-1640 
medium (Gibco; Thermo Fisher Scientific, Inc.) containing 
10% FBS (MACGENE Biotechnology) at 37˚C in the pres-
ence of 5% CO2. For the H/R treatment, when HTR-8/SVneo 
cells reached 50-60% confluence, they were exposed to 2% 
O2, 5% CO2 and 93% N2 to achieve hypoxic conditions for 
8 h. Subsequently, the cells were transferred to an atmosphere 

containing 20% O2 and incubated for 16 h. A PE cell model 
was established by two cycles of H/R (31). The cells in the 
control group were cultured under standard culture conditions 
with 5% CO2 for 48 h.

Cell transfection. To overexpress HSPB8, HTR-8/SVneo cells 
were transfected with a HSPB8 plasmid (Ov-HSPB8) or the 
empty vector plasmid (Ov-NC). c-Myc was silenced by trans-
fection of the cells with short interference (si) RNA sequences 
specific to c-Myc (siRNA-c-Myc-1, 5'-GAG CTA AAA CGG 
AGC TTT TTT GC-3'; siRNA-c-Myc-2, 5'-GAG GAA GAA 
ATC GAT GTT GTT TC-3'). The cells transfected with a scram-
bled sequence [siRNA-negative control (NC)] (5'-AAG ACA 
UUG UGU GUC CGC CTT-3') were considered to be the nega-
tive control. The aforementioned plasmids were all provided 
by Shanghai GenePharma Co., Ltd. The siRNA sequences 
were provided by OBiO Technology (Shanghai) Corp., Ltd. 
Subsequently, 4 µg Ov-HSPB8, Ov-NC, 100 nM siRNA-c-
Myc-1/2 and siRNA-NC were transfected into HTR-8/SVneo 
cells with the application of Lipofectamine 2000 transfection 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's instructions. At 48 h post transfection, 
the cells were collected for subsequent experiments.

Cell Counting Kit-8 (CCK-8) assay. Cell viability was 
assessed using the Cell Counting Kit-8 (CCK-8) obtained 
from Beyotime Institute of Biotechnology. Following transfec-
tion and H/R exposure, HTR-8/SVneo cells were seeded into 
96-well plates (1x104/well). Following incubation at 37˚C for 
24, 48 and 72 h, a CCK-8 solution was added to each well 
for an additional 2 h incubation at 37˚C. The optical density 
was recorded at 450 nm using a microplate reader (Bio-Rad 
Laboratories, Inc.).

Wound healing assay. The wound healing assay was 
conducted to evaluate the migratory ability of HTR-8/SVneo 
cells following the indicated treatment. Briefly, HTR-8/SVneo 
cells were seeded into six-well plates at a density of 
1x105 cells/well. When HTR-8/SVneo cells reached 90% 
confluence, a straight wound was created on the bottom of 
the plates using a sterile 100 µl pipette tip. Subsequently, the 
cells were incubated in serum-free RPMI-1640 medium for 
24 h. The gap area was imaged using an inverted light micro-
scope (Olympus Corporation) and the width of the wound 
was analyzed by ImageJ software (version 1.48v; National 
Institutes of Health).

Transwell assay. Invasion of HTR-8/SVneo cells was assessed 
with the application of Transwell assay. A total of 5x104 
HTR-8/SVneo cells were suspended in 200 µl serum-free 
RPMI-1640 medium and were plated into the upper compart-
ments of Transwell chambers (8 µm pore size; Corning, Inc.) 
coated with Matrigel (BD Biosciences) at 37˚C for 1 h. The 
lower chambers were subsequently filled with the normal 
RPMI-1640 medium containing 10% FBS. Following culture of 
the cells for 48 h at 37˚C, they were fixed with 4% paraformal-
dehyde for 20 min at 37˚C and stained with 0.1% crystal violet 
for 10 min at room temperature. The images were obtained 
with an inverted light microscope (Olympus Corporation) and 
the invading cells were counted using ImageJ software.
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Measurement of cellular ROS. The content of ROS in 
HTR-8/SVneo cells was determined utilizing a ROS Assay 
kit (Beyotime Institute of Biotechnology) and the fluorescent 
probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) 
according to the instructions provided by the manufacturer. 
DCFH-DA (10 µmol/l) was applied for the staining of the cells 
for 20 min at 37˚C in the dark. The content of cellular ROS 
was evaluated by detecting the fluorescence intensity of the 
cells in each group using a confocal microscope (Olympus 
Corporation) with 488 nm excitation and 525 nm emission 
filters.

Mitochondrial membrane potential assay. The mitochondrial 
membrane potential was quantified by 5,5',6,6'-Tetrachloro-
1,1',3,3'-tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) 
staining (Thermo Fisher Scientific, Inc.). HTR-8/SVneo cells 
were subjected to 10 mg/ml JC-1 staining for 10 min at 37˚C 
away from light. The normal mitochondrial potential exhibited 
red fluorescence (JC-1 aggregates) and the damaged mitochon-
drial potential displayed green fluorescence (JC-1 monomers). 
The images (five fields of view) were obtained using a confocal 
microscope (Olympus Corporation).

Detection of oxidative stress indicators. After H/R exposure 
and/or transfection, HTR-8/SVneo cells were washed three 
times with cold PBS, and then cell lysis buffer (Beyotime 
Institute of Biotechnology) was added for cell lysis. Following 
centrifugation at 1,000 x g for 10 min at 4˚C, the supernatant was 
collected for detection. The content of malondialdehyde (MDA; 
cat. no. A003-4-1) and the activity of superoxide dismutase 
(SOD; cat. no. A001-3-2) in the supernatant were detected 
using the corresponding commercial kits (Nanjing Jiancheng 
Bioengineering Institute) according to the instructions provided 
by the manufacturer. The optical density was measured using a 
microplate reader (Bio-Rad Laboratories, Inc.).

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) staining. The induction of apoptosis of the 
transfected cells was assessed by the TUNEL assay (Beyotime 
Institute of Biotechnology). HTR-8/SVneo cells were cultured 
on glass coverslips overnight. Following fixation with 4% 
paraformaldehyde at room temperature for 1 h, the cells were 
blocked with 3% H2O2 (dissolved) for 20 min at room tempera-
ture. Following permeation with 0.1% Triton X-100 at 4˚C for 
2 min, the slides were incubated with 50 µl TUNEL reaction 
mixture for 1 h at 37˚C, mounted with Vectashield® mounting 
medium. Following addition of DAPI solution at 37˚C for 
10 min away from light, the cell samples were analyzed using 
an inverted fluorescence microscope (Olympus Corporation) 
in five random fields.

Co-immunoprecipitation (Co-IP) assay. HTR-8/SVneo cells 
were lysed on ice for 30 min in radioimmunoprecipitation 
assay (RIPA) lysis buffer (Beyotime Institute of Biotechnology) 
containing protease inhibitors. The lysed protein samples 
(500 µg cell lysate) were incubated with antibodies against 
2 µg anti-IgG (cat. no. ab172730; Abcam), anti-HSPB8 (cat 
no. 15287-1-AP; ProteinTech Group, Inc.) or anti-c-Myc (cat 
no. 10828-1-AP; ProteinTech Group, Inc.) antibodies and incu-
bated overnight at 4˚C. Then, 50 µg protein A magnetic beads 

(cat. no. #sc-2003; Santa Cruz Biotechnology, Inc.) were added 
for capturing the complexes of HSPB8 and c-Myc. After the 
IP reaction, 50 µg protein G/A agarose beads were centrifuged 
at 1,000 x g for 3 min at 4˚C to the bottom of the tube. The 
supernatant was then carefully absorbed, and the agarose 
beads were washed three times with PBS. A total of 15 µl 2X 
SDS sample buffer was finally added for boiling at 100˚C for 
5 min. Western blotting was used to analyze the expression 
levels of the target proteins.

Reverse transcription-quantitative PCR (RT-qPCR). TRIzol® 
reagent (Thermo Fisher Scientific, Inc.) was used to extract 
the total RNA from HTR-8/SVneo cells. The RNA was 
reverse transcribed to complementary DNA (cDNA) using 
the PrimeScript RT reagent kit (Takara Bio, Inc.) according to 
the manufacturer's protocol. Quantitative PCR for the associ-
ated genes was conducted by RT-qPCR using SYBR Green 
master mix (Vazyme Biotech Co., Ltd.) on an ABI Prism 
7500 Sequence Detector (Applied Biosystems; Thermo Fisher 
Scientific, Inc.). The following thermocycling conditions were 
used for qPCR: Initial denaturation for 2 min at 94˚C; followed 
by 35 cycles for 30 sec at 94˚C and 45 sec at 55˚C. β-actin 
was selected as the endogenous control. The calculation of the 
expression values was performed using the 2-ΔΔCq method (32). 
Specific primers were shown below: HSPB8 forward, 5'-TTC 
CCA GAC GAC TTG ACA GC-3', and reverse, 5'-GCC AAT TGC 
GCT ATC CTG TG-3'; c-Myc forward, 5'-GCA ATG CGT TGC 
TGG GTT AT-3', and reverse, 5'-TCC CTC CGT TCT TTT TCC 
CG-3'; β-actin forward, 5'-GCC TCG CCT TTG CCG AT-3', and 
reverse, 5'-AGG TAG TCA GTC AGG TCC CG-3'.

Western blotting. Total proteins were extracted from 
HTR-8/SVneo cells using a RIPA lysis buffer (Beyotime 
Institute of Biotechnology). The concentration levels of 
the proteins were determined with the application of a 
bicinchoninic acid assay (BCA) kit (Beyotime Institute of 
Biotechnology). Equal amounts of proteins (40 µg proteins 
per lane) were separated using 10% sodium dodecylsulfate-
polyacrylamide gel electrophoresis and transferred to 
polyvinylidene difluoride membranes. The membranes were 
blocked with 5% non-fat milk for 1 h at room temperature, 
followed by probing with primary antibodies at 4˚C overnight. 
Following addition of the HRP-conjugated goat anti-rabbit 
secondary antibody (1:2,000; cat. no. 7074S; Cell Signaling 
Technology, Inc.) for 1 h at room temperature, the bands were 
visualized using an ECL Plus Chemiluminescence Reagent 
kit (Pierce; Thermo Fisher Scientific, Inc.). The gray values 
of the protein bands were determined by ImageJ software 
(version 1.48v). The intensity of β-actin was used as a loading 
control. Anti-HSPB8 (1:2,000; cat. no. ab151552) and anti-c-
Myc (1:2,000; cat. no. ab185656) antibodies were acquired 
from Abcam. Anti-Bcl-2 (1:1,000; cat. no. 4223T), anti-Bax 
(1:1,000; cat. no. 41162S), anti-cleaved caspase3 (1:1,000; cat. 
no. 9664T), anti-Caspase3 (1:1,000; cat. no. 9662S) and anti-
β-actin (1:1,000; cat. no. 4970T) antibodies were provided by 
Cell Signaling Technology, Inc.

Statistical analysis. Data from three independent replicates 
were presented as the mean ± standard deviation and analyzed 
using GraphPad 8.0 statistical software (GraphPad Software, 
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Inc.; Dotmatics). The differences between the two groups were 
calculated by the unpaired Student's t-test. One-way analysis 
of variance (ANOVA) followed by Tukey's test was appointed 
for data comparison among multiple groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

HSPB8 expression is downregulated in placental tissues of 
patients with preterm PE and H/R-induced HTR-8/SVneo 
cells. In order to identify the role of HSPB8 in PE, the GEO 
datasets (GSE102897 and GSE147776) were used for analysis 
and HSPB8 expression was found to be significantly reduced 
in placental tissues of preterm patients with PE compared with 
that noted in normal preterm pregnant women (Fig. 1A and B). 
Following exposure of HTR-8/SVneo cells to H/R conditions 
to mimic the PE pathology, HSPB8 expression was also signif-
icantly decreased compared with that of the control group 
(Fig. 1C). These data revealed the abnormal low expression 
of HSPB8 in placental tissues of patients with preterm PE and 
H/R-induced HTR-8/SVneo cells.

HSPB8 overexpression promotes the proliferation, migra-
tion and invasion of H/R-induced HTR-8/SVneo cells. 
Subsequently, HSPB8 was overexpressed by transfection with 
HSPB8 plasmid and the transfected efficiency was assessed 
by RT-qPCR and western blotting. Significantly elevated 
HSPB8 expression was observed in the Ov-HSPB8 group 
compared with that noted in the empty vector control group 
(Fig. 2A and B). The results of the CCK-8 assay indicated that 
H/R stimulation decreased the viability of HTR-8/SVneo cells 
compared with control cells, which was significantly increased 
following transfection of the cells with the HSPB8 plasmid 
compared with the H/R + Ov-NC group (Fig. 2C). Moreover, 
overexpression of HSPB8 significantly restored H/R-induced 
limitations on the migration and invasion of HTR-8/SVneo 
cells compared with those noted in the H/R + Ov-NC group 
(Fig. 2D and E). The aforementioned results demonstrated 
that under H/R conditions, upregulation of HSPB8 expres-
sion accelerated the proliferation, migration and invasion of 
HTR-8/SVneo cells.

HSPB8 overexpression alleviates the induction of oxidative 
stress and apoptosis of HTR-8/SVneo cells exposed to H/R 
conditions. DCFH-DA staining indicated notably enhanced 
fluorescence intensity in HTR-8/SVneo cells in response to 
H/R stimulation, suggesting the elevated ROS levels in the H/R 
group (Fig. 3A). By contrast, HSPB8 overexpression markedly 
reduced the fluorescence intensity induced by H/R condi-
tions compared with the H/R + Ov-NC group. In addition, in 
comparison with the control group, H/R stimulation increased 
JC-1 aggregate formation and decreased JC-1 monomer levels 
in HTR-8/SVneo cells, indicating the damaged mitochon-
drial potential in H/R-induced HTR-8/SVneo cells (Fig. 3B). 
Subsequent overexpression of HSPB8 caused elevated levels 
of JC-1 aggregates and reduced the levels of JC-1 monomers 
(Fig. 3B). Concomitantly, H/R caused a significant increase in 
the MDA content and a decrease in SOD activity, which were 
significantly reversed following transfection of the cells with 
the HSPB8 plasmid (Fig. 3C and D). Moreover, in contrast with 
the control group, significantly enhanced TUNEL staining 
was noted in the H/R group in HTR-8/SVneo cells compared 
with the control group, as determined by downregulation of 
Bcl-2 expression and upregulation of Bax and cleaved caspase 
3 expression (Fig. 4A and B). However, overexpression of 
HSPB8 attenuated the effect of H/R on TUNEL staining and 
the expression levels of the aforementioned apoptotic proteins 
compared with the H/R + Ov-NC group (Fig. 4A and B). These 
results implied that HSPB8 overexpression alleviated oxida-
tive stress and induction of apoptosis of HTR-8/SVneo cells 
exposed to H/R conditions.

HSPB8 binds to c-Myc to promote proliferation, migration 
and invasion of H/R-induced HTR-8/SVneo cells. To explore 
the potential mechanism of HSPB8 in the regulation of 
H/R-induced HTR-8/SVneo cells, the Biogrid database was 
used to predict the proteins that could interact with HSPB8; 
c-Myc was found to interact with HSPB8 (Fig. 5A). It was also 
shown that c-Myc expression was significantly downregulated 
in HTR-8/SVneo cells under H/R conditions compared with 
the control cell, and that HSPB8 overexpression significantly 
upregulated c-Myc expression compared with the Ov-NC 
group (Fig. 5B). The subsequent Co-IP data demonstrated the 

Figure 1. HSPB8 expression is downregulated in placental tissues of patients with preterm PE and HTR-8/SVneo cells exposed to H/R conditions. The expres-
sion levels of HSPB8 in placental tissues of patients with preterm PE and in normal preterm pregnant women were analyzed by GEO datasets. (A) GSE102897 
and (B) GSE147776. **P<0.0 and ***P<0.001 vs. normal group. (C) HSPB8 expression in HTR-8/SVneo cells exposed to H/R conditions was detected using 
western blotting. ***P<0.001 vs. control group. HSPB8, heat shock protein B8; PE, preeclampsia; H/R, hypoxia/reoxygenation; GEO, Gene Expression Omnibus.
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binding between HSPB8 and c-Myc (Fig. 5C). Subsequently, 
c-Myc expression was silenced. HTR-8/SVneo cells transfected 
with siRNA-c-Myc-1/2 displayed significantly decreased 
c-Myc expression levels compared with that of the siRNA-NC 
group (Fig. 5D and E). Due to the lower c-Myc expression in 
the siRNA-c-Myc-1 group, HTR-8/SVneo cells transfected 
with siRNA-c-Myc-1 were selected to perform the following 
experiments. It was observed in Fig. 5F-H that knockdown 
of c-Myc expression partially attenuated the elevated effects 
of HSPB8 overexpression on the proliferation, migration and 
invasion of H/R-induced HTR-8/SVneo cells. Collectively, 
these findings confirmed that HSPB8 binds to c-Myc to regu-
late the proliferation, migration and invasion of HTR-8/SVneo 
cells exposed to H/R conditions.

HSPB8 can bind to c-Myc to inhibit the induction of oxidative 
stress and apoptosis of HTR-8/SVneo cells exposed to H/R 
conditions. In contrast to the H/R + Ov-HSPB8 + siRNA-
NC group, HTR-8/SVneo cells in the H/R + Ov-HSPB8 + 
siRNA-c-Myc group exhibited the highest ROS fluorescence 

intensity, the lowest level of JC-1 aggregate formation and 
the highest level of JC-1 monomers (Fig. 6A and B). In addi-
tion, c-Myc-silencing elevated MDA levels and reduced SOD 
activity compared with that noted in the negative control group 
(Fig. 6C and D). Consistent with these observations it was 
found that the decreased TUNEL levels, the upregulated Bcl-2 
expression levels and the downregulated Bax and cleaved 
caspase3 expression levels in the H/R + Ov-HSPB8 group 
compared with the H/R group were all reversed by knock-
down of c-Myc expression in HTR-8/SVneo cells exposed 
to H/R conditions compared with the siRNA-NC group 
(Fig. 7A and B). These data provide evidence that HSPB8 
binding to c-Myc inhibited the induction of oxidative stress 
and apoptosis of HTR-8/SVneo cells exposed to H/R.

Discussion

During the entire phase of pregnancy, the placenta is consid-
ered to be a crucial organ that assists the development of the 
mammalian fetus. The occurrence of PE may be related to 

Figure 2. HSPB8 overexpression promotes the proliferation, migration and invasion of H/R-induced HTR-8/SVneo cells. Following transfection of the cells 
with a HSPB8 plasmid, HSPB8 expression was assessed by (A) RT-qPCR and (B) western blotting. ***P<0.001 vs. Ov-NC group. (C) Cell viability was detected 
using the Cell Counting Kit-8 assay. The migration and invasion of HTR-8/SVneo cells were evaluated using (D) wound healing (Scale bars, 100 µm) and 
(E) Transwell invasion assays (scale bars, 50 µm). *P<0.05, ***P<0.001 vs. the control group; ##P<0.01, ###P<0.001 vs. the H/R + Ov-NC group. HSPB8, heat 
shock protein B8; H/R, hypoxia/reoxygenation; RT-qPCR, reverse transcription-quantitative PCR; Ov, overexpression; NC, negative control.
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inadequate blood perfusion and ischemia caused by defec-
tive placental formation (33). PE is a hypertensive disorder 
of pregnancy and has been demonstrated to have various 
acute and long-term complications in pregnant women and 
neonates (34). It has been reported to be responsible for the 
increase in maternal and perinatal morbidity and mortality in 
recent years, seriously affecting maternal and child health (35). 
The molecular mechanism of PE occurrence and progression 
is important in searching for potential target molecules; it can 

also be used to design targeted therapy. HTR-8/SVneo is the 
human first-trimester trophoblast cell line and has a similar 
function to EVTs. As a result, HTR-8/SVneo cells subjected to 
H/R have been widely used to simulate PE in vitro and to inves-
tigate the pathogenesis of PE. The present study discovered 
that HSPB8 expression was significantly downregulated in 
placental tissues of patients with preterm PE and H/R-induced 
HTR-8/SVneo cells. HSPB8 alleviated oxidative stress by 
binding to c-Myc to improve trophoblast cell dysfunction.

Figure 3. HSPB8 overexpression alleviates the induction of oxidative stress of HTR-8/SVneo cells exposed to H/R conditions. (A) Levels of ROS were evalu-
ated using DCFH-DA staining. (B) Mitochondrial membrane potential was analyzed using JC-1 staining. Specific kits were employed for the measurement 
of (C) MDA and (D) SOD levels. Scale bars, 50 µm. ***P<0.001 vs. the control group; ###P<0.001 vs. the H/R + Ov-NC group. HSPB8, heat shock protein 
B8; H/R, hypoxia/reoxygenation; ROS, reactive oxygen species; DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate; JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-
tetraethylbenzimidazolocarbo-cyanine; MDA, malondialdehyde; SOD, superoxide dismutase; Ov, overexpression; NC, negative control.
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It is widely accepted that trophoblast proliferation, inva-
sion and migration are essential for placental development; 
poor migration and invasion capacities of trophoblast cells 
are considered to be the main causes of PE (36,37). As the 
main component cells of the placenta, trophoblast cells exhibit 
invasive ability similar to tumor invasion, while the prolif-
eration, invasion and migration of trophoblast cells ensure 
the normal development of the placenta (38). An increasing 
number of studies have validated that excessive oxidative 
stress results in an increase in ROS levels during the develop-
ment of PE, which further leads to induction of apoptosis and 
loss of trophoblast invasion and migration (39,40). It has been 
reported that mitochondria are the main sites of ROS produc-
tion and mitochondrial membrane integrity is sensitive to the 
cellular ROS levels (41). In the present study, H/R stimula-
tion led to suppressed proliferation, migration, invasion and 
elevated ROS and JC-1 monomer levels of HTR-8/SVneo cells, 
suggesting the damage caused by trophoblast cell dysfunction 
and induction of oxidative stress, which were consistent with 
the results of previous studies (17,42,43). At present, HSPB8 
has been confirmed to be highly expressed in various human 
tumors and HSPB8 overexpression has been demonstrated to 
facilitate the proliferation, migration and invasion of these 
cancer cells, such as prostate cancer, gastric cancer and lung 
adenocarcinoma (44-46). HSPB8 has also been shown to 
improve the H/R or I/R-induced damage of the myocardium 

and brain by repressing oxidative stress, apoptosis and 
restoring mitochondrial function (47,48). Particularly, a 
previous study has suggested that HSPB8 plays a significant 
role in the progression of human BeWo cytotrophoblasts to 
syncytiotrophoblasts (25). The present study observed signifi-
cantly downregulated expression levels of HSPB8 in placental 
tissues of patients with preterm PE and HTR-8/SVneo cells 
exposed to H/R conditions. It was also demonstrated that 
HSPB8 gain-of-function facilitated the proliferation, migra-
tion and invasion of HTR-8/SVneo cells exposed to H/R and 
inhibited the induction of their oxidative stress and apoptosis.

To study the molecular mechanisms of HSPB8 in the regula-
tion of trophoblast cell dysfunction under H/R conditions, the 
Biogrid database was used in the present study to predict the 
proteins that could interact with HSPB8; c-Myc was found to 
interact with HSPB8. Numerous studies have revealed that c-Myc 
is considered to be a target for the treatment of multiple human 
cancers (49,50). Upregulation of c-Myc expression accelerates 
the proliferation, migration and invasion of cervical, pancreatic 
and lung cancers (51-53). In addition, c-Myc has been reported 
to inhibit oxidative stress during ventricular remodeling of rats 
with myocardial infarction (54). c-Myc may restore appropriate 
levels of antioxidant proteins to ensure optimal mitochondrial 
function while maintaining ROS levels (55). Kfoury et al 
proposed that ROS levels are significantly increased in mela-
noma cells following knockdown of c-Myc expression, which 

Figure 4. HSPB8 overexpression attenuates the induction of apoptosis of HTR-8/SVneo cells exposed to H/R conditions. (A) TUNEL was used to evaluate 
the induction of apoptosis of HTR-8/SVneo cells Scale bars, 50 µm. (B) Expression levels of apoptosis-related proteins were detected using western blotting. 
***P<0.001 vs. the control group; ###P<0.001 vs. the H/R + Ov-NC group. HSPB8, heat shock protein B8; TUNEL, terminal deoxynucleotidyl transferase dUTP 
nick end labeling; H/R, hypoxia/reoxygenation; Ov, overexpression; NC, negative control.
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promotes the induction of apoptosis of melanoma cells (56). In 
a previous study examining PE, upregulation of c-Myc expres-
sion has been shown to enhance the proliferation, migration 
and invasion of trophoblast cells (27,57). The present study 
also demonstrated that H/R induced downregulation of c-Myc 

expression. Silencing of c-Myc expression reversed the effect of 
HSPB8 overexpression on trophoblast cell dysfunction and on 
the induction of oxidative stress.

The present study has a limitation. This study only 
discussed the role of HSPB8/c-Myc in the dysfunction 

Figure 5. HSPB8 binding to c-Myc regulates the proliferation, migration and invasion of HTR-8/SVneo cells exposed to H/R conditions. (A) Biogrid database 
predicted that c-Myc interacted with HSPB8. (B) Western blotting was used to assess c-Myc expression following overexpression of HSPB8 in HTR-8/SVneo 
cells exposed to H/R conditions. ***P<0.001 vs. the control group; ###P<0.001 vs. the H/R + Ov-NC group. (C) Interaction between HSPB8 and c-Myc was veri-
fied using the Co-IP assay. c-Myc expression following transfection of the cells with siRNA-c-Myc-1/2 in HTR-8/SVneo cells was assessed by (D) RT-qPCR 
and (E) western blotting. ***P<0.001 vs. siRNA-NC. (F) Cell viability was detected using the Cell Counting Kit-8 assay. The migration and invasion of 
HTR-8/SVneo cells was evaluated using (G) wound healing (scale bars, 100 µm) and (H) Transwell invasion assays (scale bars, 50 µm). *P<0.05, ***P<0.001 
vs. the control group; #P<0.05, ###P<0.001 vs. the H/R group; @@P<0.01 and @@@P<0.001 vs. the H/R + Ov-HSPB8 + siRNA-NC group. HSPB8, heat shock 
protein B8; H/R, hypoxia/reoxygenation; Ov, overexpression; NC, negative control; si, short interference; Co-IP, co-immunoprecipitation; RT-qPCR, reverse 
transcription-quantitative PCR.
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Figure 6. HSPB8 binding to c-Myc inhibits the oxidative stress of HTR-8/SVneo cells exposed to H/R conditions. (A) ROS levels were evaluated using 
DCFH-DA staining. (B) Mitochondrial membrane potential was assessed by JC-1 staining. Kits were employed for the measurement of (C) MDA and (D) SOD 
levels. Scale bars, 50 µm. ***P<0.001 vs. the control group; ###P<0.001 vs. the H/R group; @@P<0.01 vs. the H/R + Ov-HSPB8 + siRNA-NC group. HSPB8, heat 
shock protein B8; H/R, hypoxia/reoxygenation; ROS, reactive oxygen species; DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate; JC-1, 5,5',6,6'-tetrachloro-
1,1',3,3'-tetraethylbenzimidazolocarbo-cyanine iodide; MDA, malondialdehyde; SOD, superoxide dismutase; Ov, overexpression; NC, negative control; si, 
short interference.

Figure 7. HSPB8 binding to c-Myc inhibits induction of apoptosis of HTR-8/SVneo cells exposed to H/R conditions. (A) TUNEL staining was used to evaluate 
the induction of apoptosis of HTR-8/SVneo cells. (B) Expression levels of apoptosis-related proteins were detected using western blotting. Scale bars, 50 µm. 
***P<0.001 vs. the control group; ###P<0.001 vs. the H/R group; @@P<0.01 and @@@P<0.001 vs. the H/R + Ov-HSPB8 + siRNA-NC group. HSPB8, heat shock 
protein B8; H/R, hypoxia/reoxygenation; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; Ov, overexpression; NC, negative control; 
si, short interference.
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of trophoblast cells exposed to H/R conditions using 
HTR-8/SVneo cells. Further in vivo animal studies will be 
performed in the future to obtain an in-depth understanding 
of their roles in PE pathogenesis.

In conclusion, to the best of our knowledge, the present 
study demonstrated for the first time that HSPB8 expres-
sion was significantly downregulated in PE tissues and 
H/R-stimulated trophoblast cells. Upregulation of HSPB8 
expression improved the trophoblast cell dysfunction induced 
by H/R by suppressing oxidative stress by binding to c-Myc. 
The findings may highlight the role of HSPB8/c-Myc in the 
prevention and treatment of PE in the future.
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